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Abstract

We consider higher-order QCD corrections to the production of high-mass systems
in hadron collisions within the transverse-momentum (qT ) subtraction formalism.
We present a method to consistently remove the linear power corrections in qT
which appears when fiducial kinematical cuts are applied on the final state system.
We consider explicitly the case of fiducial cross sections for Drell-Yan lepton pair
production at the Large Hadron Collider up to next-to-next-to-next-to-leading order
(N3LO) in QCD. We have implemented our method within the DYTurbo numerical
program and we have obtained perturbative predictions which are in agreement
at the permille level with those obtained with local subtraction formalisms up to
the next-to-next-to-leading order (NNLO). At the N3LO we are able to provide
predictions for fiducial cross sections with numerical accuracy at the permille level.
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Hard scattering processes at high-energy colliders, such as the Large Hadron Collider (LHC),
characterized by large scales of energy (M) transferred, allows us to probe the dynamics of
fundamental interactions at short distances. In this regime, theoretical predictions for cross
sections can be evaluated with perturbative techniques. In particular accurate results require
the inclusion of the dominant effects from strong interactions through the calculation of the
higher-order terms in Quantum Chromodynamics (QCD) as a series expansion in the coupling
αS(M). In order to match the experimental kinematical cuts on the measured final states,
it is essential to obtain predictions for fiducial cross sections and corresponding differential
distributions.

The computation of higher-order QCD corrections at fully-differential level is complicated
by the presence of infrared singularities at intermediate stage of the calculation which prevents
a direct implementation of numerical techniques and enforce the use of an hybrid analytic and
numerical approach. At the next-to-leading order (NLO) general subtraction algorithms, which
exploit the universality properties of soft and collinear emissions in QCD, have been devel-
oped [1, 2, 3, 4]. These methods have been successfully implemented in general purpose Monte
Carlo programs which satisfy the needs for the analysis of experimental data. Beyond the NLO,
a widely used extension of the subtraction method is the so called transverse-momentum (qT )
subtraction formalism originally proposed in Ref. [5]. In fact, thanks to its relative simplicity
and generality, the method has been successfully applied to fully differential QCD calculations
for several hard-scattering processes at the next-to-next-to-leading order (NNLO) (see Ref. [6]
and references therein) and, more recently, also at the next-to-next-to-next-to-leading order
N3LO [7, 8].

In the case of the qT subtraction formalism, a source of numerical uncertainty which is
particularly difficult to quantify in a robust way is due to the unphysical power corrections
of the type O(qcut

T /M), where qcut
T is the technical parameter necessary to separate the qT

resolved and unresolved parton emissions. Power corrections ambiguities are particularly severe
in the case of fiducial selection cuts which yield an acceptance that has a linear dependence on
qcut
T [9, 10, 11]. In principle the effect of these perturbative power corrections can be reduced

setting the value of the technical parameter qcut
T sufficiently small. However, very small values

of qcut
T require an extremely precise numerical control of cross sections in the infrared region

qT → 0 which are typically very challenging and time consuming.

In the case of the production of colourless high mass systems, sufficiently inclusive cross
sections (such as total cross section in absence of fiducial selection cuts) computed within the
qT subtraction method have a residual dependence on qcut

T of order O((qcut
T /M)2) originated

from the integration of the corresponding scattering amplitudes over the final state kinematics
in the small qT region [12, 13]. In the case of the production of coloured systems the residual
dependence on qcut

T is linear even in absence of fiducial cuts [14, 15, 16]. In this case, in order to
remove the linear power corrections in qcut

T , it is necessary to take care of both the dependence
related to the fiducial selection cuts and the dependence which is present at the inclusive level.

Linear fiducial power corrections have been connected with alternating sign factorial growth
of the perturbative expansion in Ref. [17] and modifications of the selection cuts typically used
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in experimental analysis have been proposed in order to eliminate the linear dependence of
the acceptance. In Ref. [18], an experimental procedure has been proposed to remove from
cross section measurements the effect of selection cuts which are responsible for linear fiducial
power corrections. In Ref. [10] it has been shown that linear fiducial power corrections can be
consistently removed through the qT resummation formalism, if the qT recoil due to multi-parton
emission is correctly taken into account.

