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The de Sitter (dS) entropy bound gives the maximal number of e-folds that non-

eternal inflation can last before violating the thermodynamical interpretation of dS

space. This semiclassical argument is the analogue, for dS space, of the Black-Hole

information paradox. We use techniques developed to address the latter, namely

the island formula, to calculate semiclassically the fine-grained entropy as seen by

a Minkowskian observer after inflation and find that this follows a Page-like curve,

never exceeding the thermodynamic dS entropy. This calculation, performed for a

CFT in 2D gravity, suggests that the semiclassical expectation should be modified

in such a way that the entropy bound might actually not be present.

I. INTRODUCTION

The thermodynamical interpretation of de Sitter (dS) space-time is mysterious. One can

associate to it a global finite thermodynamic entropy, SdS ∼ M2
Pl/H

2, although the volume

of dS space is infinite. A concrete setup to give an operational meaning to the dS entropy

was proposed, some time ago, in [1]. One sees dS space as part of inflation, which globally

ends at some time into an asymptotically flat phase. The asymptotic observer is then able

to access a number of inflationary modes and associate an entropy to these. When this

entropy becomes larger than the thermodynamic entropy one has a paradox. Avoiding this

paradox gives rise to the entropy bound on the number of e-folds of inflation Ne . SdS.

As pointed out by the authors of [1], when expressed in terms of this operational setup,

this paradox is in some sense analogous to the Black-Hole (BH) information paradox [2]: an

observer is able to associate a fine-grained (i.e. quantum-mechanical) entropy to the system,

which at some point exceeds its thermodynamic entropy (i.e. the logarithm of the assumed

finite number of available quantum states). In the last couple of years, an enormous progress

in the understanding of the BH information paradox has been achieved [3–7]. For a review,

see [8]. The lesson learned is that, even if one is in the semiclassical regime, the naive

fine-grained entropy of a gravitationally produced system gets modified by the inclusion of

islands, corresponding to saddles given by extra cuts (along the islands) in the gravitational

path-integral that determines the field-theoretical entropy. The correct fine-grained entropy
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is given by the conjectured island formula [5, 9–13], which has been proven explicitly in

some particular cases in the BH context [6, 7].

In this work, we assume that these techniques can also be used to study dS space-time

and in particular the setup of [1]. We toy-model the argument of [1] in the language of 2D

dilaton gravity and use the island formula to find a Page-like curve [14, 15] for the entropy

reconstructed by the asymptotic observer, under a number of assumptions. Then, this fine-

grained entropy never exceeds the thermodynamic dS entropy, in the toy-setup considered

here. If this result could be extrapolated to the physical 4D case, it would suggest that

the semiclassical expectations leading to the entropy bound should be modified, so that the

entropy bound would actually disappear.

In the last year, a number of other approaches have been developed to study dS space-time

by means of the island formula [16–22]. The overall picture is that non-pathological islands

have been found only when collapsing regions are present, for instance in the analogue of

a dS-Schwarzschild system [16, 17], or in a toy multiverse with collapsing patches [19, 20].

However, we do not know whether these results should be attributed to the properties of dS

space-time, or rather to the BHs present in these examples. In this work, instead, we will

find that an island appears for a pure dS cosmology (without BHs), as long as we focus on

the operational setup giving the entropy bound of [1].

The plan of the paper is the following. After this Introduction, in Sec. II we review

the entropy bound of [1] and model their setup in the calculable framework of a CFT in

2D gravity, introducing our assumptions, which allow to recover the results of [1] in this

simplified context. Then, in Sec. III we show how these assumptions, when used in the

island formula, give rise to a Page-like curve for the fine-grained entropy. Finally, in Sec. IV

we discuss our results and draw our conclusions.

II. DE SITTER ENTROPY BOUND IN 2D GRAVITY

A. The entropy bound

Let us briefly review the dS entropy bound of [1]. We consider dS space-time as regularized

by a long period of inflation, followed, for simplicity, by flat-space Minkowski evolution.

