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We apply quantum integration to elementary particle-physics processes. In particular, we look at 
scattering processes such as e+e− → qq̄ and e+e− → qq̄′W. The corresponding probability distributions 
can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial 
Networks or an exact method. The distributions are then integrated using the method of Quantum 
Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In 
simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-
dimensional integration with up to six qubits. This work paves the way towards taking advantage of 
quantum algorithms for the integration of high-energy processes.
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1. Introduction

In this work, the quantum versions of Monte Carlo algorithms 
are applied to the problem of integrating elementary-particle cross 
sections.

In particle physics, integration methods and Monte Carlo pro-
grams play a very special role as they are the central link between 
theory and experiment. On the one hand, they allow the encoding 
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of theoretical predictions including higher-order or beyond-the-
Standard-Model effects. On the other hand, by generating theoret-
ical events according to the underlying distribution, they allow a 
one-to-one correspondence with experimental events. Hence theo-
retical predictions can be directly compared to experimental mea-
surements in order to get insight into elementary interactions.

For collider experiments such as the Large Hadron Collider 
(LHC), Monte Carlo simulations are crucial as they simulate all 
the scattering processes generated in the experiment. It means 
that considerable computing resources are needed and they are 
expected to increase further [1,2]. For some analysis, the limited 
Monte Carlo statistics is even becoming a significant source of 
uncertainty [3,4]. This calls for a continuous improvement of the 
performance of such Monte Carlo generators.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2022.137228
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2022.137228&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:gabrielefrancesco.agliardi@polimi.it
mailto:michele.grossi@cern.ch
mailto:mathieu.pellen@physik.uni-freiburg.de
mailto:enrico.prati@ifn.cnr.it
https://doi.org/10.1016/j.physletb.2022.137228
http://creativecommons.org/licenses/by/4.0/


G. Agliardi, M. Grossi, M. Pellen et al. Physics Letters B 832 (2022) 137228
It appears therefore particularly timely to apply quantum ver-
sions of Monte Carlo algorithms to this problem, given the promis-
ing advancements in the industry of quantum devices. The core al-
gorithm of interest for us is Quantum Amplitude Estimation (QAE) 
[5–8], that was proven to provide a speedup for the integration of 
probability distributions, by scaling as O (1/M), where M is the 
number of (quantum) samples, as opposed to classical integrators 
scaling as O(1/

√
M) with M (classical) samples. In the context of 

high-energy physics, this would translate into a gain in simulation 
performance, similarly to what was already assessed in other ap-
plication fields, and specifically in finance [9–12].

To apply these techniques, classical data must be loaded into a 
quantum computer, which is a nontrivial task in terms of computa-
tional cost. More precisely, the quantum states that correspond to 
the data have to be prepared. In order to encode the data, several 
algorithms and techniques are used in the literature [13–18,10].

While the present work is the first application of QAE algo-
rithms to integration, there have been numerous applications of 
quantum computing to other aspects of collider physics. Such ap-
plications have been mainly experiment-oriented: pixel images 
[19], event topologies [20], event classification [21], Higgs analy-
sis [22], background suppression [23], measurement unfolding [24]
or jet clustering [25]. Applications to parton-distribution functions 
(PDF) have also been carried out by several groups [26,27] in a 
quantum context. In addition, several investigations of quantum 
parton shower as well as matrix elements evaluation [28,29] have 
been carried out [30,28,31]. Finally, in Ref. [32] quantum Genera-
tive Adversarial Networks (qGAN) [10] techniques have been used 
for the purpose of data augmentation.

Here, we focus on two representative cases (e+e− → qq̄ and 
e+e− → qq̄′W processes) to illustrate the application of QAE. A 
particularly important point is that the functions to be integrated 
are significantly more complicated to than usual Gaussian or log-
normal distributions. These are typically made of trigonometric 
functions, polynomials, and logarithms (at least for what concerns 
the lowest order in perturbative theory). We therefore explore two 
methods to prepare the quantum states according to the underly-
ing distribution, namely the qGAN [10] and an exact loading [33], 
respectively. Of particular interest for this application, is the ability 
to provide correct results when restricting the domain of integra-
tion. Finally, we carry out one- and two-dimensional integration 
of cross sections. For the latter case, we devise a method that is 
extendable to n dimensions while still allowing the arbitrary re-
duction of the integration domain. In general, the integrations are 
accurate at the per-cent level with up to six qubits.

The article is organised as follows: in the first part, the method 
and tools used for this work are presented. The second part 
deals with two methods to load the probability distributions. The 
third one focuses on integrating such probability distributions with 
quantum amplitude estimate methods. Finally, the last sections 
contains a brief summary as well as some concluding remarks.

