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1 Introduction

The thermodynamical interpretation of de Sitter (dS) space-time is mysterious. One can
associate to it a global finite thermodynamic entropy, SdS ∼M2

Pl/H
2, although the volume

of dS space is infinite. A concrete setup to give an operational meaning to the dS entropy
was proposed, some time ago, in [1]. One sees dS space as part of inflation, which globally
ends at some time into an asymptotically flat phase. The asymptotic observer is then able
to access a number of inflationary modes and associate an entropy to these. When this
entropy becomes larger than the thermodynamic entropy one has a paradox. Avoiding this
paradox gives rise to the entropy bound on the number of e-folds of inflation Ne . SdS.

As pointed out by the authors of [1], when expressed in terms of this operational setup,
this paradox is in some sense analogous to the Black-Hole (BH) information paradox [2]: an
observer is able to associate a fine-grained (i.e. quantum-mechanical) entropy to the system,
which at some point exceeds its thermodynamic entropy (i.e. the logarithm of the assumed
finite number of available quantum states). In the last couple of years, an enormous
progress in the understanding of the BH information paradox has been achieved [3–7]. For
a review, see [8]. The lesson learned is that, even if one is in the semiclassical regime,
the naive fine-grained entropy of a gravitationally produced system gets modified by the
inclusion of islands, corresponding to saddles given by extra cuts (along the islands) in
the gravitational path-integral that determines the field-theoretical entropy. The correct
fine-grained entropy is given by the conjectured island formula [5, 9–13], which has been
proven explicitly in some particular cases in the BH context [6, 7].

In this work, we assume that these techniques can also be used to study dS space-time
and in particular the setup of [1]. We toy-model the argument of [1] in the language of 2D
dilaton gravity and use the island formula to find a Page-like curve [14, 15] for the entropy
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reconstructed by the asymptotic observer, under a number of assumptions. Then, this fine-
grained entropy never exceeds the thermodynamic dS entropy, in the toy-setup considered
here. If this result could be extrapolated to the physical 4D case, it would suggest that the
semiclassical expectations leading to the entropy bound should be modified, so that the
entropy bound would actually disappear.

In the last year, a number of other approaches have been developed to study dS space-
time by means of the island formula [16–22]. The overall picture is that non-pathological is-
lands have been found only when collapsing regions are present, for instance in the analogue
of a dS-Schwarzschild system [16, 17], or in a toy multiverse with collapsing patches [19, 20].
However, we do not know whether these results should be attributed to the properties of
dS space-time, or rather to the BHs present in these examples. In this work, instead, we
will find that an island appears for a pure dS cosmology (without BHs), as long as we focus
on the operational setup giving the entropy bound of [1].

The plan of the paper is the following. After this Introduction, in section 2 we review
the entropy bound of [1] and model their setup in the calculable framework of a CFT
in 2D gravity, introducing our assumptions, which allow to recover the results of [1] in
this simplified context. Then, in section 3 we show how these assumptions, when used in
the island formula, give rise to a Page-like curve for the fine-grained entropy. Finally, in
section 4 we discuss our results and draw our conclusions.

2 de Sitter entropy bound in 2D gravity

2.1 The entropy bound

Let us briefly review the dS entropy bound of [1]. We consider dS space-time as regularized
by a long period of inflation, followed, for simplicity, by flat-space Minkowski evolution.
A Minkowskian observer is able to access a number inflationary modes ≈ eS , associating
operationally a semiclassical entropy S to these, since these are semiclassically independent
from each other. Starting from a single Hubble patch, after Ne e-folds of inflation an
exponentially large number of patches e(D−1)Ne is populated, in D space-time dimensions.
After a sufficient long period of Minkowski evolution, the observer is then able to associate
operationally an entropy S ∼ Ne to inflation. However, when this becomes larger than the
dS entropy SdS (with SdS ∼ M2

Pl/H
2 in D = 4), we have a paradox, analogous to the BH

information paradox. As a consequence, [1] obtains the entropy bound Ne . SdS.

