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1 Introduction

The topic of non-global QCD observables [1] has received significant attention in recent
years. A first reason is due to their theoretical complexity. These observables are charac-
terised by kinematic constraints on limited angular regions of the radiation phase space,
which leads to a rich structure in perturbation theory. This class of logarithmic corrections
to physical observables was discovered and resummed at leading logarithmic (LL) order
in the planar, large-number-of-colour (large-Nc) limit about 20 years ago [1–3], and meth-
ods to calculate finite-Nc effects are also well established [4–8]. While subleading-colour
corrections are commonly numerically small in known applications, their study is of im-
portance for the understanding of the structure of super-leading logarithmic corrections in
non-global observables at hadron colliders [9–11].

The calculation of non-global corrections to higher orders largely remains an open
problem. Several new formulations of the resummation have been proposed in recent
years [12–16], accompanying a large amount of applications to perturbative calculations of
collider observables at LL, and recently also including some class of NLL corrections (see
e.g. [12, 17–34]). Their study is also motivated by theoretical interests related to the connec-
tion between their dynamics and the high-energy limit of scattering amplitudes [14, 35, 36].

A second reason why non-global observables are interesting is their ubiquitous oc-
curence at colliders, for instance via the use of jets or often when specific fiducial cuts are
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applied in experimental measurements. In the context of the precision physics programme
of present and future particle colliders, it is therefore paramount to gain theoretical control
over non-global corrections to physical observables.

Finally, an understanding of their dynamics is instrumental in the context of developing
more accurate parton-shower algorithms (see e.g. refs. [37–48]). Specifically, the resumma-
tion of next-to-leading logarithmic (NLL) non-global logarithms is a crucial ingredient for
the development of NNLL algorithms, that are necessary to achieve sufficiently accurate
event simulation both at present and future colliders.

In a recent article [16] we have developed a framework for the resummation of non-
global observables in the planar limit, which relies on a set of non-linear evolution equations
that describe the dynamics of soft radiation at different energy scales. Ref. [16] also demon-
strates the correctness of the framework by comparing a calculation at fixed perturbative
order in this formalism to the full QCD result for the energy and transverse energy distribu-
tions in the rapidity gap between two cone jets produced in electron-positron annihilation.

In this article, we instead address the solution of the equations of ref. [16] at all
perturbative orders, hereby achieving a first complete NLL resummation for a non-global
observable in the large-Nc limit. The paper is structured as follows. Section 2 contains
a summary of the findings of ref. [16]. Section 3 reformulates the evolution equations in
terms of a well known method used in jet calculus, that of generating functionals [49–51].
This formulation has two important advantages. Firstly, it provides us with a probabilistic
picture to solve the evolution equations using a Markov chain Monte-Carlo algorithm.
Secondly, the resulting algorithm describing the evolution of the soft radiation in the planar
limit is independent of the underlying hard scattering process, and therefore can be readily
applied to other observables and reactions, such as jet production at hadron colliders.
The algorithm is given in detail in section 4, which is arguably the most technical part of
the article. The reader uninterested in the technical aspects of the calculation can skip
directly from section 3 to section 5 where the numerical results are presented. In section 5
we report NLL predictions for the transverse energy distribution in the interjet rapidity
slice in e+e− → 2 jets, and discuss the impact of NLL corrections as well as the reduction
in the perturbative uncertainty. Finally, section 6 contains our conclusions.

2 Resummation for Et in the interjet rapidity gap

As in ref. [16], we consider the production of two jets in e+e− annihilation at a centre-
of-mass energy

√
s. We study a non-global observable defined by measuring hadrons in a

rapidity slice between the two jets. This is defined as the rapidity region between two cones
of opening angle θjet around the thrust axis (see figure 1). The width of such a rapidity
slice is

∆η := ln 1 + c

1− c , c = cos θjet . (2.1)

Examples of non-global observables are those studied in ref. [16], namely the total energy
or transverse energy of hadrons inside the slice. In the following we consider the latter for
the sake of arguments, although the formalism introduced in this section also applies to
the calculation of the energy distribution.
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θ jet

∆η

Figure 1. The rapidity slice where the measurement is performed.

The cumulative distribution for this observable to be less than v ≡ Et is defined as
follows

Σ(v) := 1
σ0

∫ v

0

dσ

dv′
dv′ , (2.2)

where σ0 is the Born cross section for e+e− → hadrons. In the limit v �
√
s, large

logarithms L = ln(
√
s/v) spoil the convergence of fixed-order perturbative expansions and

must be resummed at all perturbative orders. Since this observable is affected only by soft
emissions at wide angles, the largest logarithms in Σ(v), the leading logarithms, are of the
form αnsL

n. For αsL ∼ 1, all terms suppressed by an extra power of αs give next-to-leading
logarithmic (NLL, αnsLn−1) contributions, and so on. Without any emissions, at the lowest
order in perturbation theory, Σ(v) = 1, and the event is made up of a quark of momentum
p1 and an antiquark of momentum p2, back-to-back and aligned along the thrust axis.
When extra radiation is considered, Σ(v) can be expressed as [16]

Σ(v) :=
∞∑
n=2
Hn ⊗ Sn(v) = H2 ⊗ S2(v) +H3 ⊗ S3(v) + · · · (2.3)

where the hard factors
Hn := H1...n (2.4)

describe configurations with n hard QCD partons along the light-like directions n1, . . . , nn
(with n2

i = 0 and |~n|2 = 1), while the soft factors

Sn := S1...n (2.5)

describe the emission of soft radiation off a hard system with n hard emitters along the
same directions. The convolutions in eq. (2.3) are meant to indicate that the directions of
the hard emitters in the hard and soft factors are the same, namely

Hn ⊗ Sn(v) :=
∫ ( n∏

i=i
d2Ωi

)
H1...n × S1...n(v), (2.6)

where Ωi indicates the solid angle of the i-th hard emitter, namely the direction of the
~ni vector, specified by a longitudinal (θ) and an azimuthal (φ) angle. In writing eq. (2.6)
we assumed that all IRC divergences cancel in the definition of Hn and Sn, and the four-
dimensional limit can be taken in the angular integration [16]. Each of the above ingredients
admits a perturbative expansion in the strong coupling constant [16]

Hn =
∞∑

i=n−2

αis
(2π)iH

(i)
n , Sn =

∞∑
i=0

αis
(2π)iS

(i)
n , (2.7)
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where the normalisation is defined such that at the Born level one has

H(0)
2 = δ(2)(Ω1−Ωq)δ(2)(Ω2−Ωq̄) := δ(cos θ1−1)δ(cos θ2 +1)δ(φ1)δ(φ2) , S(0)

n = 1 . (2.8)

At LL, the cumulative distribution is given by the convolution of the LO hard factor H2
with the LL soft factor S2. At NLL, one needs to include the LO hard factor H3 convoluted
with the LL soft factor S3, as well as the NLO hard factor H2 convoluted with the NLL
soft factor S2.

The observables considered in ref. [16] were all additive, which implies that the ob-
servable constraint on the soft emissions contributing to Sn factorises under the Laplace
transform

Θ
(
v −

∑
i

V (ki)Θin(ki)
)

= 1
2πi

∫
γ

dν

ν
eνv

∏
i

u(ki) , (2.9)

where the trigger function Θin(k) is 1 if the particle k is inside the measurement region,
and zero otherwise, and the contour γ lies parallel to the imaginary axis and to the right
of all singularities of the integrand. The quantity u(k) is the following “source” function:

u(k) = Θout(k) + Θin(k)e−νV (k) , (2.10)

with Θout(k) = 1−Θin(k). Following ref. [16], in the large-Nc limit we can then define the
Laplace transform of the soft factors entering the NLL calculation

S2(v) = 1
2πi

∫
γ

dν

ν
eνvG12[Q;u] , S3(v) = 1

2πi

∫
γ

dν

ν
eνvG13[Q;u]G23[Q;u] . (2.11)

The evolution of the Gij [Q;u] functionals is governed by the differential equation (in the
following we set {ij} = {12} unless otherwise specified, but the same considerations hold
for the evolution of a generic dipole {ij})

Q∂QG12[Q;u] = K[G[Q;u], u] . (2.12)

The evolution kernels are derived in ref. [16], and we report them in 4 − 2ε dimensions
below. The LL kernel, relevant for the evolution of S3 reads

KLL[G[Q;u], u] :=
∫

[dka]ᾱ(Q)w(0)
12 (ka) (2.13)

× (G1a[Q;u]Ga2[Q;u]u(ka)−G12[Q;u])Qδ(Q− kta) .