2. Method and tools

In this section, we first recall some general considerations about 
Monte Carlo integration and explain how we translate it to our 
problem. Second, we briefly describe the processes under investi-
gation. Finally, the tools used in the next Sections are presented as 
well as the numerical input of the cross sections.

2.1. General considerations

To start, let us recall some basics of particle physics. A Monte 
Carlo integration aims at estimating the cross section of scattering 
processes which can be written schematically as
2

σ = 1

F

∫
d� |M|2 �(� − �c), (1)

where F is the flux factor, d� the phase-space factor [possibly in-
cluding parton-distribution function (PDF)], and |M|2 the matrix 
element squared which encodes the quantum mechanical process. 
In addition, the phase space (also called integration domain below) 
can be restricted by the use of so called phase-space cuts which 
is represented in Eq. (1) by �(� − �c) which we refer to as the 
domain function in the following.

In particular, the integration is performed over variables that 
allow to describe the full phase space. While these are not phys-
ically observable, they allow the full reconstruction of the event 
kinematic. In the following, the results are only expressed in terms 
of these variables that serve as proxies for physical ones. In par-
ticular, the domain restriction (or event selection) is only applied 
to the variables of integration. To obtain a physical restriction of 
the domain of integration, a simple mapping can be performed. In 
more general terms, any integral I can be cast into the following 
form

I =
∫

dxf (x)g(x). (2)

The function f describes the probability distribution, while the 
function g is the integrand function. In the QAE, f is computed 
classically, while g is represented by means of a quantum opera-
tor. For example, in Ref. [10], the g function is a linear function 
which represents the payoff. In our case, referring to Eq. (1), we 
take f = |M|2. We then take g = �(� −�c), so that g is a gener-
alised Heaviside function which only takes the value 1 or 0; such 
a function is sometimes called the indicator function over the inte-
gration domain D , and denoted by χD or 1D .1

Implementing this procedure on a quantum computer involves 
in general two main steps: the definition of the quantum states 
and the integration of the probability distribution. The two ap-
proaches that we follow in this work are graphically represented 
in Fig. 1. The first one is based on an exact loading while the sec-
ond relies on the qGAN to prepare the quantum states. The details 
of the implementations are explained in the relevant Sections be-
low.

2.2. Particle processes investigated

In order to test our numerical approach with the quantum sim-
ulations, we have focused on two simple though non-trivial scat-
tering processes e+e− → qq̄ and e+e− → qq̄′W. In particular, we 
have not considered hadronic processes as these would require the 
use of parton distribution functions.

The first process is e+e− → qq̄. In quantum electrodynamics 
(QED), this process is rather simple. By parametrising the phase 
space with two angles, the cross section reads:

σ ∼
1∫

−1

2π∫
0

d cos θdφ
(

1 + cos2 θ
)

. (3)

This means that computing such a process (up to an overall nor-
malisation factor) simply amounts to integrate the function 1 + x2

on the integration domain [−1;1] while there is no dependence 
on φ.

1 In principle one may also take f = 1 and g = |M|2 �(� −�c), thus eliminating 
a costly classical pre-computation. Nonetheless, the implementation complexity on 
the quantum side rises, and more importantly, the quantum circuit becomes deeper 
and wider, meaning that it could not run on currently available quantum hardware. 
Consequently we focused our proof of principle on a simplified scenario.
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Fig. 1. Graphical representation of the two approaches followed in this work. The upper one uses an exact loading method while the lower one is based on the qGAN.

 

Table 1
Summary of the elementary processes under investigation.

Process number Description Integral 
definition

Number of integration 
variables

Process 1 e+e− → qq̄ Eq. (3) 2
Process 2 e+e− → qq̄′W Eq. (4) 5

The second one is e+e− → qq̄′W. In this case, we have consid-
ered the full electroweak Standard Model and not only QED. Due 
to the three particles in the final state, this process has 5 variables 
of integration. These can be chosen as two invariants and three 
angles and the cross section becomes [34]

σ ∼
s∫

M2
W

sMax
1∫

0

1∫
−1

2π∫
0

2π∫
0

d�3
∣∣Me+e−→qq̄′W

∣∣2
, (4)

with sMax
1 = (s2 − MW) (s − s2) /s2 and d�3 = ds2ds1d cos θ1dφ1dφ2.

As in the previous case, one of the φ angle is a trivial integration. 
The main characteristics of the process are summarised in Table 1.

2.3. Software

To check our results, we resorted to an in-house Monte Carlo 
program, that was used for the computation of various high-energy 
physics processes before [35–38]. It is based on the MONACO inte-
gration routine which is a modified version of VEGAS [39] which is 
part of the VBFNLO program [40–42]. For the matrix elements, we 
use either analytical expressions or the matrix-element generator
Recola [43,44].

