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Abstract. The CMS experiment at the CERN LHC (Large Hadron Collider)
relies on a distributed computing infrastructure to process the multi-petabyte
datasets where the collision and simulated data are stored. A scalable and reliable
monitoring system is required to ensure efficient operation of the distributed
computing services, and to provide a comprehensive set of measurements of the
system performances. In this paper we present the full stack of CMS monitoring
applications, partly based on the MONIT infrastructure, a suite of monitoring
services provided by the CERN IT department. These are complemented by
a set of applications developed over the last few years by CMS, leveraging
open-source technologies that are industry-standards in the IT world, such as
Kubernetes and Prometheus. We discuss how this choice helped the adoption of
common monitoring solutions within the experiment, and increased the level of
automation in the operation and deployment of our services.

1 Introduction

A tiered distributed computing infrastructure is used to store and process data collected
and produced by the CMS experiment [1] at CERN. Access to the distributed computing
infrastructure, authentication, workload management, and data management are handled by
a suite of central services and components. CMS compute nodes are provisioned through
GlideinWMS [2] and are available as execution slots in a Vanilla Universe HTCondor pool
[3]. Specific tools handle job submission. WMAgent is used for central data processing and
Monte Carlo production jobs, and CRAB for user jobs [4]. The data management system
includes several components. PhEDEx [5] used to be the data transfer and location and has
been replaced by Rucio [6]. DBS [7] is the Data Bookkeeping Service, a metadata catalog.
DAS [8], the Data Aggregation Service, is designed to aggregate views and provide them to
users and services. Data from these services are available to CMS collaborators through a web
suite of applications known as CMSWEB. A detailed description of the computing model of
the LHC experiments can be found in [9].

The monitoring system for such a complex computing infrastructure must fulfill a diverse
and comprehensive set of requirements:
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• The status of all computing systems must be monitored in real time using predefined views.

• Detailed information to debug issues must be easily accessed by the operation teams.
To pinpoint the root cause of a specific problem, correlating information from different
subsystems is often crucial.

• An efficient alert system to collect and sort metrics from several sources, raise alerts in case
specific conditions are met, and route the alerts to the right team must be in place.

• Relevant metrics to monitor the evolution of the performances of the systems over time
must be available and allow for in-depth analyses of the main system parameters (such as
data access patterns, wall-time consumption of computing resources, memory, CPU and
storage usage).

A successful monitoring system should be easy to use, develop, maintain, and extend;
meet the experiment requirements for monitoring data storage; provide easy access to the
data (both programmatically and from a graphical interface), favour the adoption of common
solutions and minimise custom developments.

2 The CMS monitoring infrastructure

The main components of the CMS monitoring infrastructure [10] are the monitoring services
offered by the MONIT team [11] of the CERN IT department, and dedicated CMS monitoring
applications and services which are deployed on Kubernetes (k8s) clusters [12].

The MONIT ecosystem is extensively used by CMS to inject and store data from various
CMS computing subsystems, such as HTCondor job monitoring data, CMSWEB user activi-
ties, metrics about analysis and Monte Carlo (MC) production workflows coming from the
WMAgent and CRAB job submission tools. The MONIT architecture is based on Elastic-
Search [13], HDFS [14], and InfluxDB [15] for data storage. Kibana [16] and Grafana [17] are
used for data visualization and access. Data on HDFS can be accessed through Apache Spark
[18] workflows and the SWAN [19] service at CERN. Data is injected through ActiveMQ [20]
messages or an HTTP endpoint (the latter option only for data providers inside the CERN
network boundaries). On average, CMS producers send more than 3.5 million messages per
hour to the ActiveMQ brokers, with rates close to 7.5 KHz. The total size of CMS data stored
in ES is more than 30 TB, with a daily index average of around 30 GB. In HDFS we collected
25 TB of compressed data1 over the last five years, with a daily average of around 300 GB.

The dedicated CMS monitoring infrastructure provides monitoring of individual CMS
services and nodes via Prometheus [21] with VictoriaMetrics (VM) [22] as a backend (see
Sect. 2.1 and Sect. 2.1.1). Alerts based on Prometheus metrics are handled by AlertManager
(AM) [23]. The Prometheus service currently covers more than one hundred computing nodes
with 125 exporters providing more than three thousand measurements and almost one hundred
different alert records and alert rules. In VM we store around 500 billion data points with
a data retention policy of thirty days. The CMS monitoring k8s infrastructure allows us to
deploy and scale services with minimal operational and maintenance effort.

2.1 The CMS monitoring Kubernetes infrastructure

The maintenance of the CMS monitoring infrastructure represents certain challenges, such as
service deployment, version control, and resource utilization. The CMS monitoring services
were gradually migrated to a Kubernetes infrastructure. We currently run and maintain four
individual clusters: the main CMS monitoring cluster, two High-Availability (HA) clusters for

1The majority of data is stored in JSON format which allows to achieve a 90% compression level.
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critical services, and a cluster for NATS (Neural Autonomic Transport System) services [24].
This setup allows us to independently manage the k8s resources for upgrades, re-configuration,
hardware allocations, and to apply different security and access policies to each cluster.

The most critical components (Prometheus, VM, and AM services) of the CMS monitoring
infrastructure are deployed in High-Availability (HA) mode as a protection against outages,
and to improve service availability. We carefully evaluated, implemented and tested the
architecture depicted in Fig. 1.
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Figure 1. The High Availability mode of the CMS Monitoring infrastructure consists of three k8s
clusters, the main CMS monitoring cluster and two independent HA clusters. The main cluster runs a
Promxy proxy server, which is used to access the services on the two HA ones. Each HA cluster runs
Prometheus, AlertManager and VictoriaMetrics services. The Prometheus service scrapes metrics from
CMS services and nodes, and it is configured to access both AM services in the HA clusters. The AM
can exchange information through a gossip-based mechanism if necessary.

The HA architecture consists of three k8s clusters allocated in different zones in the CERN
network. The main cluster runs non-critical services as well as a Prometheus Promxy [25]
proxy server. The Promxy server is used to access two independent HA k8s clusters which
provide Prometheus and VM services. The Prometheus server scrapes metrics from a set of
CMS services and stores them in the VM backend. The Promxy server guarantees that if an
outage happens in one of the HA cluster it can repopulate metrics from the other one. The
alerts are managed by individual AM services in each HA cluster. Similarly, AM is setup in
cluster mode such that the information across the HA clusters can be populated through gossip
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protocol. Such infrastructure provides us with fault-tolerance and it is easy to maintain via the
k8s deployment procedure.

The main CMS monitoring cluster fits into two nodes with 16 CPU cores and 30 GB RAM,
and hosts 48 services:

• The Promxy service to access VM on the HA clusters,

• A set of Apache Sqoop [26] jobs used to create snapshots in HDFS of heavily populated
CMS databases, such as DBS, PhEDEx, Rucio,

• the NATS subscribers which listen to various real-time messaging channels from the NATS
server, as described in Sect. 2.1.1,

• the HTTP exporters to monitor the status of our services,

• The Intelligent Alert system to process alerts from external services such as the CERN
SSB (Site Status Board) [27] and GGUS (Global Grid User Support) ticketing system [28],
and generate annotations for Grafana dashboards, as described in Sect. 4.1,

• the Rumble service to provide query access to HDFS data as discussed in Sect. 4.3.

The HA clusters are much smaller, each HA cluster has one node with 8 CPU cores and 16
GB of RAM.

2.1.1 NATS

NATS (Neural Autonomic Transport System) is a simple, secure, and high performance open-
source messaging system for cloud-native applications. It provides a real-time messaging
infrastructure to monitor the status of several processes, such as CMS production workflows
and campaigns. The NATS service is deployed on a dedicated k8s cluster. It is accessible to
all CMS collaborators and services through token-based authentication even outside of the
CERN firewall. The NATS service works as a proxy between CMS data providers such as
CMSSW (the CMS software framework), DBS, and WMAgent, and data subscribers located
either on the client infrastructure or within the CMS monitoring cluster. In the latter case, we
run a set of dedicated NATS subscribers which consume data from the NATS server and store
them into the VM backend. Metrics are visualised in dedicated Grafana dashboards.

3 The CMS monitoring applications

To satisfy all the requirements for a comprehensive monitoring system listed in Sect. 1, we
complement the monitoring services provided by the MONIT infrastructure with additional
applications, leveraging the open-source technologies provided by the CMS monitoring
infrastructure. The development of common tools to handle data access, processing, and
visualization allows us to consolidate the resources needed to operate, maintain, and develop
the infrastructure itself and the monitoring applications. Knowledge and development efforts
can be shared among several CMS groups.

3.1 The CMS spider

The HTCondor infrastructure is central to distributed data processing for CMS [29]. The
CMS spider [30] is a Python application that periodically queries the HTCondor infrastructure
for job information and feeds it into the MONIT infrastructure. Every twelve minutes, the
CMS spider queries the schedds - the HTCondor component responsible of managing the job
queues - for a snapshot of the current queued and running jobs, and for a list of completed or
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removed jobs since the last query from the HTCondor history. Data are sent to MONIT through
ActiveMQ, and stored in HDFS and ES. The available metrics are used to visualise historical
information about HTCondor jobs and tasks in Grafana, for both analysis and production
workflows.

The CMS spider is currently being migrated to the CMS k8s infrastructure. We use Celery
[31] for asynchronous execution of Python tasks, with Redis [32] as message broker and
Flower [33] for monitoring of task statuses, as shown in Fig. 2. The tasks are kept in Redis
queues and distributed across the workers. The CMS spider has six Celery workers by default
which are replica pods. They are responsible for running three asynchronous tasks with
separate queues:

• query the schedds: queries the schedds every twelve minutes, retrieves HTCondor job
properties and triggers the execution of the "processing documents" task. This task also sets
checkpoints - date and time of last run - after each execution;

• processing documents: converts the HTCondor job properties to JSON [34] data format and
triggers the execution of the "post to ES" task;

• post to ES: sends the JSON documents containing the HTCondor job properties to MONIT
through AMQ.
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Figure 2. The CMS Spider deployment in Kubernetes.

All tasks must be executed in less than twelve minutes, i.e. the time between two sets
of queries. This time constraint mainly comes from the latency of querying the HTCondor
schedds, which in the current deployment may take up to several minutes. The CMS spider
will be deployed in its own k8s cluster, which may allow us to increase the frequency at which
we poll the schedds.

3.2 CMS Spark workflows

Workflows based on Apache Spark are used to access and process data on HDFS. Examples of
such workflows include the production of popularity datasets by combining data from DBS,
PhEDEx in the past and now Rucio, as well as other sources like EOS [35] or XRootD [36]
data access logs. A common framework, CMSSpark [37], was developed by CMS to hide the
complexity of Spark submission jobs and to abstracts access to common CMS datasets on
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HDFS. CMSSpark is extensively used to produce aggregated plots which require processing
metrics over a large period of time (several months or years).

3.3 Command Line tools

Command Line Interface (CLI) tools play an important role in any infrastructure. In CMS, we
developed a set of CLI tools to address common use cases:

• the monit tool to access data sources in the CERN MONIT infrastructure via a Grafana
proxy;

• the alert tool to manage alerts from all CMS data sources. The user queries are provided
via ES JSON or InfluxQL [38] formats;

• the annotationManager to handle annotations on any CMS Grafana dashboard based on
its tag;

• a set of tools (ggus_parser, ggus_alerting, ssb_parser and ssb_alerting) to parse content
from the GGUS and SSB ticketing systems, and generate and manage related alerts.

All tools are implemented in Go to simplify the deployments across various hardware
platforms and are publicly available on CVMFS [39] in the /cvmfs/cms.cern.ch/cmsmonit area.

4 Current developments and R&D

In the near future LHC experiments will be required to cope with higher data rates due to
the upgrade of the LHC to high luminosity (the HL-LHC). This will pose challenges to all
computing systems, including the monitoring infrastructure. It is paramount to engage and
support R&D activities to be able to sustain the experiment needs as data rates increase. The
activities described below are developed as part of the Operational Intelligence [41] effort,
which aims to reduce the human cost of WLCG operations by pursuing automation of repetitive
tasks.

4.1 Intelligent Alert System

Alerts are critical to promptly address system failures. The sheer volume and variety of alerts
produced by the large number of monitored services must be efficiently handled. We developed
an intelligent layer to detect, analyze and predict abnormal system behaviors. Figure 3 shows
the overall architecture of the Intelligent Alert system. It is based on a pipeline for AM where
we automated the mundane process of alert bookkeeping. This allows operation teams to focus
more on finding solutions for the source of alerts rather than searching, filtering and collecting
the alerts. The pipeline was designed to be as generic as possible. It consists of the following
steps:

• fetching the existing alerts and information from data sources external to MONIT,

• pre-processing the alerts to extract the relevant information,

• spotting anomalies in alerts (if any),

• annotating corresponding Grafana dashboards with relevant alerts,

• silencing false alerts,

• deleting resolved alerts,

• feed back the updated information into AM.
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Figure 3. The intelligent alert system architecture. The steps of the pipeline discussed in Sect. 4.1 are
shown in the diagram.

Two additional systems are integrated in the pipeline: the SSB, which provides information
about ongoing interventions and outages in the CERN computing infrastructure, and the GGUS
system which keeps track of user tickets related to WLCG (Worldwide LHC Computing Grid)
sites. The information from these systems is fed into AM, and is used to add annotations of
relevant alerts to existing dashboards based on specific tags. Such additions provide useful
insights about when outages happen and how they affect the productivity reported by various
systems in our dashboards. Alerts are currently selected and filtered based on specific lists
of keywords. We plan to further develop alert selection and silencing employing machine
learning (ML) techniques such as anomaly detection and clustering.

4.2 FTS log analysis

The CERN File Transfer System (FTS) is one of the most critical services for CMS distributed
computing [40]. FTS is a low level protocol used to transfer data among different WLCG sites.
FTS sustains a data transfer rate of 20-40 GB/s, and it transfers daily a few millions files. If a
transfer fails, an error message is generated and stored in HDFS. Failed transfers are of the
order of a few hundred thousand per day. Understanding and possibly fixing the cause of failed
transfers is part of the duties of the experiment operation teams. Due to the large number of
failed transfers, not all can be addressed. We developed a pipeline to discover failure patterns
from the analysis of FTS error logs (see Fig. 4). Error messages are read in from HDFS,
cleaned from meaningless parts (file paths, host names), and grouped in clusters based on the
similarity of their text using the Levenshtein distance [42]. A second approach based on ML
techniques such as word2vec [43] is currently under development [44]. The message patterns
of each cluster are stored in ES and HDFS, together with source and destination host names
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of the failing transfers. The biggest clusters and their relationship with the host names with
largest numbers of failing transfers is presented in a dedicated Grafana dashboard. The clusters
can be used by the operation teams to quickly identify anomalies in user activities, tackle
site issues related to the backlog of data transfers, and in the future to implement automatic
recovery procedures for the most common error types.

FTS
data

provider

Kafka

Elastic
Search HDFS PySpark Log

Analysis

Stomp
AMQ

ML
libraries

Figure 4. The FTS log analysis workflow. FTS error messages are read in from HDFS, pre-processed
and grouped by a clustering algorithm based on their similarity. The results are represented as JSON
records, fed back into the MONIT infrastructure, and displayed in a dedicated Grafana dashboard.

4.3 Rumble

HDFS storage plays an important role in the CMS monitoring infrastructure, since it holds
large amount of historical data that cannot be stored on ES or InfluxDB due to performance
reasons. Running queries on HDFS data requires domain expertise in Hadoop ecosystem
components - mostly Spark APIs in Java, Python, or Scala - with a steep learning curve.
Rumble [45] is an open-source querying engine which provides easy SQL-like query access
to HDFS data. Rumble high-level JSONiq query language [46] maps common FLWOR (For,
Let, Where, Order by, Return) expressions to Spark DataFrames and SQL. An example query
can be found in Listing 1.

We deployed Rumble as a service within the CMS k8s monitoring cluster. The Docker
image of Rumble consists of Spark and Hadoop packages, Rumble JAR (Java ARchive file
format), and scripts which run Rumble in server mode. In the Kubernetes perspective, the
deployment can be defined as sending a Rumble JAR with a spark-submit job [47] to the
CERN Spark cluster Analytix from a Kubernetes pod, which requires full-fledged Spark and
Kubernetes configurations. The Rumble server accepts HTTP requests through a dedicated
endpoint in the CMS monitoring cluster, translates and executes queries in the Analytix cluster,
and returns the query results back to the client. In order to send JSONiq queries to Rumble
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Kubernetes configurations. The Rumble server accepts HTTP requests through a dedicated
endpoint in the CMS monitoring cluster, translates and executes queries in the Analytix cluster,
and returns the query results back to the client. In order to send JSONiq queries to Rumble

1 for $doc in json-file(

2 "/project/monitoring/archive/wmarchive/raw/metric/2021/01/01/*"

3 )

4 where $doc."data"."meta_data"."jobstate" eq "failed"

5 group by $task := $doc."data"."task"

6 where count($doc) ge 1

7 return {

8 "task name": $task,

9 "count": count($doc)

10 }

Listing 1: An example of JSONiq that returns the total number of failed jobs and task names
of tasks with at least one failed job.

server, Go and Python clients [48] are implemented. It is also possible to submit JSONiq
queries from a Jupyter Notebook.

5 Summary

We presented an overview of the current CMS monitoring infrastructure and future develop-
ments. The choice of open-source technologies enabled us to build scalable and maintainable
applications. The development of a common monitoring infrastructure for CMS brought
several benefits: the consolidation of the resources needed to operate, maintain, and develop
the infrastructure itself and the monitoring applications, the portability of monitoring solu-
tions when using common data formats for metrics, and common visualization tools. We
regularly provide training and built a community of users of our monitoring services, so that
developments and knowledge can be shared among different groups. The deployment of the
monitoring applications and services in a Kubernetes infrastructure provided better scalability
and reduction in operational costs. We have a solid monitoring infrastructure and sustained
R&D program that allows us to cope with current and future challenges at the HL-LHC, and
actively participate to the WLCG Operational Intelligence effort.
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