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Abstract: We derive analytic expansions for the finite-volume energies of weakly-interacting two-
particle systems, using the general relations between scattering amplitudes and energies derived by
Lüscher and others. The relations hold for ground and excited states with both zero and non-zero
total momentum in the finite-volume frame. A number of instructive aspects arise in the derivation,
including the role of accidental degeneracies and the importance of defining a power-counting scheme
in the expansions. The results give intuition concerning the imprint of weakly-interacting systems
on the energy spectrum, while also providing a useful basis for the analogous results concerning
three-particle excited states, to appear.

ar
X

iv
:2

11
0.

06
87

8v
1 

 [
he

p-
la

t]
  1

3 
O

ct
 2

02
1

mailto:dorota.grabowska@cern.ch
mailto:maxwell.hansen@ed.ac.uk


Contents

1 Introduction 2

2 Derivation and results 4

2.1 Set-up 4

2.2 S-wave dominance: Leading-order shift 7

2.3 S-wave dominance: All orders 9

2.4 Power-counting schemes 10

2.5 Higher partial waves: Without accidental degeneracies 12

2.6 Higher partial waves: Including accidental degeneracies 15

3 Numerical checks 19

4 Conclusion and outlook 20

A F function 25

B Level crossing with two-particle energies 26

C Finite-volume symmetry and projectors 27

D Equivalence of poles and non-interacting energies 29

E Two observations concerning accidental degeneracy 31

– 1 –



1 Introduction

An overwhelming body of evidence has established quantum chromodynamics (QCD) as a precise
and quantitative description of the strong nuclear force over an incredible range of energies. How-
ever, due to a mismatch between the fundamental fields of the theory (quarks and gluons) and the
low-energy degrees of freedom (bound states of quarks and gluons, called hadrons), extracting first-
principles predictions can be challenging. This is especially true for moderate-energy multi-hadron
processes, for which both low-energy effective theory and high-energy perturbative methods break
down.

Lattice QCD is a proven method for reliably determining the properties of QCD, especially where
analytic techniques fail, by making use of Monte Carlo importance sampling to numerically estimate
the quantum path integral, regulated via discretization on a finite spacetime grid. This method
has reached an era of sub-percent precision for many single-hadron quantities and has also proven
reliable in extracting more complicated, two-hadron observables. Examples in the latter category
include two-meson, meson-baryon and baryon-baryon scattering amplitudes as well as one-to-two
decay and transition amplitudes. See refs. [1–6] for recent reviews. More recently, the reach of these
calculations has extended to three-to-three scattering amplitudes. See refs. [7–9] for reviews of the
progress in this sector.

The standard methodology in the majority of multi-hadron calculations is to use the finite system
size of the calculation (the finite volume) as a tool in probing physical observables. In particular,
when the fields are constrained to have periodicity L in the three spatial directions, then the
continuum of multi-hadron energies is replaced with a discrete set, denoted En(L). One can then
use field theoretic methods to relate the values of these energies to scattering amplitudes. A modern,
rigorous, and general formulation of this idea was provided by Lüscher in refs. [10, 11], in which he
related the two-to-two elastic scattering amplitude of identical spin-zero particles to finite-volume
energies with vanishing total spatial momentum, P = 0, in the finite-volume frame. This has since
been generalized to include non-zero momentum, multiple two-particle channels of non-identical
and non-degenerate particles, as well as particles with non-zero spin [12–21]. Most recently, the
methods have been extended to the extraction of amplitudes involving three hadrons in either the
initial or final state [22–39].

The purpose of this work, together with a second article to appear, is to derive analytic relations
for two- and three-particle finite-volume energies of weakly interacting systems, in the low-energy
regime for which only a single channel of identical scalar or pseudo-scalar particles can propagate.
The results are directly applicable, for example, to maximal isospin multi-pion and multi-kaon
channels is QCD, as well as other weakly-interacting multi-boson systems, including calculations
of non-QCD lattice field theories. The present work focuses on two-particle states and extends
previous derivations by providing expansions for ground and excited-state energies with any value
of total momentum P in the finite-volume frame as well as describing the contribution of all angular
momentum components.

The general relation between energies and scattering amplitudes, restricted to the regime of a single
two-particle channel, can be packaged into a single master-function, depending on the energy E,
the total three-momentum in the finite-volume frame P , and the volume L, as well as the scattering
amplitude across all partial waves `, denotedM`, and the specified irreducible representation (irrep)
of the finite-volume energies of interest. The latter is defined with respect to the symmetry group of
the system, either the full octahedral group including parity or the little group thereof that leaves P
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invariant. The function is constructed such that its roots in E, with all other inputs held fixed, give
the discrete finite-volume spectrum En(L) of the system. The condition that this function should
vanish is referred to as a quantization condition. To make use of the relations in practice, one must
generally truncate the system by approximating M` = 0 for ` > `max. This work considers both
the case of S-wave dominance, for which `max = 0, as well as the effects of higher partial waves,
detailed in sections 2.5 and 2.6. As described in section 2.5, it is even possible to write the leading
contribution from all partial waves in a compact form. (See also ref. [10].)

As we discuss extensively in section 2.6, special care must be taken care for the so-called acciden-
tally degenerate states, already discussed in refs. [10, 40, 41]. To define these, note that a theory of
two non-interacting particles in a periodic cubic volume of length L, is characterized by assigning a
momentum to each, quantized as an integer-vector multiple of 2π/L. For P = 0 the two momenta
are back-to-back so that a single three-vector characterizes the state. In this case the first acciden-
tally degenerate state is the 8th excited state, for which non-interacting pions can have back-to-back
momentum of type (0, 0, 3) or else of type (1, 2, 2). In section 2.6, we describe such states in detail,
for various values of P , and discuss the role higher angular momenta in breaking the degeneracy.

In addition to providing the basis for our subsequent work on three-particle states, we envision a
number of broader applications for the results presented here. These include

• Building general intuition on the interaction-induced shifts to finite-volume energies,

• Better understanding cancellations leading to exponentially suppressed volume effects in cor-
relators, given the power-like volume dependence of energies in their spectral decompositions,

• Guiding automated root finders of the full two-particle quantization condition,

• Exploring the convergence of contributions from higher-partial waves to finite-volume energies.

The question of how the value of En(L) converges as a function of `max has also recently been
studied in ref. [42]. We comment in more detail on these items in our conclusion.

We emphasize that the results presented here hold only in the energy regime where the system is
weakly interacting and break down, for example, in the vicinity of a narrow resonance. However,
even in a resonant system, the expansion will give a good description for any fixed state at sufficiently
large L. This is because the energy sampled for a given state decreases with increasing L, eventually
moving away from the resonant behavior and closer to threshold. An exception to this is systems
at unitarity, for which the scattering amplitude has a pole at production threshold.