Fixed-order calculations has a great relevance in precision physics at colliders: they can be
computed (in principle) in a definite and unambiguous way, and they are an essential ingredient
for all-order resummed predictions. Therefore the goal of having at disposal fixed-order calcu-
lations at high numerical accuracy is very relevant, regardless of the effective physical precision
of such predictions.

In this paper we consider standard fixed-order calculations and we discuss a method to
remove linear fiducial power corrections (FPC) within the qT subtraction formalism. Our
method, which is analogous to the one proposed in Ref. [10] based on a Lorentz decomposition
for hadronic and leptonic tensors, introduces an additional subtraction exploiting the recoil
procedure of Ref. [19] and it allows us to obtain fiducial fixed-order predictions with a residual
uncertainty of the type O((qcut

T /M)2) which can be brought down at sub-permille level. Our
results turn out to be crucial in the case of the N3LO extension of the qT subtraction formal-
ism [7, 8] where it is particularly challenging to obtain precise perturbative predictions for very
small values of qcut

T .

We consider explicitly the case of fiducial cross sections for Drell-Yan lepton pair production
at the Large Hadron Collider up to the N3LO in QCD. We have implemented our method within
the DYTurbo [28] numerical program and we have obtained perturbative predictions which are
in agreement at permille level with those obtained with local subtraction formalism at NLO
and NNLO.

We consider the hard-scattering process

h1(p1) + h2(p2)→
∑
i

Fi(qi) +X, (1)

where Fi denotes the (colourless) final states with momenta qi produced by the colliding hadrons
h1 and h2 which we collectively identify as the system F (q), with momentum q =

∑
i qi,

invariant mass M =
√
q2 and transverse momentum qT .

We start from the the master formula of the qT subtraction formalism for the hadronic cross
section [5]

dσF = dσFLO ⊗HF +
[
dσF+jets − dσCT

]
, (2)

where σFLO is the Born level cross section, HF (αS) is the process-dependent hard-collinear
function [20, 21] with the following perturbative expansion

HF = 1 +
αS
π
HF (1) +

(αS
π

)2

HF (2) +
(αS
π

)3

HF (3) +
∞∑
n=4

(αS
π

)n
HF (n) , (3)
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dσCT is the subtraction counter-term [22]

dσCT = dσFLO ⊗ ΣF (qT/M)d2qT (4)

and the symbol ⊗ stands for convolutions over momentum fractions and sum over flavour
indices of the partons. The second term in the r.h.s. of Eq. (2), dσF+jets, is the differential cross
section for the production of F (q) in association with jets and it has to be evaluated at the
previous perturbative order with respect to dσF. The subtraction counter-term dσCT has the
same singular behaviour of dσF+jets in the limit qT → 0 which functional form is known from
the qT resummation formalism [23, 22].

The terms dσF+jets and dσCT in Eq. (2) are separately divergent due to infrared singularities
at qT = 0 and a technical parameter qcut

T has to be introduced. For qcut
T > 0 the sum of the terms

in the square bracket of Eq. (2) is IR finite (or, more precisely, integrable over qT ) and it should
be evaluated in the limit qcut

T → 0 to obtain the “exact” (free form residual qcut
T dependence)

value of the cross section. However for finite value of qcut
T the cross section in Eq. (2) contains

power corrections O((qcut
T /M)p), with p > 0 [9]. The exact value of the exponent p depends by

the cuts on the final states which define the fiducial cross section

σFfid =

∫
cuts

dσF , (5)

we thus have

σFfid =

∫
cuts

dσFLO ⊗HF +

∫
cuts

[
dσF+jets

qT>q
cut
T
− dσCT

qT>q
cut
T

]
+O

(
(qcut
T /M)p

)
. (6)

In Ref. [11] has been shown that, in the case of Drell–Yan lepton pair production, typical
cuts on the transverse momenta and rapidities of the final state particles Fi(qi) leads to linear
power corrections (p = 1), which corresponding systematic uncertainty may spoil the accuracy
of fixed-order calculations within the qT subtraction formalism.