A Minkowskian observer is able to access a number inflationary modes ≈ eS, associating

operationally a semiclassical entropy S to these, since these are semiclassically independent

from each other. Starting from a single Hubble patch, after Ne e-folds of inflation an

exponentially large number of patches e(D−1)Ne is populated, in D space-time dimensions.

After a sufficient long period of Minkowski evolution, the observer is then able to associate

operationally an entropy S ∼ Ne to inflation. However, when this becomes larger than the

dS entropy SdS (with SdS ∼ M2
Pl/H

2 in D = 4), we have a paradox, analogous to the BH

information paradox. As a consequence, [1] obtains the entropy bound Ne . SdS.
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FIG. 1. Conformal diagram of 2D dS space, where both the global coordinates (2) and the planar

ones (6) are shown. The latter, usually adopted for cosmic inflation, cover only half of dS space,

the inflationary patch.

B. CFT entropy in 2D Gravity

Our aim is to model this setup in a calculable framework, namely a CFT in 2D gravity,

as we now describe. While in 1+1 dimensions gravity is purely topological, a dynamical dS

theory is obtained by including a dilaton, i.e. the dS Jackiw-Teitelboim action [23–27]:

SJT =
1

16πG

∫
d2x
√
−g
[
φ0R + φ(R− 2H2)

]
, (1)

up to boundary terms. The solution describing global dS space (without BHs) in global

coordinates is:

ds2 =
1

H2 cos2 σ
(−dσ2 + dϕ2) , φ = φr tanσ , (2)

with−π/2 ≤ σ ≤ π/2, and−π ≤ ϕ ≤ π with the extrema identified. The conformal diagram

is shown in Fig. 1. The dilaton profile is effectively the inverse gravitational coupling, so

that, by taking φr > 0, gravity becomes strongly coupled in the past σ → −π/2 and weakly

coupled in the future. For a given relevant range of σ, we can avoid the strongly-coupled

regime φ0 + φ→ 0 by choosing φr sufficiently small.

In order to calculate analytically the entanglement entropy associated to a given region,

we include a CFT with a central charge c� 1, so that its many degrees of freedom dominate

the entropy (and in 2D its entanglement entropy is well known), without affecting the

dS character of spacetime. The entanglement entropy depends on three ingredients: the

quantum state of the CFT, the region under consideration and the UV cutoff selecting the

modes included in the analysis. About the first, since we are interested in modelling inflation

we consider the Bunch-Davies vacuum. The standard procedure to obtain the entanglement
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entropy in this state is the following. We first introduce conformal complex coordinates

z = e−i(σ−ϕ) , z̄ = e−i(σ+ϕ) , ds2 =
1

Ω(z, z̄)2
dzdz̄ , (3)

with Ω = H(1 + zz̄)/2. The vacuum state in this coordinate system is known to be the

Bunch-Davies (or Hartle-Hawking) vacuum (z, z̄ are light-cone coordinates). By means of

a conformal transformation, we can then use the flat spacetime well-known result [28], by

keeping track of the conformal transformation of the UV cutoff, and obtain the entropy of

a single interval

S =
c

6
log

(z1 − z2)(z̄1 − z̄2)
ε1ε2 Ω1Ω2

, (4)

where the subscript denotes quantities calculated at the corresponding endpoint of the in-

terval and ε is the cutoff expressed in the relevant system of coordinates. Written in global

coordinates this becomes

S =
c

6
log

2 [cos(σ2 − σ1)− cos(ϕ2 − ϕ1)]

cosσ1 cosσ2H2ε1ε2
. (5)

In the following, it will be clear that for our purposes it is important to retain the global

structure of the Bunch-Davies/Hartle-Hawking vacuum rather than, for instance, considering

its late time (simpler) Poincaré limit.

C. Modelling the entropy bound

The remaining two ingredients are the region of interest and the UV cutoff of the modes

considered. In their choice, we are guided by the aim of modelling, as much as possible, the

operational setup giving the entropy bound, described in Sec. II A.