Instead, the results in this article are obtained from the open-
source distribution Qiskit [45] which is written in Python. Start-
ing from its libraries, we developed our code to load events, 
build probability distributions, and calculating integrals. The spe-
cific functions used are described below in the relevant Sections. 
With Qiskit, the IBM Quantum Services offer the possibility to run 
algorithms on simulated quantum computer as well as test some 
specific configurations on real quantum chips.

2.4. Input parameters

In order to ease reproduction of our results, we provide below 
the numerical inputs of our simulations. For the centre-of-mass 
3

energy, we have used 
√

s = 500 GeV. The electromagnetic coupling 
is defined with the help of the Gμ scheme [46] which leads to

α =
√

2

π
GμM2

W

(
1 − M2

W

M2
Z

)
with

Gμ = 1.16638 × 10−5 GeV−2.

(5)

The masses and widths of the massive particles are chosen as [47]

MOS
Z = 91.1876 GeV, 
OS

Z = 2.4952 GeV,

MOS
W = 80.379 GeV, 
OS

W = 2.085 GeV, (6)

All other fermions are considered massless. The pole masses and 
widths of the heavy gauge bosons are determined from the mea-
sured on-shell (OS) values [48] via

MV = MOS
V√

1 + (
OS
V /MOS

V )2
, 
V = 
OS

V√
1 + (
OS

V /MOS
V )2

. (7)

3. Definition of probability distributions

A necessary step that enables the usage and exploitation of a 
quantum algorithm, is the encoding of data into quantum states, 
by means of a quantum circuit. Today, it is not possible to rely on 
any quantum native techniques like QRAM [49]. Hence, to solve 
this potential bottleneck, several approaches were proposed in the 
literature that allow to encode classical data into quantum states 
[50]. This is particularly important as the approximation intro-
duced in data loading could affect the quality of the integration. 
This procedure corresponds to the first steps depicted in Fig. 1.

To investigate it, we have classically generated samples (here 
10, 000 events) to be loaded into the quantum state. In particular, 
we have used two methods: qGAN [10] and an exact loading [33], 
respectively. Both approaches will be outlined and compared in the 
following. In this Section, we focus on the simple case of e+e− →
qq̄ in QED which amounts to integrate 

∫ +1
−1 dx 

(
1 + x2

)
, meaning 

that the distribution to be loaded is 1 + x2.
We discuss first the qGAN method for our application. A Gen-

erative Adversarial Network (GAN) [51], in its classical form, is 
characterised by the interplay of a generative network and a dis-
criminative network to learn the probability distribution under-
lying the training data [52]. A qGAN has a similar structure, but 
the generator is a parametrised quantum circuit (PQC) instead of a 
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Fig. 2. Loading with qGAN of the normalised 1 + x2 distribution with the default learning rate (left) and an optimised one (right). In both cases, it is compared to the 
compared to the theoretical value (thick orange curve) and the entanglement is circular.
classical neural network. This way the generator is trained to load 
a quantum state, approximating the discretized version of the tar-
get distribution. As a consequence, this algorithm belongs to the 
general class of quantum variational algorithms, namely hybrid al-
gorithms that rely on a continuous interaction between a quantum 
computer and a classical computer. An initial PQC is defined (called 
ansatz) and then using a classical optimiser this circuit is trained 
iteratively. The update of the parameters is driven by the evolu-
tion of the related loss function. There are no general prescriptions 
about the structure of the variational circuit, so that challenges 
remain, including the trainability, accuracy and efficiency of any 
variational quantum circuits. For a general overview of variational 
algorithms, we refer the reader to Ref. [53].

To apply such a method to the integration of the e+e− → qq̄
cross section, we have loaded the normalised distribution 1 + x2, 
which we define as p(x) = (1 + x2) 3

8 such that 
∫ +1
−1 dxp(x) = 1, us-

ing the implementation of the qGAN in Qiskit [10].2 The results 
obtained are presented in Fig. 2 and Table 2 where several loaded 
distributions are compared against the true value of the distribu-
tion for two cases. The first one is the default loading obtained 
from default qGAN parameters defined in Qiskit, while the sec-
ond one is an optimised version of the neural network for this 

2 See for example https://Qiskit .org /documentation /tutorials /finance /10 _qgan _
option _pricing .html for the original implementation of Ref. [10].
4

particular functional form obtained after several tests of different 
variational forms and optimiser parameters.