It is important to put this work in context of previously published results concerning expansions of
finite-volume energies for weakly-interacting systems. Already in refs. [10, 11], Lüscher considered
the large-volume expansion of both the ground state and excited states without accidental degener-
acy, for P = 0. The ground-state result matched earlier work of Huang and Yang [43], who gave an
expression for any number of particles, focusing on the special case of non-relativistic hard spheres.
This was later generalized and re-derived in various contexts in refs. [44–48], to give a general result
for the ground-state finite-volume energy of any number of relativistic bosons. More recently, an
expansion of three-particle excited states has been discussed in refs. [49, 50]. Finally, in ref. [41],
Luu and Savage provide an extensive exploration of the phenomenology of Lüscher’s quantization
condition, including detailed discussion of the finite-volume symmetry group, the role of accidental
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degeneracies and prospects for extracting higher angular-momentum components from numerical
lattice calculations.

This work differs from the results summarized above in three key ways. First we argue that the
expansion for excited states is non-unique and can only be performed in the context of a particular
power-counting scheme. The latter should be defined to give the best description of the exact energy
for a given set of scattering parameters. In particular, we argue that the large-volume expansion is
misleading in the sense that L dependence arises in various kinematic factors, including the Lorentz
boost factor and the non-interacting energy, order-by-order in the expansions that we perform.
Re-expanding these about infinite L is required to recover earlier work but we find this degrades
the descriptive power without simplifying the results and is not needed. Second we give a more
general framework for covering a wide-range of cases including the contribution of any number of
partial waves in the expansion and the general strategy for treating accidentally degenerate states.
Third and finally we give results for the ground and excited state expansions for nonzero P that,
as far as we know, have not been considered previously. The final point is of particular importance
as it is a crucial input for the corresponding expansions of three-particle energies considered in the
companion manuscript, to appear.

The remainder of this work is organized as follows: In the next section we derive the general
expansion of two-particle states with any momentum P in the finite-volume frame, taking particular
care to establish a general notation, to specify the role and non-uniqueness of power-counting
schemes in defining the expansion, and to explore the effects of higher partial waves, including the
case of accidental degeneracy. The main concrete results of this work are summarized in eqs. (2.21),
(2.39), (2.51), in tables 4-8, and in the discussion of section 2.6. Then, in section 3, we describe
various numerical checks performed by comparing our expansion to the general solutions of the
quantization condition. In section 4 we briefly conclude. This work additionally contains five
appendices, addressing more technical aspects of the derivation including a description of the finite-
volume functions required for the quantization condition, a comment on energy level crossings,
a summary of the relevant symmetry groups and projectors, and an important relation on non-
interacting energies required to perform the expansion.

2 Derivation and results

The following subsections review the general formalism and establish the expansion strategy and
the notation used. The main results are emphasized at the end of each subsection.

2.1 Set-up

Our aim is to perturbatively expand finite-volume two-particle energies, collectively denoted En,P ,Λ(L),
about the non-interacting limit. Here the integer index n indicates the nth excited state (n = 0

the ground state), P is the total spatial momentum of the two-particle system, Λ is the relevant
finite-volume irrep, and L is the box length. The total momentum P is equal to an integer-vector
multiple of (2π/L). We write this as P = (2π/L)d = (2π/L)(dx, dy, dz) and use the shorthand
P = [dxdydz]. In this work we restrict attention to a single channel of identical scalar particles
with mass m.

The simplest example of the expressions derived in this work is that of the two-particle ground state
(n = 0) for vanishing spatial momenta P = [000] in the trivial-irrep Λ = A1g of the octahedral group
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Oh. The result, through O(1/L5), was presented by Huang and Yang in ref. [43] and subsequently
extended to higher orders. In our notation the first non-trivial order reads

E0,[000],A1g
(L) = 2m+

4πa0

mL3
+O(1/L4) , (2.1)

where a0 is the two-particle scattering length, defined in eq. (2.33) below.

The key tool used to derive such results here is the finite-volume quantization condition [11, 12, 14]

det
Λµ

[
PΛ,µ ·

[
M(E?)−1 + F (E,P , L)

]
· PΛ,µ

]∣∣∣∣
E=En,P ,Λ(L)

= 0 , (2.2)

where M(E?) is the infinite-volume scattering amplitude and F is a matrix of known geometric
functions, reviewed in appendix A. The matrix F depends on the total energy and momentum in
the finite-volume frame, (E,P ), as well as the box length, L. By contrast, the scattering amplitude
only depends on the center-of-momentum frame (CoM frame) energy

E? =
√
E2 − P 2 . (2.3)

We have also introduced PΛ,µ as a projector restricting to the irrep of interest. Some discussion
of finite-volume groups and projectors is included in appendix C. See also refs. [11, 12, 51, 52] for
more details.

The matrices M(E?), F (E,P , L) and PΛ,µ are each defined on an angular momentum space and
carry two sets of spherical harmonic indices, e.g.M(E?) =M`′m′,`m(E?) where ` = 0, 1, 2 · · · and
m = −`,−`+ 1, · · · `. The explicit definition can be given in terms of the `th scattering phase shift,
δ`. In the case of a single channel of identical scalar (or pseudoscalar) particles, one has

M`′m′,`m(E?) = δ`′`δm′m
16πE?

p?
e2iδ`(p?) − 1

2i
= δ`′`δm′m

16πE?

p? cot δ`(p?)− ip?
, (2.4)

and scattering length, a0, appearing in eq. (2.1) is defined via the leading order expansion of
p? cot δ0(p?) about threshold

p? cot δ0(p?) = − 1

a0
+O(p?2) . (2.5)

Here we have also introduced the relative momentum

p?2 =
E?2

4
−m2 . (2.6)

See table 1 for a summary of the notation established so far, and continued in the following.

As the matrices are formally infinite dimensional, in practice one must truncate the quantization
condition by setting M`′m′,`m(E?) = 0 or equivalently δ`(p?) = 0 for ` > `max. As discussed in
refs. [10, 11, 14], one can then set the corresponding entries of F and PΛ,µ to zero without further
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Quantity Definition/Key relation Description

L — finite-volume box length

E — finite-volume-frame energy

n — level of the excited state

P 2πd/L finite-volume-frame 3-momentum

E?
√
E2 − P 2 center-of-momentum-frame energy

k 2πv/L generic 3-momentum

ωk
√
k2 +m2 on-shell time component of 4-vector kµ

`m indices on Y`m angular-momentum indices

p?
√
E?2/4−m2 relative momentum magnitude from E?

q Lp?/(2π) dimensionless version of p?

n {n,P ,Λ} collective index for a state n

E
(0)
n (L) eq. (2.8) non-interacting energy

νn — representative integer three-vector for state n

q
(0)2
n L2[E

(0)
n (L)− P 2 − 4m2]/(2π)2 non-interacting dimensionless momentum

Sn eq. (2.15) set of dimensionless momenta
that give same non-interacting energy

Table 1: Summary of the notation used throughout the paper. Note that q is only used to denote
the dimensionless momentum in the center-of-momentum (CoM) frame. We have dropped the ?,
which generically indicates CoM quantities, for simplicity in this case.