We do not have an inflaton. However, in modelling the setup above we may take it as a

clock and reason in terms of the usual planar coordinates of inflation (shown in Fig. 1):

ds2 = −dt2 + e2Htdx2 , eHt =
cosϕ+ sinσ

cosσ
, Hx =

sinϕ

cosϕ+ sinσ
, (6)

with −∞ < t, x < +∞, imagining that dS ends at some fixed time t0, modelling the inflaton

value for reheating. Then, Minkowski evolution starts and an observer, after some time, will

have access to the CFT inflationary modes at the reheating surface, associating an entropy

to these. As a consequence, the entropy appearing in the operational setup of Sec. II A

is nothing but the fine-grained (entanglement) entropy of a region R given by an interval

(−x, x) at fixed t = t0. This is sketched in Fig. 2.

The last ingredient is the UV cutoff. While originally the UV cutoff is introduced to reg-

ulate the divergence for an interval of vanishing length, we assume that it can be interpreted
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FIG. 2. Sketch of the framework modelling the operational setup of Sec. II A. The dS stage ends

at t = t0 and Minkowski evolution starts. After some time, a Minkowskian observer (orange dot)

is able to observe the inflationary modes in the region R.

as the cutoff of the relevant modes, whose entropy one is focused on1. In order to model the

setup of Sec. II A, we choose a cutoff

ε ∼ 1

H
, (7)

i.e at t = t0 we consider all and only those modes that have been frozen during inflation.

These are precisely the ones that the future Minkowskian observer can reconstruct, for

instance from the CMB, in the argument of Sec. II A. We anticipate that in the next Section

we will argue that this prescription is suitable for the region R, but not for the island in the

gravitating dS region.

Having specified all the relevant ingredients, we can now calculate the semiclassical en-

tropy seen by the future observer, by combining (5), (6) and (7), and obtain the simple

result

Ssemi '
c

3
log

2eHt0x

ε
∼ c

3
log(HlR) , (8)

having introduced lR = 2eHt0x, the proper length of R. The entropy is simply counting the

modes that exited the horizon during inflation.

Finally, let us see how the argument of Sec. II A is reproduced. Let us analogously assume

that inflation starts at some time ti < 0. Starting from a single Hubble patch, inflation fills

a comoving distance x ∼ e−Hti/H. Then, (8) and (7) give that the maximal semiclassical

1 In other words, one can trace over the remaining modes in the UV. For free fields, this is the same as

imposing a relevant UV cutoff. For interacting fields, one should consider a Wilsonian effective action.
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entropy that the Minkowskian observer is able to reconstruct (sufficiently in the future) is:

Ssemi ∼
c

3
log

eH(t0−ti)

Hε
∼ c

3
log eH(t0−ti) ∼ Ne , (9)

as in Sec. II A. When this fine-grained entropy becomes larger than the thermodynamic dS

entropy2 SdS ∼ 2φ0 we have an apparent paradox, since the latter measures the total number

of states available to the quantum system that should be describing dS space3.

III. THE ENTROPY AFTER A LONG PERIOD OF INFLATION

The enormous progress of the last few years in the understanding of the BH information

paradox [3–8] is based on the appreciation that for a system produced gravitationally a

semiclassical entropy such as (8) fails to give the correct result, at late times. Instead, the

correct fine-grained entropy is given by the island formula [5, 9–13]:

S(R) = min extI

(
Area(∂I)

4
+ Ssemi(R∪ I)

)
, (10)

where the island I is in the gravitating region and the minimum among the different extrema

(including I = ∅) is taken. The area of the island boundary ∂I is in Planck units. Its explicit

proof for eternal BHs in 2D gravity [6, 7] suggests the following interpretation. In QFT the

entanglement entropy is calculated in terms of Euclidean path integrals on appropriate

replica manifolds, where the different sheets are connected by cuts in the region of interest

R. In general, since in the gravitational path integral spacetime itself is dynamical, the

dominant configurations may contain extra cuts on I, if gravity is allowed to “decide” the

replica topology, as dominant saddles in the Euclidean gravitational path-intergral. The

extra cuts introduce conical singularities at their boundary, captured by the area term

in (10), which gives the entropic contribution of gravity itself.