In both cases, five random seeds have been used to estimate the 
spread of the loading procedure. From this example, it should be 
rather clear that an optimisation of the neural network in terms of 
architecture (rotation gates and entanglement gates) as well as pa-
rameters tuning is needed and that a default configuration cannot 
be used for arbitrary distributions. Specifically, from our study, the 
best entanglement is the circular one and the best results are ob-
tained with a learning rate of 5.10−4 and 1.10−3 for the generator 
and discriminator, respectively.3 The improvement in the accuracy 
of the loading can be observed in Fig. 2 and Table 2. Other strate-
gies for the entanglement layers (full, linear, or SCA) give rather 
unstable results depending on the seeds used. Increasing the num-
ber of repetitions does not appear to improve the loading accuracy.

In our example, the default qGAN can lead to loading errors up 
to 40% with an average deviation above 10% per bin. In the case of 
an optimised neural network, the average accuracy of the loading 
per bin is significantly better and lies around 5%. To measure the 
quality of the whole loaded distribution, one can revert to the root 
mean squared error defined as

3 The default values of the learning rate for the generator and discriminator are 
1.10−3 and 1.10−5, respectively.

https://Qiskit.org/documentation/tutorials/finance/10_qgan_option_pricing.html
https://Qiskit.org/documentation/tutorials/finance/10_qgan_option_pricing.html
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Table 2
Comparison of qGAN loading of the normalised 1 + x2 distribution for the default 
learning rates and an optimised one. The results are given for 5 different seeds. The 
minimum, maximum, and average difference per bin with respect to the true value 
is provided (in per cent). The root mean squared error from the true value is also 
given.

qGAN loading Difference per bin [%] σx

Min. Max. Average

Default 1 +3.46 −25.1 14.6 0.0206
Default 2 +3.90 +19.3 12.0 0.0152
Default 3 +2.36 −21.1 8.51 0.0118
Default 4 +1.48 −40.2 13.7 0.0230
Default 5 +0.224 −31.7 12.0 0.0171

Optimised 1 −0.351 −10.0 4.70 7.13 × 10−3

Optimised 2 −0.811 −18.1 7.69 0.0121
Optimised 3 −0.052 −10.1 4.92 7.83 × 10−3

Optimised 4 +0.599 −15.4 5.16 7.64 × 10−3

Optimised 5 −0.995 −12.4 4.65 7.00 × 10−3

Fig. 3. Direct loading of the normalised 1 + x2 distribution (blue histogram) com-
pared to the theoretical value (orange curve).

σx =
√√√√ 1

N

N∑
i=1

(xi − μi)
2, (8)

where i denotes the bins, xi the value of the distributions loaded, 
and μi the true value of the distribution.

Finally, the better behaviour of the tuned qGAN can be also ob-
served in the relative entropy as a function of the time steps in 
Fig. 2. The relative entropy S is defined as

S =
N−1∑
x=0

P (x) log
P (x)

Q (x)
, (9)

where P and Q are the output distribution of the quantum gener-
ator and the discretized version of the target distribution, respec-
tively. The tuned network shows a much smoother converge than 
the default one.

We now turn to the exact loading which is represented in Fig. 3. 
Such a technique is an analytical way to initialise complex ampli-
tude on qubit register. Being an exact method, the accuracy of the 
loaded distribution is obviously better than with the qGAN. This is 
shown quantitatively in Table 3 where the differences per bin are 
shown for the best bin, the worst, and the average. For the two 
qGAN cases above, the best seed has been selected. From Table 3, 
it is rather clear that the exact loading is performing significantly 
5

Table 3
Comparison of qGAN loading of the normalised 1 + x2 distribution for the default 
learning rates and an optimised one as well as the direct loading. The qGAN results 
are the ones of the best seed in Table 2. The minimum, maximum, and average 
difference per bin with respect to the true value is provided (in per cent). The root 
mean squared error from the true value is also given.

Loading Difference per bin [%] σx

Min. Max. Average

Direct +0.207 −1.88 1.35 1.80 × 10−3

qGAN default +2.36 −21.1 8.51 0.0118
qGAN optimised −0.995 −12.4 4.65 7.00 × 10−3

better in this case. In particular, it shows discrepancies from the 
truth by no more than 2% and is on average around 1%. This order 
of magnitude should be kept in mind as the best possible loading 
accuracy with a sample of 10, 000 events.

If instead, one loads the exact distribution which is known an-
alytically (as opposed to a sample generated according to it), there 
is simply no deviation from the true distribution. This aspect is 
particularly important as in principle, a closed form of the distri-
bution is not necessarily available. It also means that the quality 
of the exact loading is directly dependent on the statistics of the 
sample given as input.