The tree-level eikonal squared amplitude is defined as

w
(0)
ij (k) = 8π2µ

2ε

k2
t

, k2
t := (k(ij)

t )2 = 2(ki · k)(k · kj)
(ki · kj)

, (2.14)

where kt denotes the transverse momentum of emission k w.r.t. the emitting {ij} dipole
(note that in the equation above ki,j ≡ pi,j if it refers to one of the hard legs). In the same
variables, the corresponding phase space measure in 4− 2ε dimensions reads

[dk] := dη

2
d2−2εkt
(2π)3−2ε , (2.15)
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where the rapidity bound in the soft limit is given by

|η| . ln
√

2 ki · kj
kt

. (2.16)

A discussion about the choice of ordering variable and its relation to symmetries of
the multi-particle squared amplitude is reported in appendix A. In eq. (2.13) we also
defined ᾱ = Ncαs(µ)/π, where αs is the QCD coupling in the MS scheme, satisfying the
renormalisation group equation (RGE)

dᾱ(µ)
d lnµ2 = −β̄(ᾱ) = −ᾱ

(
β̄0ᾱ+ β̄1ᾱ

2 + . . .
)
, (2.17)

where β̄i are obtained from the large-Nc limit of the coefficients of the QCD beta function as

β̄i = lim
Nc→∞

(
π

Nc

)i+1
βi . (2.18)

We work in the normalisation in which β0 = (11CA − 2nF )/(12π) and β̄0 = 11/12. The
coupling in the LL kernel (2.13) evolves at one loop (i.e. setting β̄1 = 0 in eq. (2.17)), while
it evolves at two loops in the NLL kernel defined in the following. The NLL kernel which
governs the evolution of S2 reads

KNLL[G[Q;u], u] := KRV+VV[G[Q;u], u] + KRR[G[Q;u], u]−KDC[G[Q;u], u] . (2.19)

The three contributions to the above equation describe three sources of NLL corrections.
The kernel correction due to the subtracted virtual and real-virtual corrections reads

KRV+VV[G[Q;u], u] :=
∫

[dka]ᾱ(Q)w(0)
12 (ka)

(
1 + ᾱ(Q) K̄(1)

)
(2.20)

× (G1a[Q;u]Ga2[Q;u]u(ka)−G12[Q;u])Qδ(Q− kta) ,

where K̄(1) is obtained from the two-loop cusp anomalous dimension in the large-Nc limit

K̄(1) = lim
Nc→∞

2
Nc

K(1) = 67
36 −

π2

12 . (2.21)

Then, the double real corrections are given by

KRR[G[Q;u], u] :=
∫

[dka]
∫

[dkb] ᾱ2(Q)Qδ(Q− kt(ab))Θ(kta − k′tb) (2.22)

×
[
w̄

(gg)
12 (kb, ka)G1b[Q;u]Gba[Q;u]Ga2[Q;u]u(ka)u(kb)

+w̄(gg)
12 (ka, kb)G1a[Q;u]Gab[Q;u]Gb2[Q;u]u(ka)u(kb)

−
(
w̄

(gg)
12 (kb, ka) + w̄

(gg)
12 (ka, kb)

)
G1(ab)[Q;u]G(ab)2[Q;u]u(k(ab))

]
,

where k′tb denotes the transverse momentum of kb with respect of the {12} dipole, namely

(k′tb)2 = 2(p1 · kb)(kb · p2)
(p1 · p2) . (2.23)
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To properly define w̄(gg)
12 (ka, kb) we need first to introduce the colour-ordered double soft

squared amplitude at tree level [52, 53]1

w̃
(0)
12 (ka, kb) = 2 (2π)4µ4ε

[
s2

12
s1asab2s1absb2

+ 1− ε
s2
ab

(
s1a
s1ab

+ sb2
sab2
− 1

)2

+ s12
sab

( 1
s1asb2

+ 1
s1asab2

+ 1
sb2s1ab

− 4
s1absab2

)]
, (2.24)

where the Lorentz invariants si...k indicate the standard Mandelstam variables. Follow-
ing [16], we define w̄(gg)

12 (ka, kb) as the correlated contribution to w̃(0)
12 (ka, kb), as follows

w̄
(gg)
12 (ka, kb) := w̃

(0)
12 (ka, kb)−

1
2w

(0)
12 (ka)w(0)

12 (kb) , (2.25)

where 1
2w

(0)
12 (ka)w(0)

12 (kb) represents the independent emission contribution.2 The counter-
term in the r.h.s. of eq. (2.22) is built upon the massless momentum k(ab) defined by the
following kinematic map

P : {ka, kb} → k(ab) =
(
kt(ab) cosh η(ab), ~kt(ab), kt(ab) sinh η(ab)

)
, (2.26)

where kt(ab) := |~kt(ab)| and η(ab) denote the transverse momentum and rapidity of ka+kb in
the {12} dipole rest frame. Eq. (2.26) is expressed in the {12} dipole rest frame where the
{12} dipole is aligned with the z axis. A Lorentz transformation (a rotation followed by
a boost) must be then applied to k(ab) to express it in the event frame. Last, we subtract
the iteration of the LL kernel

KDC[G[Q;u], u] :=
∫

[dka]
∫

[dkb]ᾱ2(Q)Qδ(Q− kta)Θ(kta − ktb) (2.27)

×
[
w

(0)
12 (ka)

(
w

(0)
1a (kb)−

1
2w

(0)
12 (kb)

)
G1b[Q;u]Gba[Q;u]Ga2[Q;u]u(ka)u(kb)

+ w
(0)
12 (ka)

(
w

(0)
a2 (kb)−

1
2w

(0)
12 (kb)

)
G1a[Q;u]Gab[Q;u]Gb2[Q;u]u(ka)u(kb)

− w(0)
12 (ka)

(
w

(0)
1a (kb) + w

(0)
a2 (kb)− w

(0)
12 (kb)

)
G1a[Q;u]Ga2[Q;u]u(ka)

]
.

In the above expression, with a little abuse of notation, we denoted with ktb the transverse
momentum of kb with respect to the emitting dipole, that is each term should be interpreted
as follows

w
(0)
ij (kb)Θ(kta − ktb) := w

(0)
ij (kb)Θ(kta − k(ij)

tb ) , (2.28)

where k(ij)
tb is the transverse momentum of kb with respect to the “emitting” dipole {ij}

(see also eq. (2.14))

(k(ij)
tb )2 = 2(ki · kb)(kb · kj)

(ki · kj)
, (2.29)

1We thank Keith Hamilton for an independent derivation of these squared amplitudes.
2Note, however, that the separation of the independent contribution is immaterial at the level of the

single colour flow, and only makes physical sense at the level of the sum w̃
(0)
12 (ka, kb) + w̃

(0)
12 (kb, ka).
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with ki,j ≡ pi,j if it refers to one of the hard legs. The quantity Gij satisfies the boundary
condition

Gij [Q;u] = 1 for Q = 0 , (2.30)

and the normalisation Gij [Q; 1] = 1. In taking the four-dimensional limit of the above equa-
tions some care is required since the boundary condition has to be deformed by introducing
an appropriate non-perturbative prescription. In this article we consider implementing the
following procedure [16]

αs(k) = αs(Q0) = 0, k ≤ Q0 , (2.31)

where Q0 is defined below (see eq. (4.5)) and it is above the Landau singularity. This
simply amounts to modifying the boundary condition (2.30) such that Gij [Q;u] = 1 for
Q ≤ Q0. We also stress that in four dimensions the collinear singularity ka ‖ kb in the
r.h.s. of eq. (2.27) is regulated by the requirement that at NLL the two soft gluons ka and
kb cannot be inside the slice simultaneously as this configuration would in the end produce
only a NNLL correction.

A comment is in order about the applicability criteria of the evolution equations given
in this section. As presented, eq. (2.12) can be used for the resummation of NLL corrections
to non-global observables which do not exhibit logarithmic sensitivity to configurations in
which the soft gluons are radiated collinear to the emitting leg, which translates into the
absence of Sudakov double logarithms in their perturbative expansion. Such observables
are purely single logarithmic, i.e. the dominant tower of logarithmic corrections are of
the form αnsL

n. Correspondingly, the precise form of the upper kinematic bound on the
emission’s rapidity (2.16) is irrelevant in the resummation of such observables, and it can
be relaxed and replaced by a finite (albeit sufficiently large) rapidity buffer for the radiation
within each emitting dipole.

For observables with a double logarithmic perturbative expansion, the resummation
presented here must be supplemented with the correct resummation of the correspond-
ing collinear logarithms (obtained with standard techniques for global observables), and
the double counting between the two regions (i.e. the soft and collinear limit) must be
consistently subtracted. We do not address this subtraction in the present article.

3 Integral equations and the generating functional method

In this article we wish to formulate a solution to the above integro-differential equations in
terms of an algorithmic procedure. Moreover, while the above equations have been derived
for the family of additive observables, the dynamics they describe is completely general
and governs the resummation of non-global QCD corrections in more generic cases. As
a first step, we therefore wish to re-write the evolution equations using a language that
makes them suitable for: i) a numerical implementation via a Monte-Carlo algorithm; ii)
the application to a generic non-global observable sensitive to soft radiation at large angles.

To carry out this extension, we reinterpret the evolution equations given in the previous
section by exploiting a theoretical tool that has been widely used in the area of jet calculus,
the generating functional method [49–51].
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We reinterpret the source u(k) as a probing function, whose role is to assign a tag to a
real emission k. The probability associated with a state of n real partons dP {12}

n produced
within a dipole {12} is then defined by the following functional derivative

dP {12}
n = C(n)

(
n∏
i=1

[dki]
δ

δu(ki)

)
Z12[Q; {u}]

∣∣∣∣∣
{u}=0

, (3.1)

where the action of the functional derivative on Z12[Q; {u}] is defined by

δ

δu(ki)
u(k) := δ̄(k − ki) = 2(2π)3−2εδ(2−2ε)(~kt − ~kti)δ(η − ηi), (3.2)

with the transverse momentum ~kti and rapidity ηi being defined w.r.t. the emitting colour
dipole. The quantity C(n) is an appropriate combinatorial factor for a state with n (not
necessarily identical) particles. For identical particles one simply has C(n) = 1/n!. The
above equation defines the generating functional Z12[Q; {u}], whose probabilistic interpre-
tation (3.1) is crucial to derive a Monte-Carlo procedure for its calculation.

We can now reinterpret the factorisation of the NLL cumulative cross section (2.3) for
an observable V ({ki}) < v in terms of generating functionals simply by summing over all
possible configurations

Σ(v) = H2 ⊗
[ ∞∑
i=0

∫
dP
{12}
i Θ(v − V ({ki}))

]

+H3 ⊗

( ∞∑
i=0

∫
dP
{13}
i

)  ∞∑
j=0

∫
dP
{23}
j

Θ(v − V ({ki}, {kj}))

+O(NNLL) ,

(3.3)

where the zero-th terms of the above sums reduce to the pure no-emission probability
(i.e. a Sudakov factor), whose perturbative expansion starts with 1 +O(αs). To calculate
the above probabilities, we observe that the generating functional Z12[Q; {u}] satisfies the
same evolution equations as the Laplace transform of the soft factor (2.12) with the same
boundary conditions and with the source u(k) now playing the role of the probing function.
In the case of the generating functional, it is more convenient to recast these equations in
integral form which, as we will see shortly, offers a simple probabilistic interpretation that
can be exploited to construct a Monte Carlo procedure to calculate their solution. Following
the derivation in section 4 of ref. [16], we introduce the NLL Sudakov form factor associated
with the no-emission probability within the dipole {12}

ln ∆12(Q) = −
∫

[dk]Θ(Q− kt)ᾱ(kt)w(0)
12 (k)

(
1 + ᾱ(kt)K̄(1)

)
, (3.4)

and we take the lnQ derivative of Z12[Q; {u}]/∆12(Q)

Q∂Q
Z12[Q; {u}]

∆12(Q) = K[Z[Q; {u}], u]
∆12(Q) − Z12[Q; {u}]Q∂Q∆12(Q)

∆2
12(Q)

. (3.5)
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Using the NLL kernel (2.19) and (3.4) in the above equation, and integrating over lnQ
with the boundary condition (2.30) for Z12 leads to the integral equation [16]

Z12[Q; {u}] = KRV+VV
int [Z[Q;u], u] + KRR

int [Z[Q;u], u]−KDC
int [Z[Q;u], u] , (3.6)

where we have defined the integrated kernels as

KRV+VV
int [Z[Q;u], u] = ∆12(Q) +

∫
[dka]ᾱ(kta)w(0)

12 (ka)
(

1 + ᾱ(kta) K̄(1)
) ∆12(Q)

∆12(kta)
× Z1a[kta; {u}]Za2[kta; {u}]u(ka)Θ(Q− kta) , (3.7)

KRR
int [Z[Q;u], u] =

∫
[dka]

∫
[dkb] ᾱ2(kt(ab))Θ(Q− kt(ab))Θ(kta − k′tb)

∆12(Q)
∆12(kt(ab))

×
[
w̄

(gg)
12 (kb, ka)Z1b[kt(ab); {u}]Zba[kt(ab); {u}]Za2[kt(ab); {u}]u(ka)u(kb)

+w̄(gg)
12 (ka, kb)Z1a[kt(ab); {u}]Zab[kt(ab); {u}]Zb2[kt(ab); {u}]u(ka)u(kb)

−
(
w̄

(gg)
12 (kb, ka) + w̄

(gg)
12 (ka, kb)

)
Z1(ab)[kt(ab); {u}]Z(ab)2[kt(ab); {u}]u(k(ab))

]
, (3.8)

KDC
int [Z[Q;u], u] =

∫
[dka]

∫
[dkb]ᾱ2(kta)Θ(Q− kta)Θ(kta − ktb)

∆12(Q)
∆12(kta)

×
[
w

(0)
12 (ka)

(
w

(0)
1a (kb)−

1
2w

(0)
12 (kb)

)
Z1b[kta; {u}]Zba[kta; {u}]Za2[kta; {u}]u(ka)u(kb)

+ w
(0)
12 (ka)

(
w

(0)
a2 (kb)−

1
2w

(0)
12 (kb)

)
Z1a[kta; {u}]Zab[kta; {u}]Zb2[kta; {u}]u(ka)u(kb)

− w(0)
12 (ka)

(
w

(0)
1a (kb) + w

(0)
a2 (kb)− w

(0)
12 (kb)

)
Z1a[kta; {u}]Za2[kta; {u}]u(ka)

]
. (3.9)

Eq. (3.6) defines the NLL generating functional for the non-global evolution. At NLL, at
most one gluon at a time inside the interjet rapidity gap is considered in eqs. (3.8), (3.9),
with configurations with multiple gluons giving rise to at most NNLL corrections. This
constraint is implicitly enforced in all evolution equations (2.12) and (3.6) given up to this
point. When taking the four-dimensional limit, one has to supplement eq. (3.6) with a non-
perturbative prescription to regulate the Landau singularity. We will assume eq. (2.31),
which will be understood in the following, but alternative models can be adopted.

At LL accuracy, the evolution equation for the generating functional (3.6) is drastically
simplified and it becomes

Z12[Q; {u}] = ∆12(Q) +
∫

[dka]ᾱ(kta)w(0)
12 (ka)

∆12(Q)
∆12(kta)

× Z1a[kta; {u}]Za2[kta; {u}]u(ka)Θ(Q− kta) , (3.10)

with the LL Sudakov form factor given by

ln ∆12(Q) = −
∫

[dk]Θ(Q− kt)ᾱ(kt)w(0)
12 (k) . (3.11)

If we set u = 0 in eq. (3.10), the functional Z12[Q; {u}] gives the probability of having
no emissions from the dipole {12} which, as anticipated after eq. (3.3), coincides with the
Sudakov form factor.
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Before introducing an algorithmic solution of eqs. (3.6), (3.10), we make some consid-
erations that will be exploited in their numerical implementation. We start by considering
the term proportional to the independent emission squared amplitude w(0)

12 (ka)w(0)
12 (kb) in

eqs. (3.9) and (3.8). According to eq. (2.28) the dipole transverse momentum ktb in this
term is meant to be relative to the {12} dipole, i.e. ktb = k′tb by definition for this contribu-
tion. We now express w̄(gg)

12 in (3.8) according to its definition eq. (2.25) and we consider
the terms in KRR

int containing w(0)
12 (ka)w(0)

12 (kb), namely (with ktb = k′tb)

KRR, indep.
int [Z[Q;u], u] = −

∫
[dka]

∫
[dkb] ᾱ2(kt(ab))Θ(Q− kt(ab))Θ(kta − ktb)

∆12(Q)
∆12(kt(ab))

× w(0)
12 (ka)w(0)

12 (kb)
[1

2Z1b[kt(ab); {u}]Zba[kt(ab); {u}]Za2[kt(ab); {u}]u(ka)u(kb)

+1
2Z1a[kt(ab); {u}]Zab[kt(ab); {u}]Zb2[kt(ab); {u}]u(ka)u(kb)

− Z1(ab)[kt(ab); {u}]Z(ab)2[kt(ab); {u}]u(k(ab))
]
. (3.12)

We observe that the difference between the above equation and the corresponding term
proportional to w(0)

12 (ka)w(0)
12 (kb) in eq. (3.9) is logarithmically subleading, contributing at

most a NNLL correction. That is to say that the emission of independent soft gluons is
already correctly iterated by eq. (3.7) in the kinematic regime that is relevant to NLL.
This can be understood from simple power counting arguments. Let us first consider the
difference between the double real contributions, i.e. those proportional to the product
of two probing functions u(ka)u(kb). Unlike the rest of the double real corrections in
eqs. (3.8), (3.9) this term is infrared finite and it is non-zero only if the two emissions have
commensurate transverse momenta in the {12} dipole frame. This condition, together with
the fact that the observable is insensitive to the region in which ka and kb are collinear to
the {12} dipole extremities implies that this term yields a relative O(ᾱ2) correction to the
integral equation with no further logarithmic enhancement, that is NNLL. Analogous con-
siderations hold for the difference between the collinear counter-terms in eqs. (3.9), (3.12),
and allow us to conclude that all terms proportional to w

(0)
12 (ka)w(0)

12 (kb) in the r.h.s. of
eq. (3.6) can be neglected for the observables under consideration.