Therefore, we look for an island in the setup considered so far. Since we do not know a

priori if we will be in a simplifying universal limit (where the CFT entropy is simplified by

an OPE), we consider the two-intervals entropy formula. This is known only for a specific

CFT, namely c free fermions, so that we now restrict to this case. As before, we can

do a conformal transformation from conformal complex coordinates and use the flat-space

vacuum entropy [29] to obtain

S =
c

6
log

`2AB`
2
BC`

2
CD`

2
DA

`2AC`
2
BDεAεBεCεDΩAΩBΩCΩD

, (11)

2 This is the horizon area in Planck units. In 2D, φ0 plays the role of the Planck mass and the factor of 2

comes from the horizon being two points.
3 Assuming the analogue of the central dogma for BHs, i.e. that the meaning of the dS entropy is indeed

thermodynamical. If the dS entropy had some other unknown meaning, the entropy bound would not be

present to start with.
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FIG. 3. Island contribution to the entropy. The island I is shown as a cut joining the two endpoints

from “inside”. We show modes that stop contributing to the entropy of R when the island I is

included. Pairs with the same colour are entangled.

where the different letters label the endpoints of R and I as denoted in Fig. 3 and we have

introduced the short-hand notation `2XY ≡ (zX − zY )(z̄X − z̄Y ).

Notice that the points C and D (as well as A and B) are differentiated by the different

direction of wrapping around them to move to the same replica sheet. In particular, a

counter-clockwise wrapping of 2π around A and C shifts the replica sheet as n → n + 1,

whereas as n→ n− 1 for B and D. As a consequence, swapping C and D while keeping A

and B fixed changes the replica manifold and hence the entropy4.

From (11) and Fig. 3 we may already understand why an island, if appearing, can compete

with the semiclassical entropy (8) beating the penalty for the area term in (10). In the limit

in which BC and AD become light-like their contribution suppresses the numerator of (11)

and compensates for the large contribution of AB (which essentially gives the semiclassical

entropy (8)). Moreover, the area term

Area(∂I)

4
= 2φ0 + 2φr tanσI (12)

becomes smaller and smaller going towards the past. Here we have set 4G = 1 (which

is a normalization for φ0) and taken σC = σD ≡ σI . Below, we will find that the OPE

approximation is not appropriate for the determination of the dominant island, since this

appears only when the full structure in (11) is retained. Therefore, we cannot know whether

our results extrapolate to a generic CFT or not.

While the cutoffs εA, εB in (11) are in the region R and can be hence chosen at will,

e.g. as given by (7), the situation is different for the the cutoffs εC , εD in the island region5.

4 For similar reasons, one can equivalently see the cut as shifting n→ n+ 1 and connecting C and D from

“inside”, or as shifting n → n − 1 and connecting them from “outside”. The complementary choices,

instead, give a different replica manifold.
5 We thank Victor Gorbenko for pointing this out to us.
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This is because even if we focus on a subset of all modes (the ones that have been frozen

during inflation), the emergent cut in the replica manifold given by the island affects all

modes in the theory, even if they are traced over in R. Therefore, the inclusion of this

cut for them is equivalent to consider the CFT entropy as cut off by the real UV cutoff of

the theory εUV (presumably a proper length, because of covariance). Then, the standard

lore (see e.g. [17, 30]) is that the UV divergence is absorbed into the renormalization of

the inverse gravitational coupling φ0, so that the full result (10) is finite. Effectively, one

replaces εUV → εRG, the renormalization scale that we leave unspecified.