In order to represent the target distributions with N bins, one 
needs to encode a statevector of size N , and this translates into 
a number of qubits n such that N = 2n . In other words, the data 
resolution is a direct consequence of the number of qubits used. 
Obviously, the computational complexity is related to such n, as 
well. As far as the qGAN approach is concerned, and discarding 
the training process that will be discussed in the next paragraph, 
the pure loading phase requires O(poly(kn)) gates, where k is 
the number of layers, which is intrisic in the definition of the 
ansatz. Assuming that k can be kept under control, qGANs become 
an efficient data loading technique, and preserve the speedup of 
the Quantum Amplitude Estimation algorithm for integration [10]. 
Conversely, for the exact loading algorithm, the number of 2-qubit 
gates scales as O(2n) [33].

In the argument above, the training cost of a qGAN is neglected. 
This is motivated by the fact that the same distribution is typically 
used for multiple simulations, and in this case the training pro-
cess is performed once, so that the training time can be seen as 
a constant. Nonetheless, it is worth saying that the scaling of the 
training cost when the distribution size grows, is an open ques-
tion, whose complexity lies in the unpredictable number of epochs 
needed to achieve training convergence, in the desired level of ap-
proximation, and in the different behaviour of various optimisers. 
The interaction of such hyperparameters on small-scale problems 
is discussed in Ref. [54].

Given the limited amount of qubits in our study, we could not 
appreciate the benefits of qGANs in terms of scaling, while on 
the contrary we had to face the learning, possibly the tuning of 
the network, and the verification of the result. Moreover, the cur-
rent absence of analytical estimates for approximations induced by 
qGANs, limits their applicability for computing arbitrary processes 
in a quantum Monte Carlo program, especially when probability 
distributions are known from first principle or vast amounts of 
classical data representing them are available.

4. Integration of probability distributions

In this section, we exclusively discuss the integration of proba-
bility distributions. While we could also use the qGAN loading, we 
use exclusively the exact loading method in this Section in order to 
isolate the integration step from the loading one. In particular, we 
look at the integration of one- and two-dimensional distributions. 
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This procedure corresponds to the core of the work flow depicted 
in Fig. 1.

Once the target distribution has been loaded into a quantum 
channel, the integration is performed through QAE. Assuming ef-
ficient data loading, the algorithm achieves a quadratic improve-
ment, compared with classical Monte Carlo simulation. QAE is a 
very interesting and studied quantum algorithm due to its po-
tential application in different fields such as quantum chemistry, 
machine learning, finance and high energy physics. QAE is a funda-
mental routine in quantum computing which generalises the idea 
behind the Grover’s search algorithm, and gives rise to a family of 
quantum algorithms. The basic idea is that given an operator A
that acts as

A|0〉 = √
1 − a|�0〉 + √

a|�1〉 (10)

where a ∈ [0, 1] and |�0〉 and |ex�1〉 are two normalised states. 
Quantum Amplitude Estimation (QAE) is the task of finding an es-
timate for the amplitude a of the state |�1〉:

a = |〈�1|�1〉|2.
This can be achieved by the definition of a Grover’s like operator 
of the form [5]:

Q = AS0A†S�1 , (11)

where S0 and S�1 are reflections about the |0〉 and |�1〉 states, 
respectively, and phase estimation. This formulation represents the 
canonical version of QAE which is a combination of Quantum 
Phase Estimation (QPE) and Grover’s Algorithm [55]. On one hand, 
QPE is theoretically able to achieve exponential speedup, like in 
the famous Shor’s Algorithm for factoring [56], on the other hand 
its practical implementation in terms of qubits and circuit depth 
represents an interesting challenge in current technological sce-
nario. Removing the dependence on QPE for a QAE-like routine in 
a simplified version such that it uses only Grover iterations has 
been largely studied in the literature.

Indeed, there exist different implementations, with respect to 
the original QAE implementation by Brassard et al. [5], such as 
the Iterative Amplitude Estimation (IAE) version which does not 
rely on Quantum Phase Estimation (QPE) as defined in Eq. (11). 
This is the adopted version for this work which can achieve a 
provable quadratic speedup over classical Monte Carlo simulation, 
with a desired asymptotic behaviour in its iterative queries to the 
quantum computer, reducing the required number of qubits and 
gates [6]. Additional implementations are the Maximum Likelihood 
Amplitude Estimation [7,8] which limit resorting to expensive con-
trolled operations.

