
Available on CMS information server CMS CR -2021/208

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
17 October 2021 (v2, 22 October 2021)

Automated firmware generation and continuous
testing for the CMS HGCAL trigger primitive

generator

Florence Beaujean, Thierry Romanteau, Jean-Baptiste Sauvan for the CMS Collaboration

Abstract

The prototype version of the trigger primitive generator firmware for the Phase-2 CMS endcap calorime-
ter upgrade is being implemented in order to assess the FPGA resource requirements and dimension
the system. For the development of some of these blocks, a data-driven design flow based on VHDL
and HLS C/C++ templates is used to automate the production of multiple firmware variants. In addi-
tion, the design steps are integrated into Gitlab Continuous Integration tools to automatically test and
validate every change, and as much as possible avoid repetitive manual tasks and the associated errors.

Presented at TWEPP2021 TWEPP 2021 Topical Workshop on Electronics for Particle Physics

Prepared for submission to JINST1

TWEPP 2021 Topical Workshop on Electronics for Particle Physics2

20-24 Sep. 20213

Automated firmware generation and continuous testing4

for the CMS HGCAL trigger primitive generator5

F. Beaujeana T. Romanteaua J.-B. Sauvana,1 on behalf of the CMS Collaboration6

aLaboratoire Leprince-Ringuet, CNRS, École polytechnique, Institut Polytechnique de Paris7

E-mail: jean-baptiste.sauvan@cern.ch8

Abstract: The prototype version of the trigger primitive generator firmware for the Phase-2 CMS9

endcap calorimeter upgrade is being implemented in order to assess the FPGA resource requirements10

and dimension the system. For the development of some of these blocks, a data-driven design flow11

based on VHDL and HLS C/C++ templates is used to automate the production of multiple firmware12

variants. In addition, the design steps are integrated into Gitlab Continuous Integration tools to13

automatically test and validate every change, and as much as possible avoid repetitive manual tasks14

and the associated errors.15

Keywords: Calorimeter methods, Trigger concepts and systems16

1Corresponding author

mailto:jean-baptiste.sauvan@cern.ch

Contents17

1 Introduction 118

2 The Stage 1 of the HGCAL trigger primitive generator 119

3 Firmware generation workflow 220

4 Automation with Gitlab Continuous Integration 321

5 Conclusion 522

1 Introduction23

TheLevel 1 (L1) trigger primitive generator (TPG) of the future Phase-2HighGranularity Calorime-24

ter (HGCAL) upgrade of CMS [1, 2] is composed of two off-detector processing stages based on25

Serenity ATCA boards [3]. The first stage (Stage 1) mainly performs a synchronization, reorga-26

nization and truncation of the incoming data and time multiplexes its output data to the second27

stage (Stage 2). The latter then builds the actual trigger primitives and sends them to the central L128

trigger. One essential task of the Stage 1 firmware is to group trigger cell (TC) data coming from29

multiple detector modules into bins corresponding to projective regions of the detector. Each of the30

Stage 1 FPGA sees a different portion of the detector and therefore requires different configurations31

that depend on the full set of modules seen by the FPGA. In addition, since the geometry of the32

HGCAL is still evolving and the connection map between frontend detector modules and backend33

FPGAs is not yet fixed, the content of each FPGAwill need to be updated several times in the future.34

In order to limit as much as possible manual tasks and reduce the probability of configuration errors,35

an automated design workflow has been developed featuring firmware generation using a template36

engine widely used in web development, Jinja [4], and continuous integration with Gitlab [5].37

Details on the TC processing performed in the HGCAL TPG Stage 1 are presented in Section 2.38

The firmware generation workflow is then detailed in Section 3 and its automation with Gitlab39

continuous integration tools is finally presented in Section 4.40

2 The Stage 1 of the HGCAL trigger primitive generator41

One of the main role of the HGCAL TPG Stage 1 is to reorganize data coming from on-detector42

modules into a format that can be directly used by the reconstruction algorithms running in the43

Stage 2. In particular, TCs coming from detector modules need to be packed into groups covering44

projective detector regions called bins and sent bin by bin to the Stage 2 in a specific order. In45

addition, given the limited bandwidth available between the Stage 1 and the Stage 2, the number of46

TCs sent in each bin needs to be reduced. This TC pre-processing is schematized in Figure 1.47

– 1 –

R
ou

tin
g

M
at

rix

0111001010

0110011111

0111100010

1110101010

0000010111

1001101010

0001110010

0111100010

1110001010

00011010101

10001000101

00010001010

Hexagonal
detector
modules

~12000 TC
(48 / module)

Bins: 3D
regions of

the detector

Sorting and
truncation networks

TC address
expansion

84 Bins

Trigger
Cell

energies

Figure 1. Sketch of the TC pre-processing performed in the Stage 1. It is composed of a routing of TC data
into bins corresponding to projective detector regions, followed in each bin by a sorting and selection of TCs
based on their energies, and an expansion of the selected TC addresses.

Each of the Stage 1 FPGA can receive TC data from up to about 250 detector modules. The 4848

TCs in each module are fully unpacked in order to provide a parallel stream of up to about 1200049

TCs every 25 ns. These TCs are re-ordered and routed into their corresponding bin, among a total50

of 84 bins. Bins can contain from 1 to about 400 TCs. This routing is fixed for a given FPGA and51

is extracted from the geometry of the detector, which defines the positions of all existing TCs, as52

well as from the link connections between detector modules and Stage 1 boards. A sorting network53

based on the Batcher odd-even mergesort algorithm [6] is associated to each bin. The network sorts54

TCs by their energy and also truncates progressively the least energetic TCs as they are sorted. Out55

of all the input TCs, 1 to 30 of the highest energetic TCs are kept in each bin by the networks. Local56

TC identifiers are propagated through the networks and are expanded to more global identifiers,57

unique within a FPGA. The selected TC energies and their associated identifier (or address) are58

finally packed and sent in a time-multiplexed fashion to the Stage 2 boards.59

Sorting networks are written in C/C++, while the rest of the design is written in VHDL using60

VHDL-2008 specific syntax in some parts. Vivado HLS and Vivado, the high level synthesis and61

VHDL backend tools from Xilinx, are used to build the firmware from these sources.62

3 Firmware generation workflow63

One of the main challenges of the Stage 1 TC pre-processing described in Section 2 is the fact that64

each FPGA covers a different region of the detector. Each FPGA therefore sees a different number65

of detector modules, has a different routing matrix of TCs into bins and different numbers of TCs66

to be sorted in each bin. In order to limit the usage of FPGA logic resources and in particular of67

– 2 –

LUT resources, the strategy has been followed to generate different firmware versions for each of68

the Stage 1 FPGA of the system, instead of having a single configurable firmware able to handle69

all the possible cases. In addition, the exact detector geometry and connection mapping between70

detector modules and Stage 1 FPGAs is still being optimized and will evolve in the future. This71

multiplicity of present and future firmware versions required the development of a highly flexible72

design workflow based on generic code configurable with data.73

In order to reach the degree of generalization needed to describe all possible scenarios, VHDL74

and HLS C/C++ templates are used. The code templates contain fragments of generic VHDL and75

C/C++ code as well as rules describing how to instantiate and combine these fragments. These rules76

are written with the Jinja template language, which provides high-level instructions and functions77

using a syntax similar to Python. The set of rules and code fragments are developed by digital78

electronics engineers and describe the hardware architecture of the design.79

The different steps and commands that are run to produce and test the firmware are described80

in a yaml file following the Gitlab CI/CD pipeline syntax. A schematic view of these steps is shown81

in Figure 2.82

Template
Files

Template
Engine

Pre-
processing

Source
Files

Vivado HLS
& Vivado
Projects

Projects
Builder

Simulation,
Synthesis,

...

Config
data

Figure 2. Diagram of the data-driven workflow used to generate and test firmware using templates and
configuration data as inputs. The Jinja template engine is used to generate source code from templates.
Vivado HLS and Vivado are used to build firmware from these generated source files.

The inputs of the workflow are template files (VHDL and HLS C/C++ templates based on the83

Jinja template language) as well as configuration data used to configure the templates. Configuration84

data come from various sources, in particular from the CMS geometry and simulation software.85

They are stored in several files using different formats, including binary formats (such as ROOT)86

and text formats (such as JSON). These raw configuration data are first pre-processed into Python87

dictionaries and stored in a single Pickle file. The Jinja template engine then generates source88

files and test bench files from the templates and pre-processed configuration data. The generated89

files are used to build Vivado HLS and Vivado projects and finally simulate, synthesize and test the90

design.91

4 Automation with Gitlab Continuous Integration92

The workflow described in Section 3 is automated with Gitlab Continuous Integration (CI) tools93

(Gitlab CI/CD). The two main items of this automation, depicted in Figure 3, are:94

• Two interlinked Git repositories. The first (Main) repository stores and controls revisions95

of the input configuration data and templates, while the second (Source) repository stores and96

– 3 –

controls revisions of the products of the workflow: the source code, test benches and project97

files.98

• A Gitlab CI pipeline. It describes the steps of the workflow in a yaml format and runs them99

when specific events happen.100

Build

Merge Request

Test

Push

Gitlab CI PipelineGitlab Main Repository

Trigger

Gitlab Source Repository

Commit

Data Templates

C++ VHDL

MIF TCL

...

 Developments

 Manual tests and
checks

Figure 3. Main components of the workflow automation with Gitlab CI/CD. Two Git repositories store the
inputs and the products of the workflow, respectively. A Gitlab CI pipeline defines and runs the different
steps needed to create and test the products from the inputs.

Gitlab CI pipelines are attached to the Main repository and triggered in particular when a101

Merge Request is created or updated, and when a Merge Request is merged. Each time a pipeline is102

triggered it generates source files, builds projects and runs simulation and synthesis in order to test103

the generated design. When the updates from a Merge Request are merged, the generated files and104

projects are additionally pushed to the Source repository such that the design can be checked out105

and further tested manually if needed. Two sets of designs can be generated:106

• Reduced designs, or mini-designs, based on a reduced number of input detector modules and107

bins, are generated for quick tests for every new or updated Merge Request.108

• Full designs, based on the complete set of modules and bins, are generated only when a new109

release is created.110

Since the details of the HGCAL geometry and of the TPG system architecture are not yet111

completely defined, several versions of the Stage 1 firmware will need to be evaluated in parallel. In112

order to handle these multiple versions, several parallel Git branches will be used. These multiple113

branches in the Main repository will all contain the same template files but different configuration114

data corresponding to the different architecture versions, and will serve to generate multiple designs115

in different branches of the Source repository.116

A preliminary design targeting an implementation on a Xilinx KU15P FPGA with 72 input117

links has been generated and will be tested on the prototype Serenity boards currently available.118

It is nevertheless foreseen to use VU13P FPGAs in the HGCAL TPG system. Therefore, multiple119

versions targeting a VU13P FPGA with different numbers of input links will also be evaluated in120

the future.121

– 4 –

5 Conclusion122

The development of firmware for the HGCAL TPG Stage 1 has a strict dependency on rapidly123

evolving parameters such as the detector geometry and themapping of connections between detector124

modules and the backend FPGAs. In addition, each FPGA in the Stage 1 requires different125

configurations as they cover different portions of the detector. In order to handle this variability126

and the future evolutions, an automated workflow based on generic VHDL and HLS C/C++ code127

templates has been implemented such thatmultiple firmware versions can automatically be generated128

with the provision of configuration data. The Jinja template engine is used to generate VHDL and129

HLS C/C++ source code and the process of generation and testing is automated within Gitlab130

Continuous Integration tools. A preliminary design targeting a Xilinx KU15P FPGA with 72131

input links has been generated and multiple other designs targeting a VU13P FPGA with different132

numbers of links will also be evaluated in the future.133

Acknowledgments134

The authors of this paper would like to thank Andrea Sartirana for his precious help on the Gitlab135

server setup at LLR. This work has been partly funded by the French National Research Agency136

(ANR) via the project HiGranTS number ANR-18-CE31-0007, and by the P2IO LabEx (ANR-10-137

LABX-0038) in the framework “Investissements d’Avenir” (ANR-11-IDEX-0003-01) managed by138

the ANR.139

References140

[1] CMS Collaboration, The Phase-2 Upgrade of the CMS Endcap Calorimeter, Tech. Rep.141

CERN-LHCC-2017-023, CMS-TDR-019, CERN (2018).142

[2] CMS Collaboration, The Phase-2 Upgrade of the CMS Level-1 Trigger, Tech. Rep.143

CERN-LHCC-2020-004, CMS-TDR-021, CERN (2020).144

[3] A. Rose, D. Parker, G. Iles, O. Sahin, P.-A. Bausson, A. Tsirou et al., Serenity: An ATCA prototyping145

platform for CMS Phase-2, PoS TWEPP2018 (2019) 115.146

[4] Pallets Organization, “Jinja.” https://github.com/pallets/jinja/.147

[5] Gitlab, “Gitlab CI/CD.” https://docs.gitlab.com/ee/ci/.148

[6] D.E. Knuth, The Art of Computer Programming, Volume 3: (2nd ed.) Sorting and Searching, Addison149

Wesley (1998).150

– 5 –

https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2714892
https://doi.org/10.22323/1.343.0115
https://github.com/pallets/jinja/
https://docs.gitlab.com/ee/ci/