Taking this into account, the two-intervals entropy (11) in global coordinates becomes

Ssemi =
c

6
log

4 (1− cos 2ϕR)(1− cos 2ϕI)

H4ε2RGε
2 cos2 σR cos2 σI

[cos(σR − σI)− cos(ϕR + ϕI)]
2

[cos(σR − σI)− cos(ϕR − ϕI)]2
, (13)

where we have already used symmetry to impose σA = σB ≡ σR, ϕB = −ϕA ≡ ϕR > 0,

ϕD = −ϕC ≡ ϕI . In view of the discussion above after (11), positive and negative values of

ϕI correspond to different replica manifolds, where C and D are swapped.

The total entropy in the presence of the island is

S(σI , ϕI) = 2φ0 + 2φr tanσI + Ssemi , (14)

with Ssemi as given in (13). We need to find the extrema of this quantity. This is best

done numerically, as shown in Figs. 4 and 5 for t0 → ∞. There are several extrema. In

the close past (Fig. 5a) there is a minimax (i.e. minimal in time, maximal in space) saddle-

point. This is analogous to the island found in [16] in a similar setup, which is argued to

be pathological, since it violates the strong-sub-additivity condition by a large amount6.

The fact that ϕI is negative just means that the direction of wrapping around the island

endpoints is swapped, as explained above after (13). However, we find that the dominant

extremum (the one with minimal S, as prescribed by the island formula) is in the distant

past, as shown in Fig. 5b. This is a local maximum of S. While the former extremum is

captured by the OPE approximation and the Poincaré limit of the vacuum, the island I is

present only when the full structure (11) is retained.

Having established the existence of the island, we can approximate its entropy analytically

for t0 →∞ and δ ≡ π−ϕR ' 2/Hx→ 0. This is done by expanding ∂S/∂ϕI = ∂S/∂σI = 0

for small ϕI and σI + π/2 and finding the approximate location of the island:

ϕI '
c

12φr
δ2 , σI +

π

2
' δ − c

6φr
δ2 . (15)

Then, we can restore a finite t0, i.e. a finite π/2 − σR, only in the factor cos σR in (13),

which is formally singular in the t0 →∞ limit. We thus obtain the approximate form of the

6 The minimax saddle-point found in [22] in a different setup is also argued to be pathological.
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FIG. 4. Isocontours of the island entropy S as given in (14) (shaded in lighter gray for larger S)

and contours of vanishing partial derivatives with respect to σI (blue lines) and ϕI (red lines). The

green dot denotes the endpoint B of the region R, at large times t0 → ∞, i.e. σR = π/2, while

the blue dot denotes the island endpoint D. The dashed lines indicate the past lightcone of R.
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FIG. 5. Zoom of Fig. 4 in the regions in the close and distant past (left and right panels, re-

spectively). Extrema of S arise at the intersection of blue and red lines. In addition to the

island, denoted by the blue dot, other extrema are also present, but the corresponding entropy is

larger (lighter shading). In the left panel, for convenience we have swapped the sign of the island

coordinate ϕI → −ϕI , see text.

fine-grained entropy:

S(R) ' min

{
c

3
log

2eHt0x

ε
, 2φ0 − φrHx+

c

3

(
log

2eHt0c

9φrH2εRGε
− 1

)}
, (16)

having included the no-island contribution. In Fig. 6, we compare the analytical approx-

imation of the island contribution to the full numerical result, showing that the former is
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FIG. 6. Analytic approximation to the island entropy (continuous line), compared to the full

numerical results (blue dots) for t0 → ∞. We worked in Hubble units and chose the example

values of the parameters c = 1, φr = 0.1, ε = 0.1, εRG = 1.

indeed sufficiently accurate7. The fine-grained entropy can be expressed directly in terms of

physical quantities8 lR, φph
r ≡ φr/e

Ht0 as

S(R) ' min

{
c

3
log(HlR), 2φ0 −

φph
r HlR

2
+
c

3

(
log

2c

9φph
r HεRG

− 1

)}
. (17)

The entropy of R follows a Page-like curve, as also shown in Fig. 7. As a consequence,

the Minkowskian future observer of Sec. II A is never able to measure an entropy larger than

the thermodynamic one and the paradox disappears. This suggests that the semiclassical

expectation should be modified in such a way that the entropy bound might actually not be

present.