We now observe that the integrated kernel KRV+VV
int [Z[Q;u], u] in eq. (3.6) has the same

functional form as the LL equation (3.10), and it can be solved with the same algorithm
(Algorithm 1 in section 4). It is therefore appropriate to split Z12[Q; {u}] into the sum of
two contributions as3

Z12[Q; {u}] = Z
(0)
12 [Q; {u}] + Z

(1)
12 [Q; {u}] , (3.13)

where Z(0)
12 [Q; {u}] satisfies the integral equation

Z
(0)
12 [Q; {u}] = ∆12(Q) +

∫
[dka]ᾱ(kta)w(0)

12 (ka)
(

1 + ᾱ(kta) K̄(1)
) ∆12(Q)

∆12(kta)
× Z(0)

1a [kta; {u}]Z(0)
a2 [kta; {u}]u(ka)Θ(Q− kta) , (3.14)

3The strategy that follows is inspired to what has been already applied to the NNLL calculation of global
QCD observables [54–58], and specifically to the insertion of a correlated pair of soft partons.
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with ∆12 defined in eq. (3.4). We can now treat Z(1)
12 [Q; {u}] as a perturbation, observing

that all contributions to Σ(v) that are quadratic in Z
(1)
12 [Q; {u}] (as well as those pro-

portional to Z
(1)
12 [Q; {u}]K̄(1)) only correspond to NNLL corrections. We can therefore

linearise eq. (3.6) in Z
(1)
12 [Q; {u}] by inserting eq. (3.13) into eq. (3.6) and neglecting the

aforementioned quadratic corrections:

Z
(1)
12 [Q; {u}]'

∫
[dka]ᾱ(kta)w(0)

12 (ka)
∆12(Q)
∆12(kta)

(3.15)

×
(
Z

(0)
1a [kta; {u}]Z(1)

a2 [kta; {u}]+Z(1)
1a [kta; {u}]Z(0)

a2 [kta; {u}]
)
u(ka)Θ(Q− kta)

+
∫

[dka]
∫

[dkb] ᾱ2(kt(ab))Θ(Q− kt(ab))Θ(kta − k′tb)
∆12(Q)

∆12(kt(ab))

×
[
w̃

(0)
12 (kb, ka)Z

(0)
1b [kt(ab); {u}]Z

(0)
ba [kt(ab); {u}]Z

(0)
a2 [kt(ab); {u}]u(ka)u(kb)

+ w̃
(0)
12 (ka, kb)Z

(0)
1a [kt(ab); {u}]Z

(0)
ab [kt(ab); {u}]Z

(0)
b2 [kt(ab); {u}]u(ka)u(kb)

−
(
w̃

(0)
12 (kb, ka) + w̃

(0)
12 (ka, kb)

)
Z

(0)
1(ab)[kt(ab); {u}]Z

(0)
(ab)2[kt(ab); {u}]u(k(ab))

]
−
∫

[dka]
∫

[dkb]ᾱ2(kta)Θ(Q− kta)Θ(kta − ktb)
∆12(Q)
∆12(kta)

×
[
w

(0)
12 (ka)w(0)

1a (kb)Z
(0)
1b [kta; {u}]Z(0)

ba [kta; {u}]Z(0)
a2 [kta; {u}]u(ka)u(kb)

+ w
(0)
12 (ka)w(0)

a2 (kb)Z
(0)
1a [kta; {u}]Z(0)

ab [kta; {u}]Z(0)
b2 [kta; {u}]u(ka)u(kb)

− w
(0)
12 (ka)

(
w

(0)
1a (kb) + w

(0)
a2 (kb)

)
Z

(0)
1a [kta; {u}]Z(0)

a2 [kta; {u}]u(ka)
]
,

where ' indicates that we neglect corrections of order NNLL and higher. Eq. (3.15) has
a simple physical interpretation. The two double integrals in the r.h.s. of eq. (3.15) cor-
respond to an insertion of a pair of soft gluons ka, kb with commensurate energies (or
transverse momenta in the {12} frame), but strongly ordered w.r.t. the rest of the soft
radiation in the evolution. The emission of the unordered pair will give rise to three colour
dipoles (two for the corresponding collinear counter-terms), which will subsequently evolve
according to the evolution equation (3.14). The first term in the r.h.s. of eq. (3.15) states
that such insertion can occur at any stage of the evolution, i.e. the pair ka, kb does not
necessarily correspond to the first two soft gluons emitted off the initial qq̄ dipole. This
structure is depicted in the evolution tree of figure 2, where the edges of the graph corre-
spond to colour dipoles. In this example, each node corresponds to the splitting of a dipole
into two adjacent dipoles according to eq. (3.14), with the exception of the (red) splitting of
the dipole {49} which depicts the double emission insertion in the r.h.s. of eq. (3.15). This
Z(1)[Q; {u}] insertion can occur at any branching, and one needs therefore to sum over all
possible configurations. This procedure is a perturbative solution of eq. (3.6), where we
neglect corrections that are subleading (i.e. NNLL) in the strict logarithmic counting. One
could also envision an algorithmic solution of the full integral equation, in which roughly
speaking the insertion of Z(1)[Q; {u}] is iterated an arbitrary number of times. The cor-
responding algorithm would differ from the solution presented here by NNLL corrections,
and it would be directly relevant for the inclusion of NLL non-global corrections in the
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{53}

Q
0

4

{13}

{12}

{34}

{38} {84}

{49} {96}

{b9}

{ab}

s

κ
2

2

{4a}

{42}{15}

{75}{17} {46} {62}

{32}

Figure 2. Example of an evolution tree of dipole {12}. Each edge in the graph corresponds to a
dipole. The nodes correspond to an iteration of Z(0)[Q; {u}] except for the (red) node describing the
splitting of dipole {49} which indicates the double emission insertion in the r.h.s. of the evolution
equation (3.15) for Z(1)[Q; {u}].

frame of a full-fledged dipole shower. For this reason, its formulation is left for future
investigations.

The above equations can be solved recursively, for which Monte Carlo techniques offer
a natural theoretical tool. In the next section we will introduce the necessary algorithms
to perform the NLL resummation using the technology of dipole showers ordered in the
dipole transverse momentum. Algorithms of this type are very common in the parton
shower literature (see e.g. refs. [39, 40, 59–63]), and at present they usually achieve LL
accuracy for the observables considered in this article. Notice, however, that in the present
paper these Monte Carlo techniques are simply used to solve numerically the evolution
equations and not to build an actual generator of physical events.

4 Perturbative solution of the evolution equations

In this section we discuss how eq. (3.3) can be calculated using Monte Carlo methods.
We will start with section 4.1 by reporting the dipole-shower algorithm to solve the LL
counter-part of eq. (3.6), originally derived in ref. [1], then we move on to discuss the NLL
corrections to the cumulative cross section (2.3) (or equivalently (3.3)), in configurations
with three (section 4.2) and two (section 4.3) hard partons in the final state.

In the rest of this article, we also restore the full dependence on Nc both in the QCD
beta function used in the evolution of the running coupling (2.17) and in the cusp anomalous
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dimension (2.21). This by no means implies full control over finite-Nc corrections, as
additional subleading-Nc terms are neglected in the evolution equations. We therefore
replace eq. (2.17) with the full RGE (notice that an overall factor Nc/π is present in
eq. (2.17))

dαs(µ)
d lnµ2 = −β(αs) = −αs

(
β0αs + β1α

2
s + . . .

)
, (4.1)

with
β0 = 11CA − 2nF

12π , β1 = 17C2
A − 5CAnF − 3CFnF

24π2 . (4.2)

Moreover we replace in eq. (3.6)

ᾱ(kta)K̄(1) → αs(kta)
2π K(1) , K(1) =

(
67
18 −

π2

6

)
CA −

5
9nF . (4.3)

Similarly, we will retain the full colour quadratic SU(Nc) Casimir operators in the calcula-
tion of the hard coefficients H2 and H3 in section 4.2 below.

4.1 LL evolution algorithm

At LL, eq. (3.10) can be solved with the dipole shower algorithm derived in the pioneering
article by Dasgupta and Salam [1], that we adapt below to the problem considered here
and to the case of dipole-transverse-momentum ordering. For later use, we define the
evolution time

t :=
∫ 1

kt√
s

dx

x
ᾱ(x
√
s) = − Nc

2πβ0
ln (1− 2λ) , λ = β0αs(

√
s) ln

√
s

kt
. (4.4)

The solution to eq. (3.10) is then obtained with Algorithm 1, which is iterated until the
desired statistical precision is reached. In the following, we define the infrared scale Q0 as
the singularity of eq. (4.4), namely such that

2β0αs(
√
s) ln

√
s

Q0
= 1 . (4.5)

In practice, this scale is extremely low and therefore the evolution is rarely stopped because
the scale Q0 is reached before any emission is radiated into the interjet rapidity gap.

An important aspect to stress about Algorithm 1, is that at every step emissions are
generated in the emitting dipole rest frame, but the observable is calculated in the event
frame. We therefore need to apply a simple Lorentz transformation at every evolution step
to transform the generated emission into the event frame. In doing this, we only need
to keep track of the direction of the generated momenta, while the information regarding
the dipole transverse momentum (i.e. the normalisation of the momenta) is encoded in the
evolution time t. Therefore, we divide all momenta by their energy in the event frame,
and keep track of the normalisation separately. As in ref. [1], all Lorentz transformations
discussed in all algorithms presented in this section have to be performed with normalised
momenta. This solves the problem of handling numerically Lorentz transformations involv-
ing very soft momenta. Also, it allows us to perform the evolution without any momentum
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Algorithm 1: LL evolution algorithm
Set i = 0 and the evolution time t0 = 0;
Start with one initial dipole made by the Born fermionic line;
while true do

Compute ∆ηtot =
∑N
`=1 ∆η`, the sum of the available rapidity ranges within

each of the N dipoles in the event so far;
Increase i by 1;
Generate a random number r ∈ [0, 1] & increase t by an amount ∆t = ti − ti−1
generated by solving

∆12(kt,i−1)
∆12(kt,i)

= e−∆ηtot∆t = r ;

Generate the dipole transverse momentum kt,i of the next emission ki by
solving eq. (4.4) with the new ti. Generate its azimuth uniformly in [0, 2π]
and its rapidity such that the magnitude of the rapidity with respect to the
dipole extremities in the event frame is less than δ, as done in ref. [1];
Choose the emitting dipole D` with probability ∆η`/∆ηtot;
if kt,i < Q0 then

break;
end
Split the dipole D` into two adjacent dipoles;
if Θin(ki) = 1 then

Calculate observable and add the event to the histogram & break;
end

end

conservation at any evolution step, thus eliminating exactly all subleading power (i.e. non-
logarithmic) corrections. We now discuss the calculation of the observable in a given event.
The evolution in Algorithm 1 stops as soon as one gluon is emitted inside the interjet ra-
pidity gap. We then calculate the transverse energy Et of this gluon w.r.t. the thrust axis
of the event, and add the event to the histogram. We notice that in ref. [2], the transverse
energy is instead defined as the value of the ordering variable. This definition is correct at
LL, but the exact relation between the ordering variable and the actual observable leads to
a genuine NLL effect. In this article we include these effects already in the LL prediction,
and therefore we work with the physical observable everywhere in our calculation.

4.2 NLL evolution algorithm: H3 ⊗ S3(v) contribution

We now move on with the NLL corrections. We start from the H3 ⊗ S3(v) contribution to
the cumulative cross section (2.3), which describes the production of three hard partons
inside the jets (i.e. outside the interjet rapidity gap). The three partons can be viewed as
two independent colour dipoles in a large-Nc picture (in the case of e+e− collisions), labelled
as {13} and {23} in the second term of the r.h.s. of eq. (3.3). These subsequently emit soft
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radiation independently of each other into the measured interjet region. The soft evolution
of each of the above two dipoles, encoded in S3, is carried out at LL order using Algorithm 1,
and it is therefore straightforward. However, some care must be taken in the calculation
of the hard factor H3 corresponding to the three hard-parton contribution. Specifically, in
ref. [16] as well as in section 2 we have stated that the hard factors are individually IRC
finite, while the integral over the three-parton final state clearly has divergences associated
to singular kinematic configurations. At NLL, these divergences are meant to be cancelled
by corresponding divergent contributions in the virtual corrections entering H2, and such
a cancellation has to be enforced by means of a subtraction procedure. This also implies
that the precise definition of the hard matching coefficients H2 and H3 depends on the
scheme adopted to subtract their IRC divergences and only their combination has a physical
meaning. In section 5 of ref. [16] the calculation was carried out analytically. However, in
this article we would like to take a different approach and set up a numerical calculation
using a local subtraction method that can be easily applied to the case of more complicated
processes. As a consequence, the individual definition of H2 and H3 computed here will
differ from those of ref. [16] while their physical sum will be identical.

We start by labelling with p1, p2, p3 the quark, antiquark and gluon respectively. With
the usual x1, x2, x3 variables

xi = 2(pi · q)
s

, i = 1, 2, 3 , x1 + x2 + x3 = 2 , (4.6)

where q is the four momentum of the virtual photon qµ = (
√
s,~0). To obtain H3⊗S3(v), we

start by evaluating the integral over the qq̄g phase space. We choose the reference frame
so that the z axis is along the direction of the quark ~p1, and we explicitly parametrise
the phase space of the remaining two partons in terms of the energy fraction of the gluon
x3 = 2Eg/

√
s and the cosine of the angle between the gluon and the quark y = cos θqg.

The real contribution to H3 ⊗ S3(v) is

Σreal(v) = 2CF
αs
2π

(
µ2

s

)ε
eγEε

Γ(1− ε)

∫ 1

0
dx3

x−1−2ε
3

(1− x3)2ε

∫ 1

−1
dy

(1− y)−1−ε(1 + y)−1−ε

(2− x3(1− y))2−2ε

×
(
8− εx2

3(2− x3(1− y))2 − (2− x3)x3
(
(x3 − 2)x3(1− y)2 − 4y + 8

))
×Θout(p1)Θout(p2)Θout(p3)S3(v) , (4.7)

where the coupling has been renormalised in the MS scheme. The phase space constraint
Θout(p1)Θout(p2)Θout(p3) is non trivial, and imposes that none of the hard particles ends
up inside the interjet rapidity gap, as per definition of H3. We stress that the direction
of the thrust axis, that is used to define the position of the interjet rapidity gap, is now
aligned with the hardest parton. For a given value of x3 and y the event is then dressed
by a shower of soft gluons encoded in S3, so that the integration over the remaining phase
space of the three-parton system (specifically y) involves also the soft factor S3. Eq. (4.7)
produces double and single poles of soft and collinear origin, and we wish to perform a
local subtraction of these divergences so that the above integral is computed numerically.
We consider a simple subtraction scheme in which the local counter-term is defined by the
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full real integrand albeit with unresolved kinematics. That is, we build the counter-term
by replacing the phase space constraint in eq. (4.7) with

Θout(p1)Θout(p2)Θout(p3)→ Θsoft
out (p3) . (4.8)

Here Θsoft
out (p3) indicates that when the gluon p3 is unresolved (i.e. either soft or collinear

to either quark leg) the thrust axis is aligned along the z-axis and therefore Θout(p1) =
Θout(p2) = 1 by construction. The addition of such a counter-term modifies eq. (4.7) as
follows

Σ(3),sub(v) = 2CF
αs
2π

(
µ2

s

)ε
eγEε

Γ(1− ε)

∫ 1

0
dx3

x−1−2ε
3

(1− x3)2ε

∫ 1

−1
dy

(1− y)−1−ε(1 + y)−1−ε

(2− x3(1− y))2−2ε

×
(
8− εx2

3(2− x3(1− y))2 − (2− x3)x3
(
(x3 − 2)x3(1− y)2 − 4y + 8

))
×
[
Θout(p1)Θout(p2)Θout(p3)S3(v)−Θsoft

out (p3)S2(v)
]
, (4.9)

where S2 in the last term indicates that the soft factor now does not see the unresolved
gluon p3 and therefore it degenerates into the two-leg factor S2. We point out that this
procedure is a simple adaptation of the projection-to-Born subtraction method [64] to an
all-order calculation, where the projection acts on the full real phase space including the
soft factor S3. Eq. (4.9) is free of collinear singularities, however it still contains a soft
singularity due to the fact that S3(v) depends on the direction of p3 regardless of how soft
the latter is. We then introduce a technical cutoff on the transverse momentum of the
gluon p3 w.r.t. the {12} dipole (p{12}

t,3 > Q0), and we set ε → 0 and evaluate the integral
with Algorithm 2 (again iterated until the desired statistical precision is reached). The
computation of eq. (4.9) does not directly return the contribution H3 ⊗ S3(v). This is
obtained by subtracting the double counting with the term H2 ⊗ S2(v), where the first
gluon p3 is now generated according to the LL evolution kernel. This requires subtracting
from eq. (4.9) the term [16] (we set Nc → 2CF for this first emission)

Σ(3),sub
soft (v) = 4CF

αs
2πµ

2ε eγEε

Γ(1− ε)

∫ √s
0

dkt

k1+2ε
t

∫ ln(
√
s/kt)

ln(kt/
√
s)
dηΘsoft

out (k)
[
Ssoft

3 (v)− S2(v)
]
, (4.10)

where Ssoft
3 indicates that the emission of the soft gluon k does not cause any recoil in

the qq̄g event kinematics, and therefore the thrust axis is always aligned with the z-axis.
In eq. (4.10) we have adopted the same subtraction method used in eq. (4.9), thereby
subtracting the local counter-term evaluated in the unresolved (i.e. two-leg) kinematics.
Eq. (4.10) also contains the soft singularity present in eq. (4.9), and therefore we need to
apply the same technical cutoff kt > Q0 here. It is now crucial to notice that the difference
between the two equations is instead finite in the limit Q0 → 0, and the regulator can
be pushed to negligibly small values in the combination of the two. Eq. (4.10) can be
evaluated with a slightly modified version of Algorithm 2, given in Algorithm 3. Finally
we obtain H3 ⊗ S3(v) as the difference between the two contributions

H3 ⊗ S3(v) = Σ(3),sub(v)− Σ(3),sub
soft (v) . (4.11)
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Algorithm 2: NLL evolution algorithm for H3 ⊗ S3(v)
Generate x3 and y and parametrise the kinematics of the qq̄g system in terms of
these variables;

if p{12}
t,3 < Q0 then
break and generate a new event;

end
Set the weight w to the integrand in the first two lines of eq. (4.9) with ε = 0;
Create an event:
while true do

Set the thrust axis along the direction of the hardest parton;
if Θout(p1)Θout(p2)Θout(p3) = 0 then

break;
end
Consider the two large-Nc dipoles {13} and {23} and apply the LL evolution
algorithm 1 to compute the soft factor S3 at leading colour;
break;

end
Create a counter-event:
Set w ∗= −1;
while true do

Set the thrust axis along the direction of the quark (z direction);
if Θsoft

out (p3) = 0 then
break;

end
Consider the dipole {12} and apply the LL evolution algorithm 1 to compute
the soft factor S2 while filling the same histogram as for the event;
break;

end

The above procedure used to define H3 implicitly also defines uniquely the two-parton
hard coefficient H2. This will be given by the one loop correction to the quark form factor
minus the integrals of the local counter-terms appearing in eq. (4.11), minus the virtual
correction to the evolution kernel that is subtracted to avoid the double counting with S2
(see section 5 of ref. [16]). The latter contribution to H2 ⊗ S2(v) reads [16]

Σ(2),virt.
soft (v) = 4CF

αs
2πµ

2ε eγEε

Γ(1− ε)

∫ √s
0

dkt

k1+2ε
t

∫ ln(
√
s/kt)

ln(kt/
√
s)
dη S2(v) . (4.12)

This yields, neglecting O(α2
s) corrections,

H2 = δ(2)(Ω1 − Ωq)δ(2)(Ω2 − Ωq̄)
(

1+ αs
2πH

(1)
2

)
, (4.13)
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Algorithm 3: NLL evolution algorithm for the soft contribution to H3 ⊗ S3(v)
Generate ~kt and η of the gluon k and the back-to-back qq̄ pair along the z axis;
if kt < Q0 then

break and generate a new event;
end
Set the weight w to the integrand in eq. (4.10) with ε = 0 (w/o Θ and Sn factors);
Set the thrust axis along the direction of the quark (z direction);
Create an event:
while true do

if Θsoft
out (k) = 0 then
break;

end
Consider the two large-Nc dipoles {13} and {23} and apply the LL evolution
algorithm 1 to compute the soft factor Ssoft

3 at leading-colour;
break;

end
Create a counter-event:
Set w ∗= −1;
while true do

if Θsoft
out (k) = 0 then
break;

end
Consider the dipole {12} and apply the LL evolution algorithm 1 to compute
the soft factor S2 while filling the same histogram as for the event;
break;

end

where

H(1)
2 = CF

2 (1− c2)2

(
4
(
1− c2

)2
(
Li2

(1 + c

2

)
−Li2

(1− c
2

))
− 2

(
1− c2

)2
log2(1 + c) + 16c

(
3 + c2

)
ln(2)− (1− c2)(c(16 + 3c)− 3)

+ 2 ln(1− c)
(
−2
(
1 + c4

)
log(2)− 4c

(
3 + c2

)
+
(
1− c2

)2
ln(1− c)

)
(4.14)

+
(
4
(
1+c4

)
ln(2)−8c

(
3+c2

))
ln(1+c)− 4

(
−3c4+2c2(9+2 ln(2))+1

)
tanh−1(c)

)
.

Here c is the cosine of the jet opening angle, defined in eq. (2.1). This coefficient will be
used in the next section for the calculation of the H2 ⊗ S2(v) contribution to the NLL
cumulative cross section.
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4.3 NLL evolution algorithm: H2 ⊗ S2(v) contribution

We now address the numerical solution to the evolution equations (3.14), (3.15). We start
by considering the contribution Z(0)

12 [Q; {u}], defined by the evolution equation (3.14). The
solution to eq. (3.14) can be obtained with proper modifications of Algorithm 1. However,
while Algorithm 1 can be used to calculate Z(0)

12 [Q; {u}], defined by eq. (3.14), in order
to include the contribution from Z

(1)
12 [Q; {u}] given in eq. (3.15) we cannot simply run

Algorithm 1 down to the infrared scale Q0. Instead, we first introduce a truncated version
of Algorithm 1, given in Algorithm 4.

Algorithm 4: Truncated NLL algorithm for the first evolution branch
Set the thrust axis along the z axis;
Generate the truncation scale κ ∈ [Q0,

√
s] uniformly according to eq. (4.16);

Set the weight w = H2 as defined in eq. (4.13);
Apply Algorithm 1 with evolution time (4.15) truncated at Q0 = κ;

Firstly, we replace the evolution time (4.4) by its NLL counterpart

t :=
∫ 1

kt√
s

dx

x
ᾱ(x
√
s)
(

1 + αs(x
√
s)

2π K(1)
)

= − Nc

2πβ0
ln (1− 2λ)

+ ᾱ(
√
s)
[

λ

1− 2λ

(
K(1)

2πβ0
− β1
β2

0

)
− ln(1− 2λ)

1− 2λ
β1
2β2

0

]
+O(NNLL) . (4.15)

The above equation uniquely defines the dipole transverse momentum given the evolution
time for a given emission. We now introduce the scale κ at which we truncate a first branch
of the evolution carried out according to the equation (3.14). The rationale is to use the
simple partition of unity in the evolution sequence

1 =
∫ √s
Q0

dκ√
s−Q0

, (4.16)

and use the fact that the evolution (3.14) between
√
s and Q0 is identical to the combina-

tion of the evolution between
√
s and κ, and the evolution between κ and Q0. For each

value of the scale κ we will insert either one or two emissions, to perform a calculation of
eqs. (3.14), (3.15). These are identified by the three contributions defined below. Accord-
ing to eq. (4.16) this scale is sampled uniformly and ensures that each insertion can occur
at any possible scale along the evolution tree.

Algorithm 4.1: Insertion of Z(0)
12 [Q; {u}] starting from the scale κ

Generate emission ka according to Algorithm 4.2 and split the emitting dipole;
Apply Algorithm 1 with starting scale kta and evolution time (4.15);

To carry on with the calculation of Z(0)
12 [Q; {u}] starting from Algorithm 4, we simply

generate an emission ka according to eq. (3.14) and then continue with the evolution
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Algorithm 4.2: Generation of emission ka starting from the scale κ
Select an emitting dipole {p`1p`2} for ka as in Algorithm 1;
Generate kta as in Algorithm 1, starting from the scale κ;

from the scale of the emission all the way down to Q0. This procedure is described in
Algorithm 4.1.

Let us now move to eq. (3.15). We calculate separately the contributions proportional
to w̃(0)

12 and the strongly-ordered squared amplitude in eq. (3.15), starting with the former.
Its calculation is addressed by Algorithm 4.3, that we now outline. We start with the
truncated evolution introduced above, and starting from the truncation scale κ we generate
two insertions of momenta ka and kb. We start by considering the two ratios of Sudakov
factors ∆12(Q)/∆12(kt(ab)) and ∆12(Q)/∆12(kta) in the second and third term in the r.h.s.
of eq. (3.15), respectively. As shown in ref. [16], these two terms only contribute at NLL in
the unordered kinematic region where kta ∼ k′tb ∼ ktb, while they cancel in strongly ordered
regimes. We can therefore introduce an extra ratio of Sudakov factors between the scales
kta and ktb in the second and third terms in the r.h.s. of eq. (3.15), as it only amounts to
introducing subleading logarithmic corrections since4

O
(
αs ln kta

kt(ab)

)
∼ O

(
αs ln kta

ktb

)
∼ O (αs) . (4.17)

Concretely, for the contributions in which kb is emitted off dipole {1a} we can make the
replacements

ᾱ2(kt(ab))
∆12(Q)

∆12(kt(ab))
→ ᾱ(kta)ᾱ(ktb)

∆12(Q)
∆12(kta)

∆1a(kta ktb/k′tb)
∆1a(ktb)

, (4.18)

ᾱ2(kta)
∆12(Q)
∆12(kta)

→ ᾱ(kta)ᾱ(ktb)
∆12(Q)
∆12(kta)

∆1a(kta)
∆1a(ktb)

, (4.19)

in the second and third term in the r.h.s. of eq. (3.15), respectively. The complementary
colour flow (i.e. kb is emitted off dipole {a2}) is treated analogously. These approximations
are unnecessary from a purely theoretical point of view (they introduce at most NNLL
corrections). However, the extra ratio of Sudakov factors has the advantage of suppressing
regions of phase space close to the collinear singularity, therefore guaranteeing a much
improved numerical stability in the calculation. Following exactly the same reasoning, we
can also replace kt(ab) with kta in the scale of all the Z(0) generating functionals in the
second term in the r.h.s. of eq. (3.15). This also preserves the collinear safety of the latter.

In eq. (4.18), the argument of the second Sudakov is such that we can generate

ktb ≤ kta
ktb
k′tb

= kta f(p`1 , p`2 , k̂b) , (4.20)

where we used
k′tb = ktb

f(p`1 , p`2 , k̂b)
. (4.21)

4Section 4 of ref. [16] contains a more detailed discussion about this point.
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Algorithm 4.3: Insertion of Z(1)
12 [Q; {u}] starting from the scale κ

Generate emissions ka and kb according to Algorithms 4.2 and 4.4, respectively;
Create an event:
while true do

if Θin(ka) = 1 and Θin(kb) = 1 then
Reconstruct k(ab) with eq. (2.26);
Fill the histogram with V (k(ab)) iff Θin(k(ab)) = 1 and break;

else if Θin(ka) = 1 or Θin(kb) = 1 then
Fill the histogram with either V (ka) or V (kb) and break;

end
Split the emitting dipole into three adjacent dipoles according to ka and kb;
Apply Algorithm 1 with starting scale kta and evolution time (4.15);
break;

end
Create a counter-event:
Set w ∗= −1;
while true do

Reconstruct k(ab) with eq. (2.26);
Replace ka with k(ab);
if Θin(k(ab)) = 1 then

Fill the histogram with V (k(ab)) and break;
end
Split the emitting dipole into two adjacent dipoles according to k(ab);
Apply Algorithm 1 with starting scale kta and evolution time (4.15);
break;

end

The function f(p`1 , p`2 , k̂b), defined in eq. (4.22), exclusively depends on the directions of
the momenta p`1 , p`2 , kb and not on their energies. Eq. (4.20) arises from requiring k′tb < kta.
The first (ka) and second (kb) insertions are then generated according to Algorithms 4.2
and 4.4, respectively.

We then calculate the difference of terms proportional to w̃(0)
12 in eq. (3.15). An impor-

tant remark concerns the construction of the k(ab) momentum appearing in the counter-term
in eq. (3.15). This momentum is introduced in eq. (2.26) where it is defined in the rest
frame of the dipole that radiates the pair ka, kb (with dipole axis along the z direction), and
needs to be Lorentz transformed back into the event frame. All Lorentz transformations
are performed as described in section 4.1, using momenta with unit energy. A last comment
about the procedure to fill the histograms in Algorithm 4.3 is in order. In particular, in
order to eliminate NNLL contributions, when both insertions ka and kb are in the interjet
rapidity gap in the event we consider the observable calculated on the massless parent
defined in eq. (2.26). This procedure exactly reproduces what is done in the counter-event,
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and therefore ensures that for the NNLL configurations in which both insertions are in the
gap the two contributions cancel by construction.

Finally, the remaining contribution to the evolution (3.15) of Z(1)
12 [Q; {u}], proportional

to the strongly ordered double-soft squared amplitude (w(0)
12 w

(0)
a2 and w

(0)
12 w

(0)
1a ), is also

obtained with Algorithm 4.3. Here one must replace all instances of k(ab) with ka, and
generate kb with the simpler constraint ktb < kta, which is obtained by setting the angular
function f(p`1 , p`2 , k̂b) → 1 in eq. (4.22). Moreover, we set the weight according to the
strongly-ordered limit of eq. (4.23) (cf. eq. (3.15)), that simply amounts to removing the
reweighing step (4.23) altogether. This guarantees that the iteration of the LL evolution
kernel in (3.14) is correctly subtracted. The final result for H2 ⊗ S2(v) is then obtained as
the sum of the result of the above three contributions.

Algorithm 4.4: Generation of emission kb starting from the scale kta
Pick the dipole that emits kb among {p`1ka} and {kap`2} with probability 1/2;
Update weight w ∗= 2;
Generate ktb w.r.t. the emitting dipole as in Algorithm 1 starting from the scale

kta f(p`1 , p`2 , k̂b) , f(p`1 , p`2 , k̂b) :=
√

(p`1 · p`2)
2(p`1 · k̂b)(k̂b · p`2)

, (4.22)

where k̂b denotes kb with its kt w.r.t. the emitting dipole set to one;
Update the weight

w ∗= w̃
(0)
12 (kb, ka)

w
(0)
12 (ka)w(0)

1a (kb)
; w ∗= w̃

(0)
12 (ka, kb)

w
(0)
12 (ka)w(0)

a2 (kb)
, (4.23)

for the two dipoles, respectively;

5 Numerical results for the Et distribution in the interjet gap at NLL

In this section we apply the technique described in section 4 to the calculation of the
transverse energy distribution in the rapidity gap between the two cone jets in e+e−.
In the following we set

√
s = MZ and adopt the value αs(MZ) = 0.118 for the strong

coupling constant. To obtain a physical prediction for this observable, we introduce the
standard perturbative scales used in resummed calculations whose variation quantifies the
size of subleading logarithmic corrections. These are discussed in appendix B. We vary
the renormalisation scale µR by a factor of two around its central value µR =

√
s, and for

central µR, we also vary the resummation scale µQ by a factor of two around its central
value µQ =

√
s/2. The final perturbative uncertainty shown in the results that follow is

obtained as the envelope of the above five predictions. The calculation performed in this
section is strictly speaking valid only in the limit of soft radiation, and therefore should be
consistently matched to a fixed order calculation in the bulk of the phase space where the
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Figure 3. Left: cumulative distribution Σ(Et) for the transverse energy in the interjet rapidity
gap at LL and NLL for c = 0.2. Right: breakdown of the contributions to the NLL correction,
relative to the LL prediction.

emitted radiation is hard. A matching of this type is standard in resummed calculation
and must be performed in future phenomenological applications.

As a check of our calculation, we have also computed the LL Σ(v) cumulative distri-
bution as a function of the evolution variable t defined in eq. (4.4), and reproduced the
results of ref. [2]. Notice that the LL evolution time (4.4) is defined in terms of the dipole
transverse momentum of the gluon that is radiated inside the interjet rapidity gap. This
transverse momentum is related to the physical observable Et via an O(1) angular function
that depends on the orientation of the emitting dipole w.r.t. the thrust axis, that varies on
an event-by-event basis. Therefore the relation between t and Et is not bijective. In ref. [16]
we have also compared the O(α2

s) expansion of our calculation to fixed-order predictions
in full QCD, finding excellent agreement in the limit of Et → 0. In the same article, we
have also verified that our fixed-order expansion for the energy distribution E reproduces
the calculation of ref. [13]. As a further check, we have carried out two independent imple-
mentations of the algorithms given in section 4 and found complete agreement. A public
version of the code can be found in ref. [65].

In the left plots of figures 3, 4, 5, we report the cumulative distribution (2.2) at LL
and NLL for three different values for the width of the interjet rapidity gap (cos θjet =
c = {0.2, 0.5, 0.9}), which correspond to different opening angles of the two hard jets (cf.
eq. (2.1)). We observe that the definition of the infrared scale Q0 in eq. (4.5) (introduced
in our prescription to deal with the Landau singularity in eq. (2.31)) acts as a cutoff on the
transverse momentum of the emissions w.r.t. the emitting dipole. Therefore, the region of
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Figure 4. Left: cumulative distribution Σ(Et) for the transverse energy in the interjet rapidity
gap at LL and NLL for c = 0.5. Right: breakdown of the contributions to the NLL correction,
relative to the LL prediction.

the plots in which the observable Et ∼ Q0 (and below) is susceptible to non-perturbative
effects. We therefore truncate the plots at this scale (i.e. ln(

√
s/Et) = 1/(2αsβ0) ' 7)

cutting out the non-perturbative region. We start by considering the region of the plots
that corresponds to a large transverse energy inside the interjet rapidity gap. The predic-
tivity here is restored upon a matching to a fixed-order calculation, which however is not
performed in figures 3, 4, 5. We therefore do not comment further on this region and we
rather focus on the small Et regime, where (non-global) resummation effects are dominant.
We notice, however, that the normalisation of the curves at large Et changes with the size
of the cone jets. This can understood by observing the c-dependence of the hard factors
H2 and H3 calculated in section 4. The residual scale dependence at large Et present at
NLL is due to the µR dependence of the hard factors, which is absent by construction at
LL. At small Et, we observe that NLL corrections are large and negative, and reach 40%
in size when the resummed logarithms are large, consistently across different values of the
jet cone size. We stress that the results presented here adopt the physical Et definition for
the LL calculation rather than its strict leading-logarithmic limit in which Et is simply the
dipole tranverse momentum of the emission in the interjet gap. In the latter case, the size
of the genuine NLL corrections would be even larger as these would also compensate for
the kinematical difference between the dipole kt and the actual definition of Et. We also
observe a substantial reduction of the perturbative uncertainty, up to a factor of two, in the
NLL calculation compared to the LL prediction, whose uncertainty band however accounts
for the large NLL corrections. We have also checked the stability of our predictions with
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Figure 5. Left: cumulative distribution Σ(Et) for the transverse energy in the interjet rapidity
gap at LL and NLL for c = 0.9. Right: breakdown of the contributions to the NLL correction,
relative to the LL prediction.

respect to variations of the non-perturbative cutoff Q0, defined in eq. (4.5). Specifically,
in that equation we replace Q0 with Q0/X, and we vary X in the range 1 ≤ X ≤ 2. We
observe a moderate dependence for small values of Et approaching the Landau pole. This
dependence is however well within the scale uncertainty band. Finally, as a measure of
the numerical complexity of the calculations shown here, we computed the average gluon
multiplicity in the events as a function of ln(

√
s/Et). We find that the multiplicity strongly

depends on ln(
√
s/Et), it reaches a maximum of about 20-25 for the narrow slice, and de-

creases significantly for broader slices. This behaviour is expected since the evolution stops
as soon as any radiation populates the interjet rapidity slice.

It is informative to study the size of the various contributions to the NLL corrections to
the cumulative distribution. In the right plots of figures 3, 4, 5, we then show the breakdown
of the NLL correction into three different pieces. These are the Hn⊗Sn(v) terms in eq. (2.3),
with n = 2 and n = 3. Moreover, for n = 2, we plot separately the contribution from the
functional Z(0)

12 , defined in eq. (3.14), and Z(1)
12 , defined in eq. (3.15). We observe that for

small interjet gaps, i.e. fat cone jets, the NLL result is completely dominated by the Z(0)
12

correction, with an additional sizeable correction from the H3 ⊗ S3(v) term. For larger c
values (corresponding to narrower jets), however, the contribution of the Z(1)

12 correction
slightly grows and becomes comparable to that of the H3 ⊗ S3(v) term at small values of
Et. The moderate contribution of the Z(1)

12 correction compared to Z(0)
12 justifies entirely

the perturbative approach adopted in eq. (3.13) for the generating functional Z12 which
led to the evolution equations (3.14) and (3.15).
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6 Conclusions

In this article we have presented the first NLL resummation for non-global radiative cor-
rections to a collider observable in the large-Nc limit. We considered a set of evolution
equations that we derived in a recent article, describing the dynamics of soft gluons emit-
ted at large angles with respect to the hard scattering process. To solve these equations
numerically, we have reformulated the resummation in terms of generating functionals,
which can be used for the calculation of the emission probability associated with any given
final state containing n soft gluons. This formulation is suitable for a numerical implemen-
tation by means of Monte Carlo methods. Using this technology, we have presented an
algorithm for the solution of the evolution equations, hence achieving the resummation of
NLL non-global corrections. We applied this formalism to the calculation of the NLL dis-
tribution of the transverse energy Et of the radiation within the gap between two hard cone
jets produced in e+e− collisions. We found that the NLL corrections are rather sizeable
and their inclusion leads to a substantial reduction of the perturbative scale uncertainties
in the theoretical calculation. They do therefore play an important role in the accurate
prediction of this class of observables at particle colliders.

We point out that the algorithms presented in this article are not tailored to the specific
observable considered here, and are directly applicable to hadron-collider observables in
the large-Nc approximation. This is because the only process dependence occurs in the
hard factors Hn of eq. (2.3) (which in turn can be calculated algorithmically for a given
process), while the evolution of the soft factors Sn with the energy scale is entirely process
independent as expected from the factorisation of squared amplitudes in the soft limit.
Therefore, the formalism presented here can be applied to all observables that are solely
sensitive to soft radiation emitted with large angles from the hard scattering, which are
characterised by a single logarithmic perturbative expansion, i.e. the dominant logarithmic
tower in the cumulative distribution is of the form αnsL

n. The application to observables
sensitive to collinear radiation, on the other hand, requires extra care since the formulation
presented here must be supplemented with the correct resummation of the corresponding
collinear logarithms (obtained for instance with standard techniques for global observables),
and the double counting between the two regions (i.e. the soft and collinear limit) must
be consistently subtracted in the evolution equations for the generating functionals. This
subtraction is simple for most observables, and it simply amounts to dividing the cumulative
distribution (2.3) by the contribution from primary radiation. This is obtained by running
the algorithms given in section 4 while forbidding the dipoles to split, so that all emissions
are radiated off the primary qq̄ dipole. However, we notice that there might be cases in
which the subtraction becomes conceptually more delicate, such as in the case of observables
affected by abelian clustering logarithms [66]. The technical details of these subtraction
procedures, as well as the application to hadronic observables is left for future work.

The computer code Gnole [65] used to perform the calculations presented in this
article can be downloaded from the repository:

https://github.com/non-global/gnole.
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A Symmetries of the squared amplitude and choice of ordering

In this appendix we comment on the choice of the dipole kt as ordering variable for the
evolution equation. Let us start by considering the emission of two soft gluons in the
strongly ordered limit, and we focus on the double-real integral

1
2!

∫
[dka]

∫
[dkb]

[
w

(0)
12 (ka)w(0)

1a (kb) + w
(0)
12 (ka)w(0)

a2 (kb)
]
u(ka)u(kb) . (A.1)

We now introduce a partition of unity using the dipole transverse momentum

1 = Θ(kta − ktb) + Θ(ktb − kta) . (A.2)

We stress that the dipole ktb is defined differently in the two colour flow configurations of
eq. (A.1), following eq. (2.28), which highlights the non-trivial nature of the partition (A.2).
In order to write a Monte Carlo algorithm that iterates correctly the squared amplitude,
the two regions in eq. (A.2) must be identical (or at least in the kinematic limits relevant
to a given logarithmic accuracy), so that the combinatorial factor 1/2! in eq. (A.1) can be
effectively replaced with a kinematic ordering. To show that dipole kt ordering is a suitable
choice, we observe that the squared amplitude in the strongly-ordered limit satisfies the
symmetry (e.g. in the case of two emissions)

T := {n̂a ↔ n̂b; ktb ↔ kta} , (A.3)

where the transverse momenta are always meant w.r.t. the emitting dipole and the direc-
tions n̂a,b are taken in the {12} dipole frame. This symmetry is highly non trivial, and it
is now interesting to understand how the integrand in eq. (A.1) behaves under its action.
We consider separately the two colour flows

1) : {1, a, b, 2} , 2) : {1, b, a, 2} , (A.4)

and define the transformation T(i) (i = 1, 2) such that for each colour flow we can obtain
the transformed momenta k̃a,b as [

k̃a
k̃b

]
= T(i)

[
ka
kb

]
. (A.5)
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Imposing the constraints of eq. (A.3) leads to

T(1) =

 0
(

(p1·kb)(ka·p2)
(p1·p2)(ka·kb)

)−1/2(
(p1·ka)(kb·p2)
(p1·p2)(ka·kb)

)1/2
0

 , (A.6)

T(2) =

 0
(

(p1·ka)(kb·p2)
(p1·p2)(ka·kb)

)−1/2(
(p1·kb)(ka·p2)
(p1·p2)(ka·kb)

)1/2
0

 . (A.7)

In the above matrices T(i) each entry is to be understood to be proportional to the identity
operator that acts on the four momenta as in eq. (A.5). Let us also work out the action of
the above transformation on the phase space measure. We find

T(1) [[dka][dkb]]=
(p1 · ka)(kb · p2)
(p1 · kb)(pa · p2) [dka][dkb] , T(2) [[dka][dkb]]=

(p1 · kb)(ka · p2)
(p1 · ka)(kb · p2) [dka][dkb] .

(A.8)
The strongly ordered squared amplitude is invariant under the above trasformations for
each separate dipole, a consequence of the conformal symmetry of the integrand in the pres-
ence of strongly ordered kinematics. However, due to the non-trivial effect of T on the phase
space measure, the LL integrand itself is not invariant. By applying the transformation to
the integrand we find (e.g. for dipole 1)

T(1)
[
[dka][dkb]w

(0)
12 (ka)w(0)

a2 (kb)
]

= [dka][dkb]w
(0)
12 (ka)w(0)

1a (kb) , (A.9)

that is the transformation simply maps the integrand into the one corresponding to the
complementary colour configuration. This implies that the full LL integrand, given by the
sum of the different dipoles is indeed invariant under T, and that therefore the transverse
momentum taken w.r.t. the emitting dipole can be adopted as an evolution variable as
done in eq. (2.12).

At NLL we need to consider unordered configurations in which the two emissions ka
and kb are described by the full double-soft squared amplitude in large-Nc w̃

(0)
12 (ka, kb) +

w̃
(0)
12 (kb, ka) (see eq. (2.24)). This squared amplitude is not invariant under the T trans-

formations, indicating that dipole kt ordering cannot be used for the calculation of the
double-real correction (2.22). Instead, one can order the emissions ka and kb using their
transverse momenta w.r.t. the {12} dipole kta, k′tb, under which the squared amplitude is
fully symmetric. This explains the factor Θ(kta − k′tb) in eq. (2.22). An alternative solu-
tion would be to formulate the whole evolution ordered in energy, which would allow one
to use the same ordering in the strongly ordered limit as well as in unordered kinematic
configurations.

B Dependence on the perturbative scales µR and µQ

In this appendix we introduce the renormalisation µR and resummation µQ scales. In
general, there are two sources of µR dependence, which appears both in the hard factors
H2 and H3 as well as in the soft factors S2 and S3 (or equivalently in the generating
functionals Z12[Q; {u}], Z13[Q; {u}] and Z23[Q; {u}] in eq. (3.3)).
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For the physical process under consideration, the µR dependence in the hard factors
is entirely encoded in the MS coupling

αs → αs(µR) . (B.1)

Extra dependence on µR in H2 and H3 arises for processes which are mediated by QCD
interactions at the Born level, such as jet production at hadron colliders. The second source
of µR dependence is given by the generating functionals. This is introduced by expressing
ᾱ(kt) in terms of ᾱ

(
µR√
s
kt
)
in eq. (3.6), and then expanding out the result in ᾱ (µR) at fixed

ᾱ (µR) ln
√
s
kt
∼ 1. The running of the coupling must match the logarithmic order of the

calculation, and therefore we use one-loop running at LL and two-loop running at NLL.
The resummation scale µQ is introduced to estimate the size of subleading logarith-

mic corrections. Its dependence is entirely encoded in the soft factors, and thus in the
generating functional. The whole µR and µQ scale dependence can be easily encoded in
the evolution algorithms presented in section 3. Specifically, it amounts to replacing the
evolution times (4.4) (4.15) with

t→ t̃ :=− Nc

2πβ0
ln
(
1− 2λ̃

)
, λ̃ = β0αs(µR) ln µQ

kt
, (B.2)

t→ t̃ :=− Nc

2πβ0
ln
(
1− 2λ̃

)
+ ᾱ(µR) λ̃

1− 2λ̃
ln µ

2
R

µ2
Q

+ ᾱ(µR) ln
√
s

µQ

+ ᾱ(µR)
[

λ̃

1− 2λ̃

(
K(1)

2πβ0
− β1
β2

0

)
− ln(1− 2λ̃)

1− 2λ̃
β1
2β2

0

]
+O(NNLL) , (B.3)

at LL and NLL, respectively. The definition of the infrared scale Q0 given in eq. (4.5) is
also consistently modified as follows

2β0αs(µR) ln µQ
Q0

= 1 . (B.4)

Open Access. This article is distributed under the terms of the Creative Commons
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