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We derive a representation for a lattice U(1) gauge theory with exponential convergence in the number of
states used to represent each lattice site that is applicable at all values of the coupling. At large coupling, this
representation is equivalent to the Kogut-Susskind electric representation, which is known to provide a
good description in this region. At small coupling, our approach adjusts the maximum magnetic field
that is represented in the digitization as in this regime the low-lying eigenstates become strongly peaked
around zero magnetic field. Additionally, we choose a representation of the electric component of the
Hamiltonian that gives minimal violation of the canonical commutation relation when acting upon low-
lying eigenstates. For ð2þ 1Þ dimensions with 4 lattice sites the expectation value of the plaquette operator
can be calculated with only 7 states per lattice site with per-mille level accuracy for all values of the
coupling constant.
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While massive theoretical and algorithmic develop-
ments in classical computing have allowed us to probe
many aspects of the Standard Model (SM) of Particle
Physics, there remain a plethora of open questions that are
not amenable to these methods. With a fundamentally
different computational strategy, quantum computers hold
the promise to simulate the dynamics of quantum field
theories from first principles, allowing access to ab-initio
predictions of observables that are inaccessible using
existing techniques on classical computers.1 In order to
harness the full potential of quantum computers, an
efficient implementation of the Hamiltonian of gauge
theories on quantum processors is a mandatory first step.
For a review of various approaches, both analog and
digital, see Refs. [3–9].
The Hilbert space of the field theories describing the

SM are infinite dimensional, but in order to be imple-
mented onto a digital quantum computer, the physical
Hilbert space must be finite. This requires choosing a

truncation and digitization scheme, as well as a finite-
dimensional representation of the various operator
components of the Hamiltonian. These schemes and
representation must be chosen such that the discrete
Hamiltonian reproduces the physics of the continuum
theory with a sufficiently high fidelity and with quantifi-
able errors. There has been much effort in developing
various methods and formulations. Techniques exist that
enforce gauge invariance without not restricting to physi-
cal states (see for example [10–20]), but limited quantum
resources make it preferable to define the Hamiltonian
purely in terms of physical states. Possible formulations of
gauge theories include magnetic or dual basis representa-
tions [21–24], prepotentials with a basis of loop, string
and hadron excitations [25–31], discrete subgroups and
group space decimation [32–35], mesh digitization [36],
light-front formulations [37,38] and orbifold lattice
methods [39,40]. For work on experimental realizations,
see Refs. [41–46], and for a study of achieving the
continuum limit of 1þ 1 dimensional U(1) field theory,
see Ref. [47].
For this work, we focus on Abelian lattice theories,

particularly U(1) lattice gauge theories. One well-known
implementation of such a theory is the Kogut-Susskind
(KS) Hamiltonian [48–52], which is defined in terms of
integer-valued electric fields, plus plaquettes that act as
lowering operators. As this formulation is naturally written
in the electric basis, it is easy to truncate the theory by
truncating the electric field values. We generally refer to
this truncated version as the KS representation, which gives
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1A classical technique called tensor networks has potential to
compute dynamics of gauge theories as long as entanglement is
small enough [1,2].

PHYSICAL REVIEW D 107, L031503 (2023)
Letter

2470-0010=2023=107(3)=L031503(6) L031503-1 Published by the American Physical Society

https://orcid.org/0000-0001-9820-5810
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.L031503&domain=pdf&date_stamp=2023-02-21
https://doi.org/10.1103/PhysRevD.107.L031503
https://doi.org/10.1103/PhysRevD.107.L031503
https://doi.org/10.1103/PhysRevD.107.L031503
https://doi.org/10.1103/PhysRevD.107.L031503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


a highly efficient and accurate description at strong
coupling, where electric fluctuations are small.
However, for gauge theories in two or less spatial

dimensions, or asymptotically-free theories in three spatial
dimensions, the continuum limit corresponds to the weak-
coupling limit. In this limit, the widths of the eigenstate
wave functions in the electric basis increase, such that a
truncation at a fixed value of the electric field becomes
inadequate. On the other hand, the support of the wave
function in the magnetic basis decreases as the coupling
decreases, indicating that these gauge theories are more
efficiently represented in the magnetic basis.
In this work we derive a new digitized representation of a

U(1) gauge theory that is efficient, regardless of the
strength of the gauge coupling. The implementation of
this representation proceeds in two steps. The first is
determining the optimal digitization and truncation of
the magnetic field values, as we always work in the
magnetic basis. The second is determining the representa-
tion of the electric Hamiltonian in the magnetic basis. This
results in a simple and analytic expression for the magnetic
field digitization, as well as a choice for the electric
Hamiltonian that allows for a maximally faithful represen-
tation of the lowest-lying states.
In this representation the required number of states per

lattice site is quite small for the degree of precision
achieved. While we leave a detailed study for future work,
we believe that the representation presented here can be
implemented onto qubits with minimal modification, mak-
ing this representation well-tailored for working near the
continuum limit. Additionally, the representation works
regardless of the strength of the coupling; in fact, at large
coupling it is related to the well-known KS formulation via
a simple Fourier transform. Magnetic-basis formulations
have previously been considered for example in [21,23],
with [23] focusing on creating a resource-efficient repre-
sentation at weak coupling. A comparison to this work can
be found in the Supplemental Material [53].
The pure gauge part of a U(1) gauge theory is given by

the Hamiltonian

H ¼ 1

2

Z
ddx½E⃗ðxÞ2 þ BðxÞ2�; ð1Þ

where, for simplicity, we will work in ð2þ 1Þ dimensions.
The electric and magnetic field are related to the vector

potential by E⃗ðxÞ ¼ dA⃗ðxÞ=dt and BðxÞ ¼ ∇⃗ × A⃗ðxÞ,
respectively, and we work in the A0ðxÞ ¼ 0 gauge. Note
that the curl of a vector field is a 2-form, which in ð2þ 1Þ
dimensions is dual to a scalar.
Gauge invariance implies Gauss’ law ½∇⃗ · E⃗−ρ�jΨi¼0,

giving a constraint on physical states jΨi. This constraint can

be solved by writing [54] E⃗ ¼ E⃗L þ E⃗T with ∇⃗ · E⃗L ¼ ρ

and E⃗T ¼ ∇⃗ × R, where ρ denotes the charge density,
and R is again a two-form. Thus, in the absence of electric
charges, the Hamiltonian can be written in terms of the
two scalar quantities, R (rotor field) and B (magnetic
field), which satisfy the canonical commutation rela-
tions ½BðxÞ; RðyÞ� ¼ iδðx − yÞ.
On a lattice there are two different formulations

with the same continuum limit, but noticeably different
behavior at finite lattice spacing. Using dimension-
less variables and rescaling A → A=g, E → gE, the
Hamiltonian for a noncompact theory with no net charge
is given by

HNC ≡HE þHNC
B ¼ 1

2a

X
p

�
g2ð∇⃗ × RpÞ2 þ

B2
p

g2

�
; ð2Þ

where a is the lattice spacing, and g denotes the bare lattice

coupling. The sum is over plaquettes p and ∇⃗ × Rp is the
lattice curl, defined in [54]. The commutation relations on
the lattice are given by ½Bp; Rp0 � ¼ iδp;p0.
Alternatively, the gauge field can be compactified,

leading to the compact version of the theory with
HC ¼ HE þHC

B. This changes the magnetic Hamiltonian
to the compact form

HC
B ¼ 1

2a

X
p

1

g2
ð2 − Pp − P†

pÞ; Pp ¼ eiBp; ð3Þ

reproducing the KS Hamiltonian. In the following, we will
usually work with the compact version of the Hamiltonian,
but our final results will also be applicable to the non-
compact Hamiltonian.
Setting the convention to denote operators by upper case

letters, their eigenvalues by the corresponding lower case
ones, and states by bras and kets of lower case letters, the
compact nature of the magnetic field immediately leads to
an integer spectrum in the rotor fields with

Rpjrpi¼ rpjrpi; Ppjrpi¼ jrp−1i; rp∈Z: ð4Þ

Thus, the KS Hamiltonian is naturally represented in the
electric (rotor) basis. One can switch to the magnetic basis
through a Fourier transform

jbpi ¼
X∞
r¼−∞

eibprp jrpi; ð5Þ

which immediately demonstrates the compact nature of the
magnetic states jbp þ 2πi ¼ jbpi.
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In order to represent this field theory on digital (quan-
tum) devices, the continuous magnetic field needs to be
digitized. A standard way is to band-limit the electric
representation by requiring −L ≤ r ≤ L. This samples the
magnetic field through at 2Lþ 1 discrete equidistant points
symmetric between −π and π and introduces a spacing in
the magnetic field given by δb ¼ 2π=ð2Lþ 1Þ. Note that
writing the theory in the electric basis with a bandlimit
−L ≤ r ≤ L corresponds to a Zð2Nþ1Þ gauge theory.
There have also been investigations using digitizations
that cover the range −π < B < π, but using a noninteger
value of 2π=δb [55].
For the noncompact theory, the width of the wave

function in the magnetic basis scales with the coupling
constant as g. For the compact theory, this approximation
still holds for small coupling (at large coupling, the support
is over the full range bp ∈ ½−π; π�). Thus, at small coupling
the magnetic wave functions become sharply peaked
around 0 and to accurately represent them requires a small
value of δb, which in turn necessities large L, making the
representation very costly.
This work proposes a new efficient formulation

that digitizes the magnetic field values directly, which is
summarized in Fig. 1. As discussed, at small coupling
the magnetic wave function only has support for
jbj < bmax ∼ g. We therefore choose the magnetic
field to only be defined in the range jbj < bmax,
and impose periodic boundary conditions identifying
bð−bmaxÞ ¼ bðbmaxÞ. This samples the magnetic field at
each plaquette at the values

bðkÞp ¼ −bmax þ
�
kþ 1

2

�
δb; δb¼ 2bmax

2lþ 1
; ð6Þ

with 0 ≤ k ≤ 2l. The magnetic field operator in the mag-
netic basis is simply

hbðkÞp jBpjbðk
0Þ

p0 i ¼ bðkÞp δkk0δpp0 : ð7Þ

This implies that the digitized conjugate rotor field
satisfies

rðkÞp ¼ −rmax þ kδr; ð8Þ

with 0 ≤ k ≤ 2l and

δr ¼ 2π

δbð2lþ 1Þ ; rmax ¼
lπ
bmax

: ð9Þ

Note that for general bmax the spacing of the rotor fields δr
is no longer equal to 1, unlike in the compact undigitized
lattice theory. This deviation away from δr ¼ 1 is key to
having an efficient and accurate representation. As we will

discuss below, in the limit l → ∞ we recover the usual
relation δb ¼ 2π=ð2lþ 1Þ such that δr ¼ 1.
Two key points need to be addressed. The first is

determining the representation of the electric Hamiltonian
in the magnetic basis, and the second is choosing a value for
bmax. Multiple representations of the electric Hamiltonian in
the magnetic basis are possible, such as using a finite
difference representation of the relation R ¼ −i∂b, or the
representation in [23], which we review in the Supplemental
Material [53]. We choose, however, to follow [56] and
represent the electric Hamiltonian by its exact eigenvalues
through a Fourier transform

jrðkÞp i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
X2l
k0¼0

ei
2π

2lþ1
ðk−lÞðk0−l−1

2
Þjbðk0Þp i

≡X2l
k0¼0

ðFTÞkk0 jbðk
0Þ

p i: ð10Þ

This allows us to write

hbðkÞp jRpjbðk
0Þ

p0 i ¼
X2l
n¼0

rðnÞp ðFTÞ−1kn ðFTÞnk0δpp0 : ð11Þ

To choose the optimal value of bmax we demand
that the optimal digitization for the quantum harmonic
oscillator violates the canonical commutation relation
minimally [57,58] (suppressed exponentially in the
dimension of the Hilbert space). To find the optimal
value of bmax for both the noncompact and compact
theory,2 we define the “canonical commutator expectation
value”

FIG. 1. Illustration of our representation of the magnetic field
(right) compared to the previous work of [23] (left).

2While the compact and noncompact theory are different,
we show in the Supplemental Material [53] that this condition
works for a weakly coupled compact version of the harmonic
oscillator.
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hCðlÞ
p i½bmax�≡ 1þ ihΩðlÞj½Bp; Rp�jΩðlÞi; ð12Þ

where the ground state and the spectrum of the operators
also depend on the value of bmax, g and l. The value of bmax

is now defined by minimizing hCðlÞ
p i½bmax�,

bðpÞmaxðg;lÞ ¼ argmin½hCðlÞ
p i½bmax��; ð13Þ

and we indicated the dependence of bmax on the values of g
and l. Note that in general the condition in (13) gives a
different value of bmax for each plaquette. However these
differences are quite small and our final analytic expression
uses a universal bmax.
For a quantum harmonic oscillator (QHO), the condition

that the canonical commutation relation be minimally
violated has been previously used to derive analytically
the optimal value of bmaxðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þπ=2p
[57,58].

The noncompact U(1) Hamiltonian is a three-dimensional
QHO which can be reduced to three one-dimensional
QHOs by neglecting terms that couple different lattice
sites together. The optimal value of bmax for these one-
dimensional QHOs is

bNCmaxðg;lÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þπffiffiffi

2
p

s
: ð14Þ

For the compact theory, one needs to include the finite
maximum range of the magnetic field to give

bCmaxðg;lÞ ¼ min ½bNCmax; π�: ð15Þ

At sufficiently large values of l, bCmax will always be equal
to π and therefore δr ¼ 1. With this final step, we now have
a fully defined representation of a 2þ 1 dimensional U(1)
lattice gauge theory that is valid at all values of the
coupling.
We conclude this manuscript by presenting two numeri-

cal tests of this formulation. We focus on the smallest
possible system in 2þ 1 dimensions, namely four lattice
sites and periodic identification of the boundaries.
Imposing Gauss’s law and constraining to the trivial
topological sector, the degrees of freedom are three rotors
and three plaquettes. This system was previously derived
and studied in [23] for the compact gauge group.
The Hilbert space of this system is spanned by

three magnetic fields, which we choose to denote as

jbðkÞi ¼ jbðk1Þ1 bðk2Þ2 bðk3Þ3 i, where k is the vector of state
labels for the magnetic operators. The magnetic
Hamiltonian for the compact theory is diagonal with

hbðkÞjHC
Bjbðk0Þi

¼ 1

a
1

g2

�
4 −

X3
p¼1

cos b
ðkpÞ
p − cos

�X3
p¼1

b
ðkpÞ
p

��
δkk0 ; ð16Þ

while for the noncompact theory one replaces each
cosðbÞ by 1 − b2=2. The matrix elements of the electric
Hamiltonian are given by

hbðkÞjHEjbðk0Þi ¼ −
2g2

a

X2l
ni¼0

ðFTÞ−1kn ðFTÞnk0

×

�
rðn1Þ1 ðrðn2Þ2 þ rðn3Þ3 Þ −

X3
p¼1

�
r
ðnpÞ
p

�
2
�
;

ð17Þ

where we have used the notation ðFTÞkk0 ¼
Q

i ðFTÞkik0i .
In Fig. 2 we show the dependence of the theory on the

value of bmax for the noncompact theory with l ¼ 4. The
values of the hCpi½bmax� are shown by the dashed and
dotted lines. The solid lines show the difference of the
energies of the first three eigenstates of the Hamiltonian
when compared to the exact value in the continuum limit.
One can see that all curves have a minimum at very similar
locations, and that these minima are very close to the
analytical value bCmax given in (15). The method to solve
the nondigitized theory is presented in the Supplemental
Material [53].
As a second result, we present the expectation of the

plaquette operator

h□i ¼ −
g2a2

V
hΨ0jHBjΨ0i; ð18Þ

FIG. 2. Dependence of the noncompact theory on the value of
bmax for two values of l ¼ 4. The dashed and dotted lines show
the commutator expectation value for the first and second/third
lattice plaquette. In the solid lines we show the results for energy
difference compared to the analytical result. All curves are
minimized for values of bmax ≈ bNCmax.
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where jΨ0i is the ground state of the theory and V is the
number of plaquettes in the system. This matrix element
has been considered in the past [59], and allows for
comparisons to [23]. The result is shown in Fig. 3, where
the solid lines correspond to the result of this work, while
the dashed lines with circles and dotted lines with crosses

correspond to the results of [23] in the magnetic and electric
basis, respectively, making the same choices as in the
original paper, including the choice of the optimal value of
L given l. We can see that our results have very good
convergence over the entire range of the coupling constant,
and already with l ¼ 3 we have per-mille level accuracy
for all values of g. As discussed before, the magnetic
(electric) basis of [23] only works at small (large) cou-
plings, and one can see that at small coupling the magnetic
basis is only able to reach percent-level accuracy, even for
larger l.
In this manuscript we presented a novel formulation of

(2þ 1)-dimensional Uð1Þ lattice gauge theories. This
formulation is able to reproduce the low-lying spectrum
of the theory for all values of the coupling with per-mille
or better accuracy while utilizing minimal resources. It
digitizes a Hamiltonian that only contains physical states,
utilizing an analytic expression to estimate the optimal
maximum field value based on the gauge coupling and the
available resources for each lattice site. We believe that
this procedure can be extended to larger systems in
(2þ 1)-dimensions, and a similar procedure should be
applicable to (3þ 1) dimensions, though an additional
constraint will likely complicate the procedure [24].
Dynamical fermions can be included in a straightforward

way by including a longitudinal electric field E⃗L.
Extensions of this work to important case of non-
Abelian gauge theories is in progress. We close by noting
that this work focused on a formulation of U(1) gauge
theories that was efficient in the overall dimension of the
Hilbert space. While we believe our representation
also allows for an efficient implementation on digital
quantum computers, we leave a detailed study of
the implementation in terms of quantum circuits in
future work.
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FIG. 3. Expectation value of the plaquette operator for l ¼ 2
(red), l ¼ 3 (green), l ¼ 4 (blue). The solid lines show the
results of this work, while the dashed lines (circles) and dotted
lines (crosses) denote the results of [23] in the magnetic and
electric basis, respectively. The ratios to the result of our work
with l ¼ 6 are shown below, while the bottom plot shows the
analytical solution of the noncompact theory, which should give
the correct result at low values of g.
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