Clearly the effect of perturbative power corrections O((qcut
T /M)p) can be reduced setting the

value of the technical parameter qcut
T sufficiently small. However, very small values of qcut

T lead
to large cancellations among the terms in the square bracket of the r.h.s. of Eq.(2), which in
turns give rise to larger numerical integration uncertainties. These cancellations are particularly
challenging at NNLO and N3LO where the precise knowledge of the fully differential calculations
of F in association with jets at NLO and NNLO is respectively required. Eventually a trade-off
between the systematical and statistical uncertainties of the computation have to be found
and, more importantly, a robust systematic uncertainty to the missing perturbative power
corrections has to be computed. The systematic uncertainty can be estimated by evaluating
the cross section at different values of qcut

T and carrying out a qcut
T → 0 extrapolation [6]. This

is not a trivial task due to the large numerical uncertainties associated to the qcut
T → 0 limit.

We now discuss the method which enable us to consistently remove the FPC within the
qT subtraction formalism thus leaving a quadratic residual uncertainty O((qcut

T /M)2). The
starting point is the observation that the FPC have a kinematical origin [9, 10, 11]. They are
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generated by the selection cuts on the final state particles and they are indeed absent in fixed-
order [9, 13, 24, 25] or qT resummed calculations inclusive over the final states [26] and also in
the case of qT resummation with fiducial cuts when the qT recoil due to multi-parton emission is
correctly taken into account [10]. According to the qT resummation formalism of Refs. [23, 22]
the fiducial cross section in Eq. (6) can be schematically written in the following form:

σ̃Ffid =

∫
cuts

dσ̃FLO ⊗HF × S(qT ,M) +

∫
cuts

[
dσF+jets

qT>q
cut
T
− dσ̃CT

qT>q
cut
T

]
+O

(
(qcut
T /M)2

)
, (7)

where

S(qT ,M) =

∫ ∞
0

db
b

2
J0(bqT ) exp(G(αS)) (8)

and

dσ̃CT = dσ̃FLO ⊗ ΣF (qT/M)d2qT . (9)

The first term on the r.h.s. of Eq.(9) is the resummed component of the cross section which
collects in the generalized form factor exp (G(αS)) and resums to all orders (in the Fourier–
Bessel conjugated impact-parameter b space) the enhanced logarithmic corrections of the type
αnS lnm(M2/q2

T ) which are present in the transverse momentum distribution at small qT [22].
The second term on the r.h.s. of Eq.(9) is the fixed-order finite component of the cross section
and qcut

T represents the minimum value of qT used to compute such term. In the resummed
formula in Eq.(7) the underlying amplitude of the Born level cross-section dσ̃FLO, which enters
also in the term dσ̃CT, differs from the corresponding quantity dσ̂(0) in Eqs.(2,4) for the fact
that it is not evaluated with the leading order (LO) kinematics but following the prescription
introduced in Appendix A of Ref. [19], which takes into account the qT recoil originated from
the multiple radiation of soft and collinear partons in a kinematically consistent way.

Exploiting the resummation formula in Eq.(7) we are thus able to construct the following
modified qT subtraction formula which is free from linear fiducial power corrections:

σFfid =

∫
cuts

dσFLO ⊗HF +

∫
cuts

[
dσF+jets

qT>q
cut
T
− dσCT

qT>q
cut
T

]
+

∫
cuts

dσFPC +O
(
(qcut
T /M)2

)
, (10)

where

dσFPC =
[
dσ̃CTqT<qcutT

− dσCT
qT<q

cut
T

]
. (11)

The inclusion of the additional term dσFPC for qT < qcut
T allows us to produce the correct

behavior of the fiducial cross section up to quadratic power corrections in qcut
T . The terms dσCT

and dσ̃CT differ for the fact that they are respectively evaluated with the LO (qT = 0) and
with the recoil (qT 6= 0) kinematics. We note that the term dσFPC is universal (i.e. process
independent) and it is IR finite (albeit the two terms on the r.h.s. of Eq. (11) are separately
divergent). Furthermore the contribution of dσFPC can be treated as a local subtraction: the
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Figure 1: Fiducial cross section for the production of l+l− pairs from Z/γ∗ decay at the
LHC (

√
s = 13 TeV). NLO results with the qT subtraction method (blue squared points) and qT

subtraction method without FPC (red circled points) at various values of qcut
T , and with a local

subtraction method (black line). Error bars indicate the statistical uncertainties from Monte
Carlo numerical integration.

difference of the terms in Eq. (11) is evaluated pointwise at integrand level and therefore the
integration for qT < qcut

T can be extended up to (virtually) arbitrary small value of qT . In the
current numerical implementation [27] we extended the qT integration of the term dσFPC down
to qT/M ∼ 10−6 GeV (this value is comparable with the typical technical cuts used in local
subtraction methods).