IV. DISCUSSION AND CONCLUSIONS

To summarize, the basic assumptions that lead to the Page-like curve for the entropy, as

reconstructed by the Minkowskian observer, are the following

1. The operational setup that gives the entropy bound can be (toy-)modelled by 2D

gravity with a CFT with large central charge.

2. The island formula gives the correct fine-grained entropy in the dS setup considered,

in particular for an island not on the same Cauchy slice as the region of interest.

3. In this context a local maximum is a legitimate extremum for the island formula.

7 Notice however that the O(1) factors inside the log in (8) and (13) (and hence in (16)) should not be

taken seriously, since the formulas used for the CFT entropies capture only the log behaviour.
8 The original explicit dependence on t0 is fictitious. Otherwise this would be unphysical, because the value

of t0 depends on the chosen origin of planar time. The key point is that φr implicitly depends on t0:

the dilaton profile at t0, which gives the physical gravitational coupling at the end of the dS phase, is

asymptotically given by φ ' φ0 + φre
Ht0x2/2 = φ0 + φre

−Ht0 l2R/2, in terms of the physical length lR.

Therefore, the physical combination is φr/e
Ht0 ≡ φphr .



11

x*

S*

Comoving size x

F
in
e-
g
ra
in
ed
en
tr
o
py

S

strong coupling

no island

island

FIG. 7. Page-like curve for the fine-grained entropy, as function of the comoving size 2x of the

region R, at t0 →∞.

Under these assumptions, we have found that the fine-grained entropy is given by (16) and,

in particular, never exceeds the thermodynamic dS entropy SdS ∼ 2φ0.

In detail, we found that the island contribution dominates for comoving sizes larger than

x∗, with

Hx∗ '
2φ0

φr
− c

3φr
log

2eHt0x∗
ε

, (18)

and the maximal entropy is S∗ = S(x∗) ≈ c
3

log(4φ0/φ
ph
r ).

Notice that S∗ is generally much smaller than SdS. However, this might be a peculiarity

of the 2D toy-model, since it is ultimately due to the fact that both the past light-cone

and horizon areas go to zero (in Planck units) in the far past, for the theory (1) (see also

Fig. 3). Instead, for 4D dS spacetime, they both tend to M2
Pl/H

2. If our results could

be extrapolated to 4D, we would then expect a Page-like curve in which the fine-grained

entropy saturates to a constant S ≈ SdS = M2
Pl/H

2, rather than decreasing, as in Fig. 7.

Nevertheless, a direct 4D calculation looks unfeasible, since the entanglement entropy of a

CFT is much less known in this case, and the CFT gravitates.

Let us comment on point 2 above. The island found in this work is not on the same

Cauchy slice as the region R (since it is time-like separated from it) and for this reason

an interpretation of the island formula in terms of the entanglement between R and I
looks involved. At first sight, such interpretation appears to make sense only if R and I
are independent subsystems, being part of the same Cauchy slice. Therefore, it would be

interesting to investigate further the quantum-information meaning of time-like separated

islands, such as the one that we found.

Here, we just give some intuitive considerations. As shown in Fig. 3, even though I and

R are not on the same Cauchy slice, they “almost” are, although in an unusual sense: all
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light-like trajectories (the ones relevant for the CFT) may intersect either I and R, but not

both. In this sense, for the CFT they are independent systems. The key point is then, as

shown in Fig. 3, many entangled pairs naively contributing to the entropy of R are indeed

purified9 by I, and this is the extremal surface achieving that. This is why the island

calculation corrects the naive semiclassical expectation.