4.1. One-dimensional distribution

As mentioned in the previous section, the direct loading adds 
no approximation to the probabilities given as input. If such prob-
abilities are obtained through sampling, though, they are in turn 
approximated. This means eventually that the result of the inte-
gration will strongly depend on the quality of the input. To illus-
trate this, we have use the QAE with samples of different sizes: 
1000 events (low statistics), 100,000 events (high statistics), 1M 
events (very high statistics). In particular, we have made used 
of the Qiskit functions LinearAmplitudeFunction [15,16], Estima-

tionProblem, and IterativeAmplitudeEstimation. The latter im-
plement and improved version of the original QAE method [6]. The 
results for the different samples and the loading of the exact dis-
tribution are compared to the analytical result in Tables 4 and 5. 
In these Tables and the following ones, δ[%] = σ−σtruth

σtruth
in per cent, 

where σtruth denotes the true analytical integration.
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It is particularly visible that the quality of the integration is de-
pendent on the statistics used. For 1 million events, the result of 
the integration is accurate at around the per-mille level. The load-
ing of the exact distribution, on the other hand, is systematically 
below half a per mille accuracy. In addition, it is worth emphasis-
ing that the relevant statistics for the integration precision is not 
the one of the full sample but of the sample in the integrated re-
gion. This is particularly clear in Tables 4 and 5 where the smaller 
integration domain have a lower accuracy. This holds true also for 
the loading of the exact distribution. It is worth noticing that the 
relative differences with respect to the true values in Tables 4 and 
5 do not necessarily display a scaling behaviour according to the 
statistics. This is due to the fact that the samples are subject to sta-
tistical fluctuation and their central value (as opposed to the error) 
follows a scaling behaviour only on average and not for every sin-
gle point. These numbers are particularly useful as they provide 
an estimate of the error which originates from not knowing the 
original distribution analytically (as in the 2D case below). In the 
present case, this error is about few per cent.

While in Tables 4 and 5, the limits of integration corresponds to 
the eight bins (n = 3 qubits give 2n bins) on the domain [−1;1], 
in Tables 6 and 7 the same exercise is performed with this time 
integration domains that do not fit the binning of the piecewise 
definition of the function.

In the present case, only the results of the integration of the 
high-statistics sample as well as the exact result are provided as 
a function of the number of qubits. In general, one observes that 
the results are significantly worse than in the previous case. This is 
simply due to the ill-defined value of the distribution between two 
bins. By increasing the number of qubits, one observes an improve-
ment of the results until the bin edges correspond to the integra-
tion boundaries. Once the bin edges fit the integration boundaries, 
increasing the number of qubits does not lead to any improvement 
as the distribution is already best defined within the integration 
boundaries. This implies that when taking the limit of large num-
bers of qubits, these artifacts disappear.

4.2. Two-dimensional distribution

We now turn to the integration of a two-dimensional function 
for the case of e+e− → qq̄′W. As it can be seen from Eq. (4), the 
3-particles phase space requires the integration over 5 variables. 
To simplify the problem while keeping it non-trivial, we integrate 
over the two invariants s1 and s2. To that end, we take a slice in 
Eq. (4) by setting cos θ1 = 0, φ1 = π/2, and φ2 = π/2. The cross 
section then becomes

σ ∼
s∫

M2
W

sMax
1∫

0

d�̃3
∣∣M′∣∣2

, (12)

with d�̃3 = ds2ds1 and M′ = Me+e−→qq̄′W(cos θ1 = 0, φ1 = π/2,

φ2 = π/2). The integration of the cross section therefore amounts 
to integrate over the variables s2 and s1. The integrand is graph-
ically represented on the left-hand side of Fig. 4 as a function of 
x = s2 and y = s1. Again, we would like to stress that, as in the 
one-dimensional case, the type of functions to be integrated are 
rather different and more complicated than those that have been 
tested so far such as Gaussian or log-normal distributions.

To encode the multidimensional distribution of Eq. (12) on 
qubits register, we revert to the same method as in the one-
dimensional case by defining it piecewise. To that end, we in-
troduce a mapping from the two dimensional function to one-
dimensional. The way the mapping is performed is represented 
in the right-hand side of Fig. 4. We opt for this solution instead 
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Table 4
Symmetric integration of the normalised 1 +x2 probability distribution based on samples with different statis-
tics (low, high, and very high) or the exact probability distribution. The results are compared to the analytical 
result in per cent. The results are obtained for three qubits. The low, high, and very high statistics refer to 
10, 000, 100, 000, and 1 million events, respectively.