We have encoded the formula in Eq. (10), by using the recoil prescription of Ref. [19] †, in
the public numerical program DYTurbo [28] which implements the qT subtraction formalism for
Drell–Yan processes. We are thus able to confirm also numerically, up to the N3LO, that our
method correctly removes the linear power corrections and to quantify the residual systematic
uncertainty of the qcut

T technical parameter.

We consider the production of l+l− pairs from Z/γ∗ decay at the LHC (
√
s = 13 TeV)

with the following fiducial cuts [29]: the leptons are required to have transverse momentum
pT > 25 GeV, pseudo-rapidity |η| < 2.5 while the lepton pair system is required to have invariant
mass 66 < M < 116 GeV and transverse momentum qT < 100 GeV. We use parton densities
functions (PDFs) from the NNPDF3.1 set [30] at NNLO with αS(m2

Z) = 0.118, and we have
evaluated αS(µ2

R) at (n+1)-loop order at NnLO accuracy. Factorization and renormalization
scales have been set to µF = µR =

√
M2 + q2

T . We use the so calledGµ scheme for EW couplings
with input parameters GF = 1.1663787× 10−5 GeV−2, mZ = 91.1876 GeV, ΓZ = 2.4952 GeV,
mW = 80.379 GeV [29]. We then computed the fiducial cross section for the Drell-Yan process
at the LHC with the original qT subtraction formula Eq. (2) and with the improved formula

†In particular within the class of qT -recoil prescriptions introduced in Ref. [19] we use the choice defined by
setting the transverse momentum of the colliding partons equal to qT /2.
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Figure 2: Fiducial cross section for the production of l+l− pairs from Z/γ∗ decay at the
LHC (

√
s = 13 TeV). NLO results with the qT subtraction method (blue squared points) and

the qT subtraction without FPC (red circled points) at various values of qcut
T , and with a local

subtraction method (black line). Error bars indicate the statistical uncertainties from Monte
Carlo numerical integration.

Eq. (10).

In Fig. (1) we show the NLO fiducial cross section calculated for different values of the
qcut
T technical parameter with the original qT subtraction method (blue squared points) and

with the modified formula in Eq. (10) (labeled as recoil qT subtraction, red circled points). As
a reference, we also show the result obtained with a local subtraction formalism (black line)
which represents the exact (free from significant systematic uncertainties) prediction. The local
result is obtained independently with the dipole subtraction formalism [1, 2] as implemented in
MCFM [31]. Error bars in Fig. (1) indicate the statistical uncertainties from Monte Carlo numer-
ical integration which turns out to be completely negligible. From Fig. (1) we observe that the
systematic uncertainty (defined as the deviation from the local subtraction result) of the orig-
inal qT subtraction results increase linearly with qcut

T and it is around 0.3% at qcut
T = 0.5 GeV,

0.6% at qcut
T = 1 GeV, 1% at qcut

T = 2 GeV and 2% at qcut
T = 4 GeV. In order to obtain a system-

atic uncertainty below 0.1% level a calculation with qcut
T . 0.1 GeV is necessary. Conversely

the results obtained with the qT subtraction without FPC have a systematic uncertainty for
qcut
T = 1 GeV which is smaller than the statistical uncertainty of the local-subtraction result,

which is 0.01%. In Fig. (1) an interpolation of the qcut
T dependence of the modified (original)

qT -subtraction obtained with quadratic (linear and quadratic) terms is represented by the red
dashed (blue solid) line.

In Fig. (2) we show the fiducial cross section at NNLO with the original qT subtraction
method (blue squared points) and with the modified formula in Eq. (10) (red circled points)
together with the result obtained with a local subtraction formalism (black line). The local
result is obtained with the sector improved subtraction formalism [35, 34] as implemented in
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(
√
s = 13 TeV). NLO results with the qT subtraction method (blue squared points) and the qT

subtraction without FPC (red circled points) at various values of qcut
T .