approximation. Given a truncated version of eq. (2.2), the expansion is derived by substituting

En(L) = E
(0)
n (L) +

∞∑
k=1

εk ∆
(k)
E[n](L) , (2.7)

where n = {n,P ,Λ} is a collective index for all discrete information common to each building block
and E(0)

n (L) is the finite-volume energy in the non-interacting limit, given e.g. by taking δ` → 0 for
all `. This non-interacting energy can be written as

E
(0)
n (L) =

√
m2 + (2π/L)2ν2

n +
√
m2 + (2π/L)2(d− νn)2 , (2.8)

where νn is an integer vector representing the non-interacting state. For most values of n, multiple
choices of νn are possible, so that this identifier is not unique. All quantities that depend on this
vector, e.g. the non-interacting energy, E(0)

n (L), are equal for any valid choice. The correspondence
between n and ν{n,P ,Λ} is defined such that E(0)

n (L) < E
(0)
n′ (L) for n < n′ in the large L limit. As

we prove in appendix B, the sorting is independent of L in the CoM frame, but non-interacting
level crossings can occur for non-zero total momenta.

Combining eqs. (2.2) and (2.7), it is possible to solve for the corrections ∆
(k)
E[n] order by order in

terms of ε. As we explain in section 2.4 below, to completely define the expansion one must assign
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an epsilon scaling to various parameters enteringM(E?) as well as, possibly (but not neccesarily),
to 1/L. There is no unique assignment and the best choice of power-counting scheme depends on
the details of the system.

2.2 S-wave dominance: Leading-order shift

We begin with the expansion for the case of `max = 0. For this truncation, only the trivial irreps
(A1g for P = [000] and A1 otherwise) have finite-volume energies that are shifted by interactions.
These are found by solving

p? cot δ0(p?) = f(q,d, L) , (2.9)

where

f(q,d, L) ≡ −16πE?Re
[
F00,00(E,P , L)

]
= − lim

s→−1

1

γ(q,d, L)πL

∑
v∈Z3

[
q2−Γ(v|q,d, L)

]s
. (2.10)

The second equality is a standard definition of F00,00, first introduced for nonzero d in ref. [12], and
the limit indicates that the sum is regulated by analytically continuing from Re[s] < −1 [11]. The
relation between this and other standard definitions, and the corresponding expressions for general
F`′m′,`m(E,P , L), are reviewed in appendix A. In eq. (2.10) we have also adjusted the coordinate
dependence, changing from E,P , L to q,d, L, with the latter including

q2 =

(
L

2π

)2(
E2

4
− P

2

4
−m2

)
, γ(q,d, L) =

[
1 +

d2

4(q2 + [mL/(2π)]2)

]1/2

. (2.11)

As is summarized in table 1, q is proportional to p?, made dimensionless by L/(2π). Although
we generically use a ? superscript to denote CoM frame quantities, we drop this for q to avoid
over-cluttering the notation in the following. The quantity f(q,d, L) also depends on

Γ(v|q,d, L) ≡ 1

γ(q,d, L)2

(
v · d
|d|
− |d|

2

)2

+

(
v · d
|d|2

d− v
)2

, (2.12)

denoted by r2 in ref. [12].

Since both the left- and the right-hand sides of eq. (2.9) are analytic functions of q2, it is easiest
to use this quantity in the expansion. We therefore define qn(L)2 by evaluating eq. (2.11) at En(L)

and also introduce the analog of eq. (2.7) above

qn(L)2 = q
(0)
n (L)2 +

∞∑
k=1

εk ∆
(k)
q[n](L) . (2.13)

Here q(0)
n (L)2 is the non-interacting version of qn(L)2, defined by evaluating eq. (2.11) at E(0)

n (L).

Having introduced all notation, the general procedure is relatively straightforward: Evaluate both
sides of eq. (2.9) at qn(L)2 and solve the equation order-by-order ε to determine ∆

(k)
q[n](L). If desired,
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n P Λ Sn gn

0 [000] A1g (0, 0, 0) 1
1 [000] A1g (0, 0, 1) + rotations and flips 6
8 [000] A1g (1, 2, 2) + rotations and flips (24 total) 30

(0, 0, 3) + rotations and flips (6 total)
0 [001] A1 (0, 0, 0), (0, 0, 1) 2
1 [011] A1 (0, 0, 1), (0, 1, 0) 2
0 [002] A1 (0, 0, 1) 1

Table 2: Examples for the set Sn with total number of elements gn. In the accidentally degenerate
case, n = 8 and P = [000], all three-vectors satisfying eq. (2.15) are included in the definition.

the result can then be readily converted back to En(L), which can be re-expanded to fixed order in
ε.

To begin this iterative procedure, we take p? cot δ0(p?) = O(1/ε) and infer that the leading-order
constraint arising from eq. (2.9) is that f(qn,d, L) must also scale as 1/ε. This is achieved by
requiring

q
(0)
n (L)2 − Γ(v|q(0)

n ,d, L) = 0 . (2.14)

As was first shown in refs. [12, 14] and as we review in appendix D this is consistent with the
relation between q(0)

n (L)2 and E(0)
n (L) and with eq. (2.8).

To expand beyond the trivial order, we define Sn as the set of all integer three-vectors v satisfying
eq. (2.14), equivalently

Sn =
{
v ∈ Z3

∣∣∣ E(0)
n (L) =

√
m+ (2π/L)2v2 +

√
m+ (2π/L)2(d− v)2

}
. (2.15)

In general, Sn is given by all rotations of both νn and d− νn by elements of the little group of P ,
LG(P ). The exception to this is the case of accidental degeneracies, for which the definition also
contains v that are not related by such a transformation. Instructive examples of Sn are collected
in table 2.