Domain low stat. high stat. very high stat. exact

σ δ[%] σ δ[%] σ δ[%] σ δ[%]
[−0.75;0.75] 0.664 0.592 0.664 0.622 0.668 0.0280 0.668 −2.01 × 10−3

[−0.5;0.5] 0.403 0.794 0.402 1.16 0.406 0.122 0.406 −6.01 × 10−3

[−0.25;0.25] 0.196 −2.42 0.189 1.01 0.192 −0.166 0.191 −0.0175

Table 5
Asymmetric integration of the normalised 1 + x2 probability distribution based on samples with different 
statistics (low, high, and very high) or the exact probability distribution. The results are compared to the 
analytical result in per cent. The results are obtained for three qubits. The low, high, and very high statistics 
refer to 10, 000, 100, 000, and 1 million events, respectively.

Domain low stat. high stat. very high stat. exact

σ δ[%] σ δ[%] σ δ[%] σ δ[%]
[−0.75;0] 0.345 −3.31 0.332 0.706 0.334 0.0331 0.334 −8.31 × 10−3

[−0.5;0] 0.215 −5.86 0.201 1.15 0.203 0.0986 0.203 −0.0161
[−0.25;0] 0.112 −17.1 0.0939 1.87 0.0960 −0.284 0.0957 −0.0389

Table 6
Symmetric integration of the normalised 1 + x2 probability distribution based on a 1 million-events samples 
as well as the exact probability distribution. The results are compared to the analytical result in per cent as a 
function of the number of qubits. The high statistics refer to 100, 000 events.

Qubits number [−0.7;0.7] [−0.625;0.625]
high stat. exact high stat. exact

σ δ[%] σ δ[%] σ δ[%] σ δ[%]
3 0.402 −34.3 0.406 −33.5 0.402 −24.2 0.406 −23.3
4 0.525 −14.1 0.530 −13.2 0.525 −0.933 0.530 3.67 × 10−3

5 0.592 −3.05 0.597 −2.27 0.525 −0.933 0.530 3.67 × 10−3

6 0.592 −3.05 0.597 −2.27 0.525 −0.933 0.530 3.67 × 10−3

Table 7
Asymmetric integration of the normalised 1 + x2 probability distribution based on a 1 million-events samples 
as well as the exact probability distribution. The results are compared to the analytical result in per cent as a 
function of the number of qubits. The high statistics refer to 100, 000 events.

Qubits number [−0.7;0.6] [−0.625;0.375]
high stat. exact high stat. exact

σ δ[%] σ δ[%] σ δ[%] σ δ[%]
3 0.402 −28.0 0.406 −27.1 0.296 −28.1 0.299 −27.5
4 0.463 −17.0 0.468 −16.0 0.408 −1.07 0.412 5.96 × 10−3

5 0.527 −5.46 0.532 −4.62 0.408 −1.07 0.412 5.96 × 10−3

6 0.542 −2.76 0.547 −1.81 0.408 −1.07 0.412 5.96 × 10−3
of simply scanning from left to right and top to bottom, in or-
der to ensure that any physically motivated integration domain 
restrictions can be mapped to the one-dimensional function in a 
continuous way, hence minimising the error due to interpolations 
that are not evident nor considered in previous one-dimensional 
case. We note that this method is fully general and can be ex-
tended to n-dimensional integral. It has also the advantage to be 
fully flexible and allow for the arbitrary phase-space cut in the in-
tegrand. For example in Fig. 4, the blue shaded area represents the 
restriction of the integration domain. In this case, assuming that 
the first bin of the 1D function [ f̃ 
→ f̃ (X)] is in the top left cor-
ner and that it is mapped to SX = [0;16], break points will be 
introduced at X = 6, X = 10, X = 14, and X = 15.

For the present experiment, we have produced 100, 000 events 
according to the two-dimensional distribution over the full inte-
gration domain. We reduced the latter by setting the maximum 
value of s2 to 20, 000 in order to avoid populating bins with very 
few events. This leads to a total of 97, 581 events.
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Table 8
Two-dimensional integration with two different integration domains: one 
which matches bin edges (S1) and the other does not (S2). The numer-
ical integrations are compared to the value obtained from the classical 
sample for different grid dimensions corresponding to different number 
of qubits.

Qubits 
number

Grid dim. S1 S2

σ δ[%] σ δ[%]
4 4 × 4 0.55 0 0.70 −4.1
5 5 × 5 0.52 −4.92 0.53 −26.6
6 6 × 6 0.47 −14.1 0.79 9
6 7 × 7 0.62 −14.4 0.70 −3.0
6 8 × 8 0.55 0 0.78 7.6

The results of our experiments are given in Table 8. In this 
case, we consider two cases of integrand reduction or cuts: S1
which implement the cut [62,500;187,500] × [5,000;10,000]
and S2 which corresponds to [80,000;150,000]×[5,000;10,000]. 
The main difference between these two sub-domains is that the 
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Fig. 4. Two-dimensional numerical representation of the integrand in Eq. (12) with x = s2 and y = s1 (left). Graphical representation of the mapping of the two-dimensional 
function to a one dimensional function (right). The blue shaded area represents a restriction of the domain of integration.
boundaries of S1 fits the edges of the bins of a 4 × 4 grid while 
the ones of S2 do not for the first variable.