FEWZ [32, 33]. Error bars in Fig. (2) indicate the statistical uncertainties from Monte Carlo
numerical integration. Statistical uncertainties are at the level of 0.1% for the local subtraction
results and at the level of 0.1% or larger (smaller) for the qT subtraction results with qcut

T .
0.1 GeV (qcut

T & 0.1 GeV). The qcut
T systematic uncertainty of the qT subtraction results is

around 0.3% at qcut
T = 0.5 GeV, 0.6% at qcut

T = 1 GeV and 0.7% at qcut
T = 2 GeV and 0.2% at

qcut
T = 4 GeV. As in the case of the NLO results, in order to obtain a systematic uncertainty

below 0.1% level a calculation with qcut
T . 0.1 GeV is necessary. However this is exactly the IR

region where large cancellations give rise to sizable statistical uncertainties due to numerical
integration. Conversely the results obtained with the qT subtraction without FPC have a
systematic uncertainty which is smaller than 0.04% for qcut

T = 1 GeV. As in Fig. (1) also in
Fig. (2) we have shown an interpolation of the qcut

T dependence of the results.

Finally, in Fig. (3) we show the fiducial cross section at N3LO with the original qT subtraction
method (blue squared points) and with the modified formula in Eq. (10) (red circled points) for
different values of qcut

T with the interpolation of the results as in Figs. (1,2). No local subtraction
results are available at this perturbative order. Moreover in this case we are not able to show
results for qcut

T < 4 GeV. In fact we have checked that our analytic expression for the counter-
term dσ̃CT agrees with the small-qT limit of the NNLO fixed-order results for the production of
a Z/γ∗ boson in association with jets reported in Ref. [29] at permille level down to qT ∼ 4 GeV
while below that threshold such agreement deteriorates. We observe, in the case of the qT
subtraction without FPC, a reduction of the dependence from qcut

T which we estimate of the
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Figure 4: Production of l+l− pairs from Z/γ∗ decay at the LHC (
√
s = 13 TeV). Power

correction contributions at O(αS), O(α2
S) and O(α3

S) at various values of qcut
T

order of 0.1% for qcut
T ∼ 4 GeV.

In order to quantify the impact of the calculated fiducial power corrections, we show in
Fig. (4) the contribution of the FPC (Eq. (10)) as a function of qcut

T . First of all we observe that
the sign of the FPC contribution changes from O(αS) to O(α2

S) and from O(α2
S) to O(α3

S).
This behaviour is consistent with the observation that linear power corrections in the small
qT region (produced by the fiducial cuts) results in an alternating-sign factorial growth of the
fixed-order perturbative series [17]. The second observation is that the impact of the FPC is
not numerically reduced at higher orders and it turn out to be particularly sizable at N3LO
up to very small value of qcut

T : for qcut
T = 0.05 GeV the impact of the N3LO FPC is about

−0.4% and it is the result of a +0.3% contribution at O(α2
S) and a −0.7% at O(α3

S) (the
O(αS) FPC contribution turns out to be negligible at qcut

T = 0.05 GeV). This means that when
standard selection cuts are implemented within the original qT subtraction, a permille level
systematic accuracy for NNLO and N3LO fiducial cross sections cannot be easily reached even
with extremely low values of qcut

T .

In Table 1 we report the predictions for the cross section in the fiducial region at NLO and
NNLO with the qT subtraction method for qcut

T = 0.5 GeV and qcut
T = 1 GeV, with the recoil

qT subtraction for qcut
T = 1 GeV and we compare with the local subtraction results ‡. Errors

‡Since the numerical code FEWZ does not allow to set µF = µR =
√
M2 + q2T the NNLO local result has been

obtained with µF = µR = M . We have estimated the effect of the different scales with DYTurbo and it turn out
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Order NLO NNLO

qT subtr. (qcut
T = 1 GeV) 768.8± 0.1 pb 753.3± 0.3 pb

qT subtr. (qcut
T = 0.5 GeV) 766.8± 0.1 pb 753.8± 0.2 pb

recoil qT subtr. 764.4± 0.1 pb 759.1± 0.3 pb

local subtraction 764.4± 0.1 pb 759.0± 0.7 pb

Table 1: Fiducial cross sections at the LHC (
√
s = 13 TeV): fixed-order results at NLO and

NNLO. The uncertainties on the values of the cross sections refer to an estimate of the numer-
ical uncertainties.

indicate the statistical uncertainties from Monte Carlo numerical integration. In the case of
the recoil qT subtraction the results are nearly independent by qcut

T for qcut
T . O(GeV))

From the results of Table 1 we observe that the differences between the recoil qT subtraction
results and the local subtraction results are of O(0.01%). Thus the modified qT subtraction
formula in Eq. (10) allows us to obtain accurate permille level predictions for fiducial cross
section with values of qcut

T ∼ O(GeV).