Finally, to give the leading-order energy shift, one must make a specific choice for the expansion of
p? cot δ0(p?). For example, if the power-counting is such that

p? cot δ0(p?) = − 1

a0
+O(ε0) , (2.16)

formally holds at all p?, then the next order is solved by identifying the 1/ε term within f(qn,d, L)

f(qn,d, L) = − 1

ε∆
(1)
q[n](L)

1

γ
(0)
n

1

πL

∑
v∈Sn

1

1− ∂q2Γ(v|q,d, L)

∣∣∣∣
q
(0)
n

+O(ε0) . (2.17)
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One can further show that

∂q2Γ(v|q,d, L)

∣∣∣∣
q
(0)
n ,v∈Sn

=

(
ωνn − ωd−νn
ωνn + ωd−νn

)2
, (2.18)

where we have introduced

ωνn =
√
m2 + (2π/L)2ν2

n , ωd−νn =
√
m2 + (2π/L)2(d− νn)2 . (2.19)

Simplifying eq. (2.17) and using also that Γ(v|q,d, L) is the same for all elements of Sn, we reach

∆
(1)
q[n](L) = a0

1

γ
(0)
n

1

πL

gnE
(0)
n (L)2

4ωνnωd−νn
. (2.20)

Here we have taken γ(0)
n to denote the boost factor evaluated at the nth non-interacting energy and

have introduced gn as the number of elements within Sn (gn = |Sn|). The corresponding energy
can then be written

En(L) = E
(0)
n (L) + gn

E
(0)
n (L)

4ωνnωd−νn

8πa0

γ
(0)
n L3

+O(ε2) . (2.21)

This is the main result of this subsection. The appearance of 4ωνnωd−νn can be understood as
a relative normalization factor, arising from the definition of the scattering amplitude in terms
of relativistically normalized states. The factor gn, which can also be traced to normalization of
states, implies that higher-multiplicity finite-volume energies may offer more sensitivity to scattering
information, at least for weakly interacting systems. Finally, note that the boost factor multiplies
the L3 factor, so that the moving state effectively sees a larger box. This can be roughly interpreted
by identifying the L3 periodicity as the geometry resulting after a length contraction such that the
underlying rest-frame volume is effectively larger. We stress again that this result only applies for
states that are not accidentally degenerate, i.e. for states in which all elements of Sn are related by
transformations of the octahedral group or the relevant moving-frame little group, LG(P ).

2.3 S-wave dominance: All orders

The approach of the previous subsection can now be readily be generalized to all orders. For the
left-hand side of eq. (2.9) one substitutes

p? cot δ0(p?) =

∞∑
m=0

1

m!
Km

(
2π

L

)2m [
q2 − q(0)

n (L)2
]m

, (2.22)

=

∞∑
m=0

1

m!
Km

(
2π

L

)2m [ ∞∑
k=1

εk ∆
(k)
q[n](L)

]m
, (2.23)

where we have introduced the coefficients

Km ≡
(

∂

∂p?2

)m
p? cot δ0(p?)

∣∣∣∣
p?2=[E

(0)2
n −P 2]/4−m2

. (2.24)
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This is then matched to the expansion of f(qn,d, L). To give the latter, we first write f(qn,d, L)

in terms of γ and two additional functions

f(qn,d, L) ≡ 1

πL

τn(qn,d, L) + βn(qn,d, L)

γ(qn,d, L)
, (2.25)

where

τn(q,d, L) ≡ −
∑
v∈Sn

[
q2 − Γ(v|q,d, L)

]−1

, (2.26)

βn(q,d, L) ≡ − lim
s→−1

∑
v/∈Sn

[
q2 − Γ(v|q,d, L)

]s
. (2.27)

Each of these are then expanded in powers of q2
n(L) − q

(0)
n (L)2. For example, we introduce the

coefficients Gn,m and Bn,m via

1

γ(qn,d, L)
=

∞∑
m=0

1

m!
Gn,m(d, L)

[ ∞∑
k=1

εk ∆
(k)
q[n](L)

]m
, (2.28)

βn(q,d, L) =

∞∑
m=0

1

m!
Bn,m(d, L)

[ ∞∑
k=1

εk ∆
(k)
q[n](L)

]m
. (2.29)

The τ function, by contrast, starts with a term proportional to the inverse energy shift and can be
written as

τn(qn,d, L) = Tn,−1(d, L)

[ ∞∑
k=1

εk ∆
(k)
q[n](L)

]−1

+

∞∑
m=0

1

m!
Tn,m(d, L)

[ ∞∑
k=1

εk ∆
(k)
q[n](L)

]m
, (2.30)

where the above analysis establishes

Tn,−1(d, L) = −gnE
(0)
n (L)2

4ωνnωd−νn
. (2.31)

The definitions for Gn,m, Bn,m and Tn,m can be read off from matching the definitions of the
underlying functions and the expansions. The least trivial of these is Tn,m which can be defined as

Tn,m(d, L) ≡
(

∂

∂q2

)m[
gnE

(0)
n (L)2

4ωνnωd−νn

[
q2 − q(0)

n (L)2
]−1

−
∑
v∈Sn

[
q2 − Γ(v|q,d, L)

]−1
]
. (2.32)

This collective set of expansions, in particular eqs. (2.28), (2.29) and (2.30), define the main result
of this subsection. This completes the discussion of the general strategy for deriving the expansion
about non-interacting energies, for both zero and non-zero momenta in the finite-volume frame as
well as for all excited states, in the S-wave only truncation. However, to make such an expansion
well-defined, one requires an ansatz for p? cot δ0(p?) as well as a power-counting scheme, as we
discuss in the following section.

2.4 Power-counting schemes

In the expansion of the finite-volume energy, eq. (2.7), the ε parameter used to organize the expan-
sion is ambiguous. For the rest-frame ground-state energy, 1/L serves as a natural parameter and,
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after working out the details of the expansion, one identifies a0/L as the relevant dimensionless
quantity to identify with ε.

However, for excited states and for both the ground and excited states in moving frames, it is
not always most useful to expand in powers of 1/L. This is because the non-interacting energy
E

(0)
n (L), defined in eq. (2.8) above, is L-dependent. Of course one can simply expand the difference

En(L) − E(0)
n (L) in powers of 1/L, but as we have shown in eq. (2.21), E(0)

n (L) also appears as a
natural building block at higher orders and expanding this dependence in powers of 1/L significantly
reduces the descriptive power of the expansion without really simplifying the result.

Based on these considerations, we have found it most useful to organize the expansion by assigning
a power-counting scheme to the parameters entering the scattering amplitude,M`. To this end we
first give a generalization of the threshold expansion of eq. (2.5). For the `th partial wave one can
write

p? cot δ`(p
?) = − 1

a`

(
1

p?

)2` [
1− r`a`

2
p?2 +O(p?4)

]
. (2.33)

Note that, in this convention, the scattering length and the effective range have dimensions that
depend on the partial wave of interest, namely

[a`] = [E]−2`−1 [r`] = [E]2`−1 . (2.34)

It is also possible to expand p? cot δ`(p
?) around different values of p?, not just about threshold.

As a first example we define a threshold scheme via

a` = O(ε2`+1) , a2
`r` = O(ε2`+3) , (2.35)

with higher orders dictated by assigning ε2`+1+n to the (p?)n coefficient in the effective range
expansion of tan δ`(p

?)/p?. This scheme is useful when the contributions from higher-partial waves
are suppressed. For example for identical particles with P = [000] and Λ = A1g, the lowest-
lying partial wave contamination arise from ` = 4 and thus appears in this counting at O(ε9),
corresponding to the 1/L9 scaling identified in ref. [11].

An alternative approach is to expand p? cot δ`(p
?) about the value of the non-interacting energy.