This explains why in Table 8 for the 4 × 4 grid, the re-
sult of the integration is perfectly reproducing the truth (σ =
0.545833717629457) which is here the classical sample. While in 
the one-dimensional case, each increase in the number of qubits 
translates into the halving of the bins, it is not the case here. In-
deed, going from 4 qubits to 5, only allows to extend the grid from 
4 ×4 to 5 ×5. It explains why for S1, while increasing the grid and 
making the binning finner, the accuracy of the integration does not 
improve. It only becomes perfect again when the binning is again 
perfectly fitting the boundaries of the integration domain.

This is further exemplified with the case of S2 where the 
improvement is not uniform when increasing the grid dimen-
sion. For this case, the true value of the cross section is σ =
0.7244852993923. This is due, on the one hand, to the fact that 
the edges of the second dimension are only matched for the cases 
of the 4 × 4 and 8 × 8 grids. On the other hand, as seen in the one 
dimensional case, when the domain of integration does not match 
the piecewise definition of the function, the result of the integra-
tion is uncontrolled. In the present case, the interpolation is such 
that doubling the number of bins in each dimension does not nec-
essarily increase the precision of the integration (grid 4 ×4 vs. grid 
8 × 8).

This implies that only a large number of qubits (implying finer 
bins) can allow a reliable estimate of the integral. In particular, for 
the present application which the computation of cross sections in 
collider experiments, the usual standard for Monte Carlo error is to 
reach a per mille accuracy. With current technology, this goal could 
be challenging. Nonetheless, we believe that with the advent of 
machines with 1000 qubits or more,4 this is perfectly conceivable. 
Not only a greater number of qubits is needed but also a greater 
quantum volume [57] that could allow to run QAE on a quantum 
computer, where further improvements are required, e.g., longer 
coherence times and higher gate fidelity.

We note in passing that with our method, we could in princi-
ple also sample events according to the underlying distribution as 
done in Ref. [32]. We defer the study of this aspect to future work. 
In particular, while the integration of probability distributions with 
QAE methods has shown to provide a quantum advantage, it is not 
clear yet if such an advantage can also be observed for the sam-
pling of events.

4 See for example, IBM recent Roadmap to Scaling Quantum Technology announcing 
aiming at 1000-plus qubits by 2023.
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5. Conclusion and outlook

This work constitutes the first application of Quantum Ampli-
tude Estimate (QAE) algorithm to high-energy physics. To test its 
feasibility we have checked two non-trivial elementary processes, 
namely e+e− → qq̄ and e+e− → qq̄′W.

Complex function appearing in elementary scattering processes 
can successfully be loaded onto qubits consistently with the re-
sults of Ref. [32]. To load the functions we have used two meth-
ods, namely: the quantum Generative Adversarial Networks (qGAN) 
[10] and an exact loading [33]. For our purposes, we have found 
that the latter one is more appropriate due to its versatility and 
reliability for what concerns application with a small number of 
qubits. In particular, it does not require any training nor tuning 
which makes it very easy to use.

In addition, we have successfully used the QAE algorithm for 
the integration of the two elementary processes in one and two 
dimensions, respectively. In particular, we have tested the reliabil-
ity of the integration when restricting its domain of integration, 
which would correspond to imposing physical event selection in 
an experiment. To integrate multi-dimensional functions, we have 
devised a general method which can be extended to n dimensions.

Following this purely numerical strategy requires large num-
ber of qubits in order to be accurate. For our application, we 
have found that QAE provides per-cent accurate results for one-
and two-dimensional integration with up to six qubits. The results 
support the framework where future physical devices will make 
quantum computing a viable solution for integrating elementary 
processes in high-energy physics. An increase in the number of 
available qubits is critical for the practical application to our do-
main of study. It should be noted here, though, that other issues 
emerge in the current era of Noisy Intermediate-Scale Quantum 
Computers [58]. Indeed, additional challenges originate from the 
imperfection of present hardware construction, from the limited 
topological connectivity of qubits, and from the inability to put in 
place full error correction protocols that would require additional 
qubits and resources. Practical usage of the algorithms shall there-
fore be validated and perfected also through the execution on real 
quantum devices.

This work opens new perspectives for the computation of par-
ticle processes with quantum Monte Carlo integration techniques. 
Following the same method, more complicated processes (with 
higher multiplicities and hadronic processes) can be investigated.
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