Order N3LO

qT subtr. (qcut
T = 4 GeV) 747.1± 0.7 pb

recoil qT subtr. 745.7± 0.7 pb

Table 2: Fiducial cross sections at the LHC (
√
s = 13 TeV): fixed-order results at N3LO.

The uncertainties on the values of the cross sections refer to an estimate of the numerical
uncertainties.

In Table 2 we report the predictions for the cross section in the fiducial region at N3LO
with the qT subtraction method and with the recoil qT subtraction for qcut

T = 4 GeV. Local
subtraction results are not available at this order.

From the results shown in Fig. (4) we could expect that a value of qcut
T ∼ 4 GeV is associated

with a systematic uncertainty due to the FPC of around 2%, which is of the same order of the
size of the α3

S corrections and thus challenge the reliability of the qT subtraction results §.
However the cancellation of the alternating sign linear fiducial power corrections shown Fig. (4)
makes the impact of the N3LO FPC for the particular value of qcut

T = 4 GeV to be around 0.2%

to be at the level of 0.5 pb. This effect has been included in the numerical uncertainty.
§To reduce such uncertainty at the few permille level in Ref. [8] the value of qcutT ∼ 4 GeV have been used

for the α3
S terms only with a lower value of qcutT ∼ 0.5 GeV for the αS and α2

S contributions.
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which is indeed the difference between the qT subtraction and recoil qT subtraction results
reported in Table 2.

We finally note that any numerical implementation of the subtraction method, including
the local versions, contains and depends on various technical parameters necessary to avoid the
numerical evaluation of singular points. These parameters cannot be arbitrarily large and their
actual value has to be chosen in order to make the numerical result independent (within the
required numerical accuracy) from their actual value. From this viewpoint the independence
by qcut

T observed within our method is similar to the one observed in the local version of the
subtraction method.

In this paper we have considered higher-order QCD corrections to the production of high-
mass systems in hadron collisions within the qT subtraction formalism. We have presented a
method to consistently remove the linear power corrections in qT of the type O(qcut

T /M), where
qcut
T is the technical parameter necessary to separate resolved and unresolved parton emission

regions, which appears when fiducial kinematical cuts are applied on the final state system. As
a first application we have implemented our method within the DYTurbo numerical program and
we have considered explicitly the case of fiducial cross sections for Z/γ∗ boson production at
the LHC up to N3LO in QCD. We have obtained perturbative predictions which are in excellent
(permille level) agreement with those obtained with local subtraction formalism at NLO and
NNLO and we have computed N3LO predictions with a residual qcut

T systematic uncertainty at
the permille level.

Our results can be helpful in increasing the numerical precision of the existing numerical
codes based on the qT subtraction formalism and also on improving their time performances.
In particular we were able to remove the source of systematic uncertainty at the origin of the
discrepancies observed in Ref. [11]. Moreover our method is particularly important in the cases
where fully local perturbative calculations for cross section are not available or when large
numerical integration uncertainties are associated to the qT → 0 limit such as in the case of
N3LO predictions in hadron collisions.

Finally, we make some observations about some consequences of our findings on resummed
calculations. Our results show that resummed fiducial cross sections calculated by correctly
taking into account the qT recoil effects [19] (e.g. the resummed cross sections calculated in
Ref. [8]) are free from significant numerical systematic uncertainties due to the minimum value
of qT used to compute the finite component of the cross section in Eq.(9). Moreover our results
show that the matching between the resummed and finite (fixed-order) calculations in the small
qT region has an impact of O((qT/M)2) and it is expected to have a very small (negligible) effect
for qT/M . O(10−1) (qT/M . O(10−2)).
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