This approach, referred to below as the weakly-interacting scheme directly corresponds to eq. (2.23)
above. Extending this to all partial waves, we write

A`m = O(εm) , (2.36)

where

A`m ≡
(

∂

∂p?2

)m
tan δ`(p

?)

p?

∣∣∣∣
p?2=(2π/L)2q

(0)
n (L)2

. (2.37)

In contrast to the threshold scheme, the weakly-interacting scheme does not assume suppression of
higher partial waves. This power-counting is appropriate, for example, if we are expanding a highly
excited state for which (2π/L)2q

(0)
n (L)2 is order one. As we discuss in the following section, in this

regime all partial waves contribute at leading order. Independent of counting A`0 as leading-order,
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n Bn,0

0 8.9136
1 1.2100
2 5.0961
3 6.7745
4 −9.5381
5 −7.0197
6 23.201

Table 3: Evaluation of the coefficient Bn,0 for the first few excited states with P = [000].

one must specify the value of this quantity to give numerical results. Here it may be useful to
re-expand tan δ`(p

?) about threshold, to identify

A`0 = −a`
(
p

(0)?
n

)2`
+O

[
(p

(0)?
n )2`+2

]
, (2.38)

where (p
(0)?
n )2 = (2π/L)2q

(0)
n (L)2. This is the notation used in the following section, but one can

easily make the substitution −a`(p(0)?
n )2` → A`0 to describe a more general phase shift.

Working to higher orders adds significant complication in general, both due to the fact that the
algebra becomes more involved and also because infinite sums appear in the energy expressions
beyond leading order. For example, for P = [000], the next-to-next-to-leading-order (NNLO)
energy for any excited state in the threshold scheme, is

En(L) ≡ E
(0)
n (L) + ε gn

8πa0

E
(0)
n (L)L3

+ ε2 gn
8a2

0

E
(0)
n (L)L4

(
Bn,0 −

4π2gn

E
(0)
n (L)2L2

)
+O(ε3) , (2.39)

where

Bn,0 ≡ − lim
s→−1

∑
v/∈Sn

[
q

(0)2
n − Γ(v|q(0)

n ,d, L)
]s
. (2.40)

As with the leading-order expression of eq. (2.21), this result only holds for states that are not
accidentally degenerate. Numerical values of Bn,0 for P = [000] are given in table 3. In the case of
non-zero momentum in the finite-volume frame, this quantity inherits an L dependence. Extending
the calculation to moving frames or higher orders in the CoM frame becomes quite cumbersome,
but can be readily automated using any computer algebra system.

2.5 Higher partial waves: Without accidental degeneracies

To go beyond the S-wave-only truncation of sections 2.2 and 2.3, we return to the full quantization
condition, summarized by eq. (2.2), and evaluate the determinant for a given set of quantum
numbers and for some nonzero value of `max. For example, setting P = [000], Λ = A1g and
`max = 4, one reaches a determinant of a two-dimensional matrix that can be written as

det

[(
p cot δ0(p) 0

0 p cot δ4(p)

)
−
(
f00(q, L) f40(q, L)

f40(q, L) f44(q, L)

)]
= 0 , (2.41)
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where f``′ is given by projecting F`m;`′m′ into the trivial irrep of the octahedral group, taking the
real part and rescaling by the factor used to relate F00,00 to f(q,d, L) in eq. (2.10). The trivial
component here matches that of the S-wave only relation [f00(q, L) = f(q,0, L)] while the others
are described in appendix C. The reduction to a two-dimensional matrix arises from the fact that
f``′ = 0 whenever ` or `′ is equal to 1, 2 or 3. Thus, these entries can be dropped without affecting
the resulting determinant.

Exactly as for f00, the additional f``′ functions can be expanded about q2 = q
(0)
n (L)2 and the

condition of vanishing determinant can be solved order by order for a given power-counting scheme.
For the threshold scheme, one has to work to very high order to first see the effect of ` = 4.
By contrast, in the weakly-interacting scheme, the leading shift for the first excited state (with
q

(0)
n (L)2 = 1) already depends on both partial waves.1 Evaluating eq. (2.41) and expanding, one
reaches

∆
(1)
E[n] =

48π

E
(0)
n (L)L3

(
a0 +

21

4
a4

(
p

(0)
n

)8)
, (2.42)

where p(0)
n ≡ 2πq

(0)
n /L = 2π/L.

In fact, in the weakly-interacting power-counting scheme, all higher partial waves should be included
at leading order. This converts eq. (2.41) to an infinite-dimensional matrix, which can be studied
order by order in the expansion. To see how this works at leading order, note that f``′ is given by

f``′(q, L) ≡ −8πE PA1g,`m PA1g,`′m′ Re lim
α→0+

[
1

L3

∑
k

−
∫
k

]
Y`m(k)Y∗`′m′(k)e−α(k2−p2)

(2ωk)2(E − 2ωk + iε)
,

= − 8πgn

E
(0)
n (L)L3

Mn
``′

ε∆
(1)
E[n]

+O(ε0) , (2.43)

where the definition is taken from appendix A and Y`m(k) =
√

4π(k/p)`Y`m(k̂). We introduce
PA1g,`m, which projects the `th partial wave into the trivial irrep and

Mn
``′ = 4πPA1g,`m PA1g,`′m′

1

|Oh|
∑
R∈Oh

Y`m(R · ν̂n)Y ∗`′m′(R · ν̂n) . (2.44)

As we show in appendix C, this can be rewritten as

Mn
``′ =

√
Pn
`

√
Pn
`′ , (2.45)

where

Pn
` = (2`+ 1)

1

|Oh|
∑
R∈Oh

P`(ν̂n ·R · ν̂n) , (2.46)

and P`(ν̂n · R · ν̂n) = P`(cos θ) is the `th Legendre polynomial. The first few non-zero values of
Pn
` are summarized in table 4. The key point is that Mn

``′ is a rank-one matrix, which allows one

1The effect of higher partial waves on the ground state is suppressed in both schemes. This is because the shift
away from threshold, required to induce dependence on δ` with ` > 0, arises only due to the interactions. Thus the
leading higher-partial waves appear in a product with parameters describing the S-wave interaction.
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P = [000]

` q
(0)
n (L)2 = 1 q

(0)
n (L)2 = 2 q

(0)
n (L)2 = 3

0 1 1 1

4 21
4 5.25000 21

64 0.32813 7
3 2.33333

6 13
8 1.62500 2197

512 4.29102 416
81 5.13580

8 561
64 8.76563 45441

16384 2.77350 187
243 0.76955

10 455
128 3.55469 455

131072 0.00347 58240
6561 8.87670

12 18575
1536 12.0931 56638775

6291456 9.00249 763975
177147 4.31266

14 17255
3072 5.61686 136676855

50331648 2.71553 1104320
177147 6.23392

16 251009
16384 15.3204 3525395489

1073741824 3.28328 6464161
531441 12.1635

18 254227
32768 7.75839 83891347603

8589934592 9.76624 170017664
43046721 3.94961

20 2422567
131072 18.4827 922978270207

137438953472 6.71555 1881436823
129140163 14.5690

Table 4: Numerical values for the Pn
` coefficients, giving the contribution of the `th partial wave

to the first few excited states with Λ = A1g and P = [000].

to analytically evaluate the leading-order determinant. Note that this is only valid when one is
expanding about a state that does not exhibit accidental degeneracy. The latter case is discussed
in detail in the following subsection.