We do not know which saddles should be included in the Euclidean gravitational path

integral, and what constitutes a legitimate extremum for the island formula, in particular

whether a local maximum, such as our result, is acceptable. In the BH context the only

legitimate islands are thought to be maximin saddle-points (maximal along time, minimal

along space). In the dS case this is not known, especially for a time-like separated island

such as ours. We can only check that the obtained entropy is free of obvious pathologies. In

a context similar to ours, the authors of [16] found a minimax island (minimal along time,

maximal along space), but then argued that it violates the strong-subadditivity condition,

a basic criterion for entropies. In Appendix A, we review their argument and show that our

island does not lead to a similar paradox. Finally, notice that the entropy (13) is real, as it

should be10, thanks to the fact that both BC and BD are time-like, a property that in turn

implies the quasi-Cauchy property discussed above.

To conclude, if our results could be extrapolated to 4D, they would suggest that the

entropy bound on the duration of dS is actually absent. This is not the only obstruction to

the possibility of a long (but possibly finite) stage of dS evolution [31–35], and thus it would

certainly be interesting to investigate whether these other arguments could be affected, in

a similar way, by the considerations presented here. For instance, the argument of [36] to

corroborate the dS conjecture of [33, 34], is precisely based on the entropy bound in the

presence of many degrees of freedom. It would be interesting, albeit challenging, to study

the consequences of our findings for these matters in future work.
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the right endpoint, as well as the right-movers around the left endpoint, are not purified, but in the limit

ε→ 0 this is sufficient to formally suppress completely the entanglement entropy. This is the same reason

why the entropy of a single light-like interval tends to zero.
10 The authors of [16] obtain a complex entropy, but point out that their imaginary part cancels between

bra and ket sheets.
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Appendix A: No strong-subadditivity paradox

In a similar context to ours, the authors of [16] found an island under certain assumptions,

analogous to our subdominant extremum in Fig. 5a and argued that this is pathological,

because it violates the strong-subadditivity (SSA) condition

S(A ∪ B) + S(A ∪ C) ≥ S(A) + S(A ∪ B ∪ C) , (A1)

which is a basic requirement for an entropy. Their argument goes as follows. One introduces

a probe CFT with a small central charge cp � c, which does not affect the location of the

island. In the flat region the two CFTs can be considered as distinct systems. Then, since

even in their case x∗ is a decreasing function of c, one can choose a region R such that the

island dominates for c but not for cp. Then, the SSA can be calculated for the three distinct

systems Rc, Rcp , Rcp , obtaining:

S(Rc ∪Rcp) + S(Rcp ∪Rcp)− S(Rc ∪Rcp ∪Rcp)− S(Rcp) ' −2cp
3

log
lRc

φr
� −1 (A2)

so that the SSA condition is violated by a large universal amount, logarithmic in the size of

R.

We can repeat an analogous argument in our case. The two CFTs are not interacting, so

S(Rcp ∪Rcp) = 0 . (A3)

For the probe CFT the non-island entropy is dominating, therefore:

S(Rcp) ' cp
3

log
2xeHt0

ε
. (A4)

The fine-grained entropy of an interval for both CFTs is given by

S(Rc ∪Rcp) ' 2φ0 − φrHx+
c+ cp

3

(
log

2eHt0(c+ cp)

9φrH2εRGε
− 1

)
. (A5)

Finally, the entropy of the three subsystems is obtained by neglecting the effect of the probe

CFT on the location of the island. However, the cut in the replica manifold given by the

island affects all fields, including the probe CFT. The total entropy is thus given by the

two-interval result for c, plus the cp single-interval result on the island:

S(Rc ∪Rcp ∪Rcp) ' 2φ0 − φrHx+
c

3

(
log

2eHt0c

9φrH2εRGε
− 1

)
+
cp
3

log
c

3H2εRGφrx
.(A6)
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All in all, we obtain:

S(Rc ∪Rcp) + S(Rcp ∪Rcp)− S(Rc ∪Rcp ∪Rcp)− S(Rcp) ' cp
3

log
1

3
≈ 0 , (A7)

which vanishes within the approximations of our formulas (which in particular disregard the

non-logarithmically-enhanced part of the entropy of a CFT). Therefore, our results do not

violate the SSA condition (at least in this setup), but rather saturate it.
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