2.2 CFT entropy in 2D gravity

Our aim is to model this setup in a calculable framework, namely a CFT in 2D gravity, as
we now describe. While in 1+1 dimensions gravity is purely topological, a dynamical dS
theory is obtained by including a dilaton, i.e. the dS Jackiw-Teitelboim action [23–27]:

SJT = 1
16πG

∫
d2x
√
−g

[
φ0R+ φ(R− 2H2)

]
, (2.1)

up to boundary terms. The solution describing global dS space (without BHs) in global
coordinates is:

ds2 = 1
H2 cos2 σ

(−dσ2 + dϕ2) , φ = φr tan σ , (2.2)
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Figure 1. Conformal diagram of 2D dS space, where both the global coordinates (2.2) and the
planar ones (2.6) are shown. The latter, usually adopted for cosmic inflation, cover only half of dS
space, the inflationary patch.

with −π/2 ≤ σ ≤ π/2, and −π ≤ ϕ ≤ π with the extrema identified. The conformal
diagram is shown in figure 1. The dilaton profile is effectively the inverse gravitational
coupling, so that, by taking φr > 0, gravity becomes strongly coupled in the past σ → −π/2
and weakly coupled in the future. For a given relevant range of σ, we can avoid the strongly-
coupled regime φ0 + φ→ 0 by choosing φr sufficiently small.

In order to calculate analytically the entanglement entropy associated to a given region,
we include a CFT with a central charge c� 1, so that its many degrees of freedom dominate
the entropy (and in 2D its entanglement entropy is well known), without affecting the
dS character of spacetime. The entanglement entropy depends on three ingredients: the
quantum state of the CFT, the region under consideration and the UV cutoff selecting
the modes included in the analysis. About the first, since we are interested in modelling
inflation we consider the Bunch-Davies vacuum. The standard procedure to obtain the
entanglement entropy in this state is the following. We first introduce conformal complex
coordinates

z = e−i(σ−ϕ) , z̄ = e−i(σ+ϕ) , ds2 = 1
Ω(z, z̄)2 dzdz̄ , (2.3)

with Ω = H(1 + zz̄)/2. The vacuum state in this coordinate system is known to be the
Bunch-Davies (or Hartle-Hawking) vacuum (z, z̄ are light-cone coordinates). By means of
a conformal transformation, we can then use the flat spacetime well-known result [28], by
keeping track of the conformal transformation of the UV cutoff, and obtain the entropy of
a single interval

S = c

6 log (z1 − z2)(z̄1 − z̄2)
ε1ε2 Ω1Ω2

, (2.4)

where the subscript denotes quantities calculated at the corresponding endpoint of the
interval and ε is the cutoff expressed in the relevant system of coordinates. Written in
global coordinates this becomes

S = c

6 log 2 [cos(σ2 − σ1)− cos(ϕ2 − ϕ1)]
cosσ1 cosσ2H2ε1ε2

. (2.5)
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Figure 2. Sketch of the framework modelling the operational setup of section 2.1. The dS stage
ends at t = t0 and Minkowski evolution starts. After some time, a Minkowskian observer (orange
dot) is able to observe the inflationary modes in the region R.

In the following, it will be clear that for our purposes it is important to retain the global
structure of the Bunch-Davies/Hartle-Hawking vacuum rather than, for instance, consid-
ering its late time (simpler) Poincaré limit.

2.3 Modelling the entropy bound

The remaining two ingredients are the region of interest and the UV cutoff of the modes
considered. In their choice, we are guided by the aim of modelling, as much as possible,
the operational setup giving the entropy bound, described in section 2.1.

We do not have an inflaton. However, in modelling the setup above we may take it as
a clock and reason in terms of the usual planar coordinates of inflation (shown in figure 1):

ds2 = −dt2 + e2Htdx2 , eHt = cosϕ+ sin σ
cosσ , Hx = sinϕ

cosϕ+ sin σ , (2.6)

with −∞ < t, x < +∞, imagining that dS ends at some fixed time t0, modelling the
inflaton value for reheating. Then, Minkowski evolution starts and an observer, after some
time, will have access to the CFT inflationary modes at the reheating surface, associating
an entropy to these. As a consequence, the entropy appearing in the operational setup of
section 2.1 is nothing but the fine-grained (entanglement) entropy of a region R given by
an interval (−x, x) at fixed t = t0. This is sketched in figure 2.

The last ingredient is the UV cutoff. While originally the UV cutoff is introduced
to regulate the divergence for an interval of vanishing length, we assume that it can be
interpreted as the cutoff of the relevant modes, whose entropy one is focused on.1 In order
to model the setup of section 2.1, we choose a cutoff

ε ∼ 1
H
, (2.7)

1In other words, one can trace over the remaining modes in the UV. For free fields, this is the same as
imposing a relevant UV cutoff. For interacting fields, one should consider a Wilsonian effective action.
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i.e at t = t0 we consider all and only those modes that have been frozen during inflation.
These are precisely the ones that the future Minkowskian observer can reconstruct, for
instance from the CMB, in the argument of section 2.1. We anticipate that in the next
section we will argue that this prescription is suitable for the region R, but not for the
island in the gravitating dS region.

Having specified all the relevant ingredients, we can now calculate the semiclassical
entropy seen by the future observer, by combining (2.5), (2.6) and (2.7), and obtain the
simple result

Ssemi '
c

3 log 2eHt0x
ε

∼ c

3 log(HlR) , (2.8)

having introduced lR = 2eHt0x, the proper length of R. The entropy is simply counting
the modes that exited the horizon during inflation.

Finally, let us see how the argument of section 2.1 is reproduced. Let us analogously
assume that inflation starts at some time ti < 0. Starting from a single Hubble patch, in-
flation fills a comoving distance x ∼ e−Hti/H. Then, (2.8) and (2.7) give that the maximal
semiclassical entropy that the Minkowskian observer is able to reconstruct (sufficiently in
the future) is:

Ssemi ∼
c

3 log e
H(t0−ti)

Hε
∼ c

3 log eH(t0−ti) ∼ Ne , (2.9)

as in section 2.1. When this fine-grained entropy becomes larger than the thermodynamic
dS entropy2 SdS ∼ 2φ0 we have an apparent paradox, since the latter measures the total
number of states available to the quantum system that should be describing dS space.3

3 The entropy after a long period of inflation

The enormous progress of the last few years in the understanding of the BH information
paradox [3–8] is based on the appreciation that for a system produced gravitationally a
semiclassical entropy such as (2.8) fails to give the correct result, at late times. Instead,
the correct fine-grained entropy is given by the island formula [5, 9–13]:

S(R) = min extI
(Area(∂I)

4 + Ssemi(R∪ I)
)
, (3.1)

where the island I is in the gravitating region and the minimum among the different
extrema (including I = ∅) is taken. The area of the island boundary ∂I is in Planck units.
Its explicit proof for eternal BHs in 2D gravity [6, 7] suggests the following interpretation.
In QFT the entanglement entropy is calculated in terms of Euclidean path integrals on
appropriate replica manifolds, where the different sheets are connected by cuts in the
region of interest R. In general, since in the gravitational path integral spacetime itself is
dynamical, the dominant configurations may contain extra cuts on I, if gravity is allowed

2This is the horizon area in Planck units. In 2D, φ0 plays the role of the Planck mass and the factor of
2 comes from the horizon being two points.

3Assuming the analogue of the central dogma for BHs, i.e. that the meaning of the dS entropy is indeed
thermodynamical. If the dS entropy had some other unknown meaning, the entropy bound would not be
present to start with.
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Figure 3. Island contribution to the entropy. The island I is shown as a cut joining the two
endpoints from “inside”. We show modes that stop contributing to the entropy of R when the
island I is included. Pairs with the same colour are entangled.

to “decide” the replica topology, as dominant saddles in the Euclidean gravitational path-
intergral. The extra cuts introduce conical singularities at their boundary, captured by the
area term in (3.1), which gives the entropic contribution of gravity itself.

Therefore, we look for an island in the setup considered so far. Since we do not know a
priori if we will be in a simplifying universal limit (where the CFT entropy is simplified by
an OPE), we consider the two-intervals entropy formula. This is known only for a specific
CFT, namely c free fermions, so that we now restrict to this case. As before, we can
do a conformal transformation from conformal complex coordinates and use the flat-space
vacuum entropy [29] to obtain

S = c

6 log `2AB`
2
BC`

2
CD`

2
DA

`2AC`
2
BDεAεBεCεDΩAΩBΩCΩD

, (3.2)

where the different letters label the endpoints of R and I as denoted in figure 3 and we
have introduced the short-hand notation `2XY ≡ (zX − zY )(z̄X − z̄Y ).

Notice that the points C and D (as well as A and B) are differentiated by the different
direction of wrapping around them to move to the same replica sheet. In particular, a
counter-clockwise wrapping of 2π around A and C shifts the replica sheet as n → n + 1,
whereas as n → n − 1 for B and D. As a consequence, swapping C and D while keeping
A and B fixed changes the replica manifold and hence the entropy.4

From (3.2) and figure 3 we may already understand why an island, if appearing, can
compete with the semiclassical entropy (2.8) beating the penalty for the area term in (3.1).
In the limit in which BC and AD become light-like their contribution suppresses the
numerator of (3.2) and compensates for the large contribution of AB (which essentially
gives the semiclassical entropy (2.8)). Moreover, the area term

Area(∂I)
4 = 2φ0 + 2φr tan σI (3.3)

4For similar reasons, one can equivalently see the cut as shifting n → n + 1 and connecting C and D

from “inside”, or as shifting n → n − 1 and connecting them from “outside”. The complementary choices,
instead, give a different replica manifold.
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becomes smaller and smaller going towards the past. Here we have set 4G = 1 (which
is a normalization for φ0) and taken σC = σD ≡ σI . Below, we will find that the OPE
approximation is not appropriate for the determination of the dominant island, since this
appears only when the full structure in (3.2) is retained. Therefore, we cannot know
whether our results extrapolate to a generic CFT or not.

While the cutoffs εA, εB in (3.2) are in the region R and can be hence chosen at will,
e.g. as given by (2.7), the situation is different for the cutoffs εC , εD in the island region.5

This is because even if we focus on a subset of all modes (the ones that have been frozen
during inflation), the emergent cut in the replica manifold given by the island affects all
modes in the theory, even if they are traced over in R. Therefore, the inclusion of this
cut for them is equivalent to consider the CFT entropy as cut off by the real UV cutoff of
the theory εUV (presumably a proper length, because of covariance). Then, the standard
lore (see e.g. [17, 30]) is that the UV divergence is absorbed into the renormalization of
the inverse gravitational coupling φ0, so that the full result (3.1) is finite. Effectively, one
replaces εUV → εRG, the renormalization scale that we leave unspecified.

Taking this into account, the two-intervals entropy (3.2) in global coordinates becomes

Ssemi = c

6 log 4 (1− cos 2ϕR)(1− cos 2ϕI)
H4ε2RGε

2 cos2 σR cos2 σI

[cos(σR − σI)− cos(ϕR + ϕI)]2

[cos(σR − σI)− cos(ϕR − ϕI)]2
, (3.4)

where we have already used symmetry to impose σA = σB ≡ σR, ϕB = −ϕA ≡ ϕR > 0,
ϕD = −ϕC ≡ ϕI . In view of the discussion above after (3.2), positive and negative values
of ϕI correspond to different replica manifolds, where C and D are swapped.

The total entropy in the presence of the island is

S(σI , ϕI) = 2φ0 + 2φr tan σI + Ssemi , (3.5)

with Ssemi as given in (3.4). We need to find the extrema of this quantity. This is best
done numerically, as shown in figures 4 and 5 for t0 → ∞. There are several extrema.
In the close past (figure 5a) there is a minimax (i.e. minimal in time, maximal in space)
saddle-point. This is analogous to the island found in [16] in a similar setup, which is
argued to be pathological, since it violates the strong-sub-additivity condition by a large
amount.6 The fact that ϕI is negative just means that the direction of wrapping around
the island endpoints is swapped, as explained above after (3.4). However, we find that the
dominant extremum (the one with minimal S, as prescribed by the island formula) is in
the distant past, as shown in figure 5b. This is a local maximum of S. While the former
extremum is captured by the OPE approximation and the Poincaré limit of the vacuum,
the island I is present only when the full structure (3.2) is retained.

Having established the existence of the island, we can approximate its entropy an-
alytically for t0 → ∞ and δ ≡ π − ϕR ' 2/Hx → 0. This is done by expanding
∂S/∂ϕI = ∂S/∂σI = 0 for small ϕI and σI + π/2 and finding the approximate location of
the island:

ϕI '
c

12φr
δ2 , σI + π

2 ' δ −
c

6φr
δ2 . (3.6)

5We thank Victor Gorbenko for pointing this out to us.
6The minimax saddle-point found in [22] in a different setup is also argued to be pathological.
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Figure 4. Isocontours of the island entropy S as given in (3.5) (shaded in lighter gray for larger
S) and contours of vanishing partial derivatives with respect to σI (blue lines) and ϕI (red lines).
The green dot denotes the endpoint B of the region R, at large times t0 →∞, i.e. σR = π/2, while
the blue dot denotes the island endpoint D. The dashed lines indicate the past lightcone of R.
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Figure 5. Zoom of figure 4 in the regions in the close and distant past (left and right panels,
respectively). Extrema of S arise at the intersection of blue and red lines. In addition to the
island, denoted by the blue dot, other extrema are also present, but the corresponding entropy is
larger (lighter shading). In the left panel, for convenience we have swapped the sign of the island
coordinate ϕI → −ϕI , see text.

Then, we can restore a finite t0, i.e. a finite π/2 − σR, only in the factor cosσR in (3.4),
which is formally singular in the t0 → ∞ limit. We thus obtain the approximate form of
the fine-grained entropy:

S(R) ' min
{
c

3 log 2eHt0x
ε

, 2φ0 − φrHx+ c

3

(
log 2eHt0c

9φrH2εRGε
− 1

)}
, (3.7)

having included the no-island contribution. In figure 6, we compare the analytical approx-
imation of the island contribution to the full numerical result, showing that the former is
indeed sufficiently accurate.7 The fine-grained entropy can be expressed directly in terms

7Notice however that the O(1) factors inside the log in (2.8) and (3.4) (and hence in (3.7)) should not
be taken seriously, since the formulas used for the CFT entropies capture only the log behaviour.
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Figure 6. Analytic approximation to the island entropy (continuous line), compared to the full
numerical results (blue dots) for t0 →∞. We worked in Hubble units and chose the example values
of the parameters c = 1, φr = 0.1, ε = 0.1, εRG = 1.
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Figure 7. Page-like curve for the fine-grained entropy, as function of the comoving size 2x of the
region R, at t0 →∞.

of physical quantities8 lR, φph
r ≡ φr/eHt0 as

S(R) ' min
{
c

3 log(HlR), 2φ0 −
φph
r HlR

2 + c

3

(
log 2c

9φph
r HεRG

− 1
)}

. (3.8)

The entropy of R follows a Page-like curve, as also shown in figure 7. As a conse-
quence, the Minkowskian future observer of section 2.1 is never able to measure an entropy
larger than the thermodynamic one and the paradox disappears. This suggests that the
semiclassical expectation should be modified in such a way that the entropy bound might
actually not be present.

8The original explicit dependence on t0 is fictitious. Otherwise this would be unphysical, because the
value of t0 depends on the chosen origin of planar time. The key point is that φr implicitly depends on
t0: the dilaton profile at t0, which gives the physical gravitational coupling at the end of the dS phase,
is asymptotically given by φ ' φ0 + φre

Ht0x2/2 = φ0 + φre
−Ht0 l2R/2, in terms of the physical length lR.

Therefore, the physical combination is φr/e
Ht0 ≡ φph

r .
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4 Discussion and conclusions

To summarize, the basic assumptions that lead to the Page-like curve for the entropy, as
reconstructed by the Minkowskian observer, are the following

1. The operational setup that gives the entropy bound can be (toy-)modelled by 2D
gravity with a CFT with large central charge.

2. The island formula gives the correct fine-grained entropy in the dS setup considered,
in particular for an island not on the same Cauchy slice as the region of interest.

3. In this context a local maximum is a legitimate extremum for the island formula.

Under these assumptions, we have found that the fine-grained entropy is given by (3.7)
and, in particular, never exceeds the thermodynamic dS entropy SdS ∼ 2φ0.

In detail, we found that the island contribution dominates for comoving sizes larger
than x∗, with

Hx∗ '
2φ0
φr
− c

3φr
log 2eHt0x∗

ε
, (4.1)

and the maximal entropy is S∗ = S(x∗) ≈ c
3 log(4φ0/φ

ph
r ).

Notice that S∗ is generally much smaller than SdS. However, this might be a peculiarity
of the 2D toy-model, since it is ultimately due to the fact that both the past light-cone
and horizon areas go to zero (in Planck units) in the far past, for the theory (2.1) (see also
figure 3). Instead, for 4D dS spacetime, they both tend to M2

Pl/H
2. If our results could

be extrapolated to 4D, we would then expect a Page-like curve in which the fine-grained
entropy saturates to a constant S ≈ SdS = M2

Pl/H
2, rather than decreasing, as in figure 7.

Nevertheless, a direct 4D calculation looks unfeasible, since the entanglement entropy of a
CFT is much less known in this case, and the CFT gravitates.

Let us comment on point 2 above. The island found in this work is not on the same
Cauchy slice as the region R (since it is time-like separated from it) and for this reason an
interpretation of the island formula in terms of the entanglement between R and I looks
non-trivial. At first sight, a quantum information interpretation in terms of entanglement
appears to make sense only if R and I are independent subsystems, being part of the
same Cauchy slice. As shown in figure 3, even though I and R are not on the same
Cauchy slice, our island satisfies a “quasi-Cauchy” property, in the following sense. For the
CFT, the left- and right-movers are effectively two independent, non-interacting, quantum
systems. Therefore it makes sense to consider them separately. Restricting to either left-
or right-movers, the region R and the island I are indeed different degrees of freedom (in
the absence of quantum gravity), see the sketch in figure 3. More precisely, one can choose
independently the boundary conditions on R and I, since no light rays intersect both
regions. In other words, for the separate quantum systems of the left- or the right-movers
the island I and the region R are indeed on the same Cauchy slice. Therefore, it makes
sense to interpret the island formula in terms of entanglement between them. Of course,
going away from the CFT limit, this would be lost and it is not clear how our results (and
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interpretation) would generalize in that case. It would be interesting to investigate this in
a dedicated study.

Let us compare our results with the ones in the similar context of [16]. There, the
authors discuss an island that leads to the violation of the strong-subadditivity condition
(see below) and then argue that the correct background topology is the bra-ket wormhole,
for which the analogous island does not lead to the paradox. Both islands are timelike-
separated from the region R, as in our case. However, our island has in addition the
quasi-Cauchy property discussed above, which hints at a quantum-information interpreta-
tion. As we discussed in section 3, the analogue of the first island of [16] is also present
in our case, but it is superseded by the one in the far past, which dominates and gives the
Page-like curve (3.7).

We do not know which saddles should be included in the Euclidean gravitational path
integral, and what constitutes a legitimate extremum for the island formula, in particular
whether a local maximum, such as our result, is acceptable. In the BH context the only
legitimate islands are thought to be maximin saddle-points (maximal along time, minimal
along space). In the dS case this is not known, especially for a time-like separated island
such as ours. We can only check that the obtained entropy is free of obvious pathologies. In
a context similar to ours, the authors of [16] found a minimax island (minimal along time,
maximal along space), but then argued that it violates the strong-subadditivity condition,
a basic criterion for entropies. In appendix A, we review their argument and show that our
island does not lead to a similar paradox. Finally, notice that the entropy (3.4) is real, as
it should be,9 thanks to the fact that both BC and BD are time-like, a property that in
turn implies the quasi-Cauchy property discussed above.

To conclude, if our results could be extrapolated to 4D, they would suggest that the
entropy bound on the duration of dS is actually absent. This is not the only obstruction to
the possibility of a long (but possibly finite) stage of dS evolution [31–35], and thus it would
certainly be interesting to investigate whether these other arguments could be affected, in
a similar way, by the considerations presented here. For instance, the argument of [36] to
corroborate the dS conjecture of [33, 34], is precisely based on the entropy bound in the
presence of many degrees of freedom. It would be interesting, albeit challenging, to study
the consequences of our findings for these matters in future work.
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A No strong-subadditivity paradox

In a similar context to ours, the authors of [16] found an island under certain assumptions,
analogous to our subdominant extremum in figure 5a and argued that this is pathological,
because it violates the strong-subadditivity (SSA) condition

S(A ∪ B) + S(A ∪ C) ≥ S(A) + S(A ∪ B ∪ C) , (A.1)

which is a basic requirement for an entropy. Their argument goes as follows. One introduces
a probe CFT with a small central charge cp � c, which does not affect the location of the
island. In the flat region the two CFTs can be considered as distinct systems. Then, since
even in their case x∗ is a decreasing function of c, one can choose a region R such that
the island dominates for c but not for cp. Then, the SSA can be calculated for the three
distinct systems Rc, Rcp , Rcp , obtaining:

S(Rc ∪Rcp) + S(Rcp ∪Rcp)− S(Rc ∪Rcp ∪Rcp)− S(Rcp) ' −2cp
3 log lRc

φr
� −1 (A.2)

so that the SSA condition is violated by a large universal amount, logarithmic in the size
of R.

We can repeat an analogous argument in our case. The two CFTs are not interacting, so

S(Rcp ∪Rcp) = 0 . (A.3)

For the probe CFT the non-island entropy is dominating, therefore:

S(Rcp) ' cp
3 log 2xeHt0

ε
. (A.4)

The fine-grained entropy of an interval for both CFTs is given by

S(Rc ∪Rcp) ' 2φ0 − φrHx+ c+ cp
3

(
log 2eHt0(c+ cp)

9φrH2εRGε
− 1

)
. (A.5)

Finally, the entropy of the three subsystems is obtained by neglecting the effect of the
probe CFT on the location of the island. However, the cut in the replica manifold given
by the island affects all fields, including the probe CFT. The total entropy is thus given by
the two-interval result for c, plus the cp single-interval result on the island:

S(Rc ∪Rcp ∪Rcp) ' 2φ0 − φrHx+ c

3

(
log 2eHt0c

9φrH2εRGε
− 1

)
+ cp

3 log c

3H2εRGφrx
. (A.6)

All in all, we obtain:

S(Rc ∪Rcp) + S(Rcp ∪Rcp)− S(Rc ∪Rcp ∪Rcp)− S(Rcp) ' cp
3 log 1

3 ≈ 0 , (A.7)

which vanishes within the approximations of our formulas (which in particular disregard
the non-logarithmically-enhanced part of the entropy of a CFT). Therefore, our results do
not violate the SSA condition (at least in this setup), but rather saturate it.
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