Combining eqs. (2.2), (2.41), (2.43) and (2.45), we reach a determinant of the form

det

[
p cot δ(p) +

8πgn

E
(0)
n (L)L3

1

ε∆
(1)
E[n]

√
Pn ⊗

√
Pn

]
= 0 , (2.47)

where p cot δ(p) is a diagonal matrix populated by p cot δ`(p). This can be rewritten as the eigenvalue
equation

[
1 +

8πgn

E
(0)
n (L)L3

1

ε∆
(1)
E[n]

√
tan δ(p)

p

√
Pn ⊗

√
Pn

√
tan δ(p)

p

]
E = 0 , (2.48)

at which point one can read off E =
√

tan δ(p)
p

√
Pn and thus

1 +
8πgn

E
(0)
n (L)L3

1

ε∆
(1)
E[n]

(√
Pn · tan δ(p)

p
·
√
Pn

)
= 0 . (2.49)

Substituting the leading-order relation p cot δ`(p) = −
[
a`(p

(0)
n )2`

]−1 and solving for the energy shift,
one finally reaches

∆
(1)
E[n] =

8πgn

E
(0)
n (L)L3

∞∑
`=0

Pn
` a`

(
p

(0)
n

)2`
. (2.50)

A similar result to this was already derived in ref. [10], with E(0)
n (L) expanded about L = ∞. As

mentioned above, this result can be re-expressed using −a`(p(0)
n )2` → A`0, in case one has a better

description of tan δ`(p
(0)
n ) than is given by its leading-order threshold expansion.
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This can be readily generalized to non-zero P , taking advantage of the fact that f``′(q,d, L) is also
a rank-one matrix at leading order, when expanded about a non-degenerate state in the moving
frame. One finds

f``′(q,d, L) = − E
(0)
n (L)

4ωνnωd−νn

8πgn

γ
(0)
n L3

√
Pn
`

√
Pn
`′

ε∆
(1)
E[n]

+O(ε0) ,

from which follows

∆
(1)
E[n] =

E
(0)
n (L)

4ωνnωd−νn

8πgn

γ
(0)
n L3

∞∑
`=0

Pn
` a`

(
p

(0)?
n

)2`
, (2.51)

where

Pn
` = (2`+ 1)

1

|LG(P )|
∑

R∈LG(P )

P`(ν̂
?
n ·R · ν̂?n) . (2.52)

Here LG(P ) is the relevant little group for the indicated total momentum, i.e. the subgroup of Oh
under which P is left invariant. In general, Pn

` depends on γ
(0)
n , the Lorentz boost factor. For

example, for P = [001] and νn = (0, 1, 1), the lowest lying components are

Pn
2 =

5(1− 2γ2)2

(1 + 4γ2)2
, Pn

4 =
9(1− 24γ2 + 156γ4 − 144γ6 + 176γ8)

(1 + 4γ2)4
, (2.53)

where we have abbreviated γ = γ
(0)
n . The gamma dependence translates to a dependence on mL

at fixed n and d.

While the numerical values of Pn
` for a given mL can be easily determined, the expressions in terms

of γ(0)
n become very complicated. Therefore, instead of giving additional analytic expressions, we

provide numerical values for several states and total momenta at mL = 4 and 6. These are collected
in tables 5, 6, 7 and 8, which give results for P = [001], [011], [111] and [002] respectively. Cases
do arise for which ν?n and Pn

` do not depend on γ(0)
n . These include trivial examples, in which νn

is parallel to d, as well as more interesting cases in which a cancellation occurs in the definition of
the boost. See tables 6 and 8 for detailed examples.

2.6 Higher partial waves: Including accidental degeneracies

We turn now to the case that the non-interacting states, about which we are expanding, are acci-
dentally degenerate. This occurs whenever one can identify two (or more) values of representative
momenta νn,1 and νn,2 such that the corresponding energies are equal for all L,2 i.e.

En,1(L) = En,2(L) , (2.54)

for

En,i(L) ≡
√
m2 + (2π/L)2ν2

n,i +
√
m2 + (2π/L)2(d− νn,i)2 , (2.55)

2Another special case arises when two energies coincide only for a single, finely tuned value of mL. Here the
non-degenerate expansion can be performed at any L away from the finely tuned point. One then manifestly sees a
breakdown in the form of diverging expansion coefficients as L approaches the crossing. An alternative expansion,
performed exactly at the degenerate point and treating the accidental degeneracy as described here would resolve
the issue and give the correct avoided-level-crossing behavior.
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P = [001]

νn = (0, 0, 0) νn = (0, 1, 1) νn = (1, 1, 1) νn = (0, 1, 2)

mL 4 6 4 6 4 6 4 6

`

γ
(0)
n

1.19626 1.10634 1.07431 1.05691 1.04639 1.03900 1.03504 1.03055

0 1 1 1 1
2 5 0.27129 0.25468 0.59963 0.59284 1.33212 1.34687
4 9 2.45998 2.43769 3.20612 3.18518 0.27682 0.26394
6 13 2.61771 2.77009 0.40378 0.42879 3.66277 3.64266
8 17 5.61785 5.46126 5.77910 5.81357 5.75364 5.75043
10 21 5.34109 5.30821 5.63594 5.67937 6.21060 6.25678
12 25 3.22650 3.27018 7.92711 7.79359 2.73187 2.79102
14 29 11.1664 11.4538 5.60555 5.58544 7.11547 6.90712
16 33 6.01485 5.62644 6.05785 6.07222 13.4850 13.5607
18 37 10.8386 10.6632 10.9403 11.1847 6.22219 6.46048
20 41 6.67668 7.40405 10.7249 10.6259 7.20059 6.96068

Table 5: Numerical values of the Pn
` coefficients, giving the leading-order contribution of the `th

partial wave to the first few low-lying states for Λ = A1 and P = [001]. The coefficients generally
depend on the Lorentz boost factor γ(0)

n but with exceptions, such as νn = (0, 0, 0) here. For this
special case one simply has Pn

` = (2` + 1). In the general case Pn
` depends on mL and here we

evaluate the coefficients for mL = 4 and mL = 6 as indicated.

P = [011]

νn = (0, 0, 0) νn = (1, 1, 1) νn = (1, 1, 0) νn = (0, 1, 2)

mL 4 6 4 6 4 6 4 6

`

γ
(0)
n

1.31075 1.18046 1.13063 1.10236 1.12358 1.09877 1.09259 1.07675

0 1 1 1 1
2 5 1.96835 1.90202 5

3 ∼ 1.66667 2.34477 2.38673
4 9 3.67737 3.84859 41

9 ∼ 4.55556 2.93896 2.88123
6 13 8.60380 8.51008 1885

243 ∼ 7.75720 8.35018 8.25431
8 17 6.65130 6.38607 4505

729 ∼ 6.17970 8.87560 9.13679
10 21 10.3638 11.0137 254261

19683 ∼ 12.9178 7.79505 7.70573
12 25 14.9275 14.3335 5956625

531441 ∼ 11.2084 14.5092 14.1373
14 29 11.4305 11.3172 7345903

531441 ∼ 13.8226 15.8750 16.3929
16 33 17.7535 18.8254 30465875

1594323 ∼ 19.1090 12.9680 13.0249
18 37 20.3293 18.8820 1932764005

129140163 ∼ 14.9664 20.0635 19.2635
20 41 16.7256 17.3828 9057620329

387420489 ∼ 23.3793 23.0663 23.7404

Table 6: As in table 5 but for P = [011]. Note that here two cases arise for which Pn
` is independent

of mL, the trivial case with νn = (0, 0, 0) and a more interesting case with νn = (1, 1, 0).
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P = [111]

νn = (0, 0, 0) νn = (0, 0, 1) νn = (0, 0,−1) νn = (0, 1, 2)

mL 4 6 4 6 4 6 4 6

`

γ
(0)
n

1.39618 1.23919 1.29171 1.20769 1.13026 1.10865 1.11783 1.10111

0 1 1 1 1
2 5 0.78193 0.72807 1.59464 1.66216 0.11819 0.10608
4 9 2.37330 2.53029 0.74414 0.67119 0.59680 0.64024
6 13 6.82511 6.67527 6.46793 6.27289 2.63788 2.57512
8 17 2.59823 2.50325 6.98998 7.37341 4.73931 4.78323
10 21 8.52575 9.01303 3.20973 3.24944 1.19544 1.13906
12 25 9.76633 9.05537 9.73565 9.01811 3.28963 3.49965
14 29 5.74940 6.19649 13.0258 13.5804 8.75731 8.34118
16 33 15.1005 15.4210 6.78710 7.40763 2.39753 2.75679
18 37 10.7882 9.61485 11.7747 10.4662 6.48135 6.55101
20 41 11.3319 12.7961 18.7898 18.9909 6.61792 6.18188

Table 7: As in table 5 but for P = [111].

P = [002]

νn = (0, 0, 0) νn = (0, 1, 1) νn = (1, 1, 2) νn = (0, 1, 2)

mL 4 6 4 6 4 6 4 6

`

γ
(0)
n

1.46576 1.28858 1.30828 1.23412 1.14714 1.12709 1.21680 1.17441

0 1 1 1 1
2 5 5

4 ∼ 1.25 0.03784 0.02915 0.05480 0.08510
4 9 99

16 ∼ 6.18750 2.31286 2.31576 2.25597 2.20657
6 13 143

32 ∼ 4.46875 4.82646 4.90205 4.87130 4.76372
8 17 2771

256 ∼ 10.8242 1.70987 1.49774 1.90006 2.41449
10 21 4053

512 ∼ 7.91602 7.57424 7.83763 6.77813 5.80645
12 25 31375

2048 ∼ 15.3198 4.88759 4.82769 6.52095 7.59568
14 29 46951

4096 ∼ 11.4626 7.73567 7.34108 5.64314 5.10550
16 33 1293699

65536 ∼ 19.7403 8.16988 8.99679 9.47708 8.99164
18 37 1975097

131072 ∼ 15.0688 8.99199 8.14196 10.1730 11.5729
20 41 12641653

524288 ∼ 24.1120 11.4709 11.7618 6.75650 5.17772

Table 8: As in table 5 but for P = [002]. As with table 6 a non-trivial case of mL independence
arises.

but with the property that νn,1 and νn,2 (and also νn,1 and d− νn,2) are not related by rotations
within LG(P ). Equivalently, the n state is accidentally degenerate whenever the elements of the
set Sn, defined in eq. (2.15), are not related by rotations within the little group.

The standard example is the state with q(0)
n (L)2 = 9 and P = [000], which includes νn,1 = (1, 2, 2)

and νn,2 = (0, 0, 3). In this case, the set Sn naturally decomposes into two subsets, given by all
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rotations of the two momentum types, and we say the state is two-fold degenerate. The degeneracy
is broken by the lowest non-vanishing angular momentum that couples to the system, ` = 4. Setting
`max = 4 and expanding f``′ to leading order gives

(
f00(q, L) f40(q, L)

f40(q, L) f44(q, L)

)
= − 240π

E
(0)
n (L)L3

1

ε∆
(1)
E[n]

 1 5
18

√
7
3

5
18

√
7
3

1967
972

+O(ε0) , (2.56)

where crucially, and in contrast to the case analyzed in the previous subsection, the leading-order
part of f``′ is no longer rank one and thus multiple solutions arise. Substituting into eq. (2.41),
expanding to leading order in a0, a4 = O(ε) and solving for the leading-order energy shift, one finds

∆
(1)
E[n],±(L) =

120π

E
(0)
n (L)L3

(
α±

√
β
)
, (2.57)

α = a0 +
1967

972
a4(p

(0)
n )8 , (2.58)

β = a2
0 −

539

162
a0a4(p

(0)
n )8 +

(
1967

972

)2

a2
4(p

(0)
n )16 . (2.59)

Expanding the split states about a4 = 0 then yields

∆
(1)
E[n],+(L) =

240π

E
(0)
n (L)L3

a0 +O(a4) , (2.60)

∆
(1)
E[n],−(L) =

35840π

81E
(0)
n (L)L3

a4(p
(0)
n )8 +O(a2

4) . (2.61)

It is interesting to note that ∆
(1)
E[n],+(L) matches the naive non-degenerate result of eq. (2.21) with

gn = 30 counting rotations and flips of both (1, 2, 2) and (0, 0, 3) within Sn. (See also table 2.)

A similar calculation can be used to deduce the leading splitting for any accidentally generate state
with any value of P . Odd partial waves never contribute, since δ`(p) = 0 for identical particles with
odd `. However, in the case of non-zero total momentum, the projected geometric function f``′ is
nonzero for `, `′ = 2 and δ2(p) does enter the energy shift. As with the example presented above,
the leading-order energies can always be determined by identifying the value of `max required to
break the accidental degeneracy and solving the quantization condition truncated to this order.

Rather than give a large number of examples, here we summarize two key observations, proven in
appendix E:

• For non-zero P , the accidental degeneracy is sometimes broken only by ` = 4, even when ` = 2

contributes to the energy shifts. In particular, one can show that for all states with P = [00a]

and P = [aaa], `max = 4 is required to split degenerate levels. For all other momentum types,
the splitting occurs with `max = 2.

• Determining the leading shift in a power-counting for which a finite set of partial waves are
counted as the same order, a` = O(ε), one generically recovers expressions like eq. (2.57),
i.p. not polynomials in the partial-wave coefficients. However, expanding the resulting solu-
tions about a` = 0 for all non-zero `, one always recovers one shift of the form

∆
(1)
E[n],+(L) = gn

E
(0)
n (L)

4ωνnωd−νn

8πa0

γ
(0)
n L3

. (2.62)
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Figure 1: Result of equating the numerically determined finite-volume energy, En(L), to the
truncated expansion of eq. (2.39) and solving for the leading coefficient, Bn,0. The extraction
is performed for the ground state (n = 0) and the first three excited states (n = 1, 2, 3) all for
P = [000] and for three different values of ma0, as indicated in the legend. The border between the
shaded blue and the unshaded regions indicates the numerical value of Bn,0 in each case, given by
explicitly evaluating the sum defined in eq. (2.40). As expected, the extraction from the full En(L)
value approaches the expected value as mL increases and, for fixed mL, also as ma0 decreases.

This is the naive result for non-degenerate states given in eq. (2.57). In the case of a two-fold
degeneracy, the other state has a shift of the form

∆
(1)
E[n],−(L) ∝ a`B (p

(0)
n )2`B , (2.63)

where `B is the lowest partial wave that is required to split the degeneracy.

3 Numerical checks

In the previous section we have laid out a systematic method for expanding a given finite-volume
energy in an arbitrary frame to any desired order in a specified power-counting scheme. We have
additionally presented the explicit leading-order, and in certain cases higher-order, energy shifts for
any non-degenerate state.

The specific results given depend on details of the state and the scheme used. In the threshold
scheme, in which the S-wave dominates, we give the NLO expression for general momentum P

and general excitation n in eq. (2.21) and the NNLO expression for P = [000] in eq. (2.39). The
result in the weakly-interacting scheme is given in eq. (2.51) and contains an infinite sum over
angular momentum components with known coefficients. (See also tables 4 - 8.) Finally, section
2.6 summarizes the leading-order results in the case of an accidentally degenerate state. Here the
expansion must be performed, at least initially, treating the degeneracy-breaking partial wave as
leading order.

In this section we summarize two tests that verify our methods and provide a cross check on the
expressions presented in this work. Both make use of the fact that one can numerically solve
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the S-wave quantization condition for weakly interacting systems and numerically compare to the
expanded result.

The first check explicitly addresses eq. (2.39) by taking this result, truncated to the order written,
then substituting in the numerical determination of En(L) and finally solving for an effective Bn,0

Beff
n,0(L) ≡

[
En(L)− E(0)

n (L)− gn
8πa0

E
(0)
n (L)L3

](
gn

8a2
0

E
(0)
n (L)L4

)−1

+
4π2gn

E
(0)
n (L)2L2

. (3.1)

As we confirm in figure 1, this quantity asymptotes to the values predicted by eq. (3) and listed in
table 3. The approach to the plateau is consistent with the expected scaling

Beff
n,0(L) = Bn,0 +O(a0/L) . (3.2)

The second check addresses eq. (2.21) and shows that the difference between our analytic expres-
sion and the numerical result from the quantization condition decreases in magnitude as one goes
to higher orders in the expansion. This check is performed by subtracting first the LO term (the
non-interacting energy) followed by the next-to-leading-order (NLO) correction (the correction pro-
portional to a0). We carry out this analysis for three values of total momenta – P = [000], [001], [011]

– and for the four lowest states in each frame. The results of this comparison are shown in figure 2.

4 Conclusion and outlook

In this work we have presented analytic expansions of finite-volume two-particle excited states for
any value of spatial momentum, P , defined with respect to the finite-volume frame. The results were
derived using Lüscher’s finite-volume scattering formalism and its extension to the moving frame,
and provide intuition for numerical solutions of the latter. In contrast to the rest-frame ground
state, for non-zero P and for excited states, the inverse box length 1/L no longer neccesarily defines
a useful expansion parameter. This is because the non-interacting energy and the Lorentz boost
factor both depend on the volume, and expanding these, as they appear within the energy shift,
degrades the range of validity without really simplifying the results. The preferred method is thus
to parametrize the scattering amplitude, and to assign a power-counting scheme to the relevant
parameters in order to organize the series. This is discussed in section 2.4.

The general method and concrete results, detailed in section 2, apply to a single channel of identical
spinless particles. Attention is also restricted to finite-volume energies in the trivial irrep of the
symmetry group, but we do include the effects of higher orbital angular momenta, which contribute
to the trivial irrep due to the reduced rotational symmetry of the cubic box. As is discussed in
detail in section 2.6, non-trivial partial waves play a particularly interesting role in the case of
accidentally degenerate states, for which they are required to split the degeneracy.

The main motivation of this work is to establish the method, and the necessary inputs, for an
analogous expansion of three-particle finite-volume excited states with generic P . We have derived
these results in parallel, by expanding the three-particle quantization condition of refs. [24, 25]. The
results will be presented in a separate manuscript. The expressions for three-particle states are ex-
pected to be particularly useful since the full numerical machinery is significantly more complicated
than in the two-particle sector.
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Figure 2: The difference between the full finite-volume energy, found by numerically solving the
S-wave-only quantization condition, and the analytic expressions derived in the manuscript. The
three columns show three different momenta, P = [000], [001], [011], and the rows show the ground
state (top) and first three excited states (second to fourth rows as labeled). Each panel shows
three different scattering length values and two orders of subtraction. As expected, the difference
decreases when the subtracted order is increased, and smaller values of ma0 give a smaller residue.

In addition to setting the framework for three-particle energies, analytic expressions for two-particle
energies are useful in their own right. We have four applications in mind: First, the results can
build intuition on the sensitivity of energy shifts to scattering parameters (e.g. to design a lattice
calculation to target a particular scattering observable). This includes basic observations, such as
the fact that nonzero total momentum generically reduces the energy shifts and that states with
high multiplicity in the non-interacting limit have enhanced shifts. Second, the expansions may
be used to understand volume effects in more complicated lattice quantities, by decomposing the
latter in a spectral representation (i.e. inserting a complete set of finite-volume states and inserting
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expansions for the energies and matrix elements). This could be instructive for the vector-vector
correlator, entering the leading-order hadronic vacuum polarization contribution to the muon’s
magnetic moment, as well as the smeared spectral functions discussed, e.g. in refs. [53–57]. Third,
the expansions may be useful in designing efficient root finding in numerical solvers of the full
quantization condition. Fourth, and finally, the expansions can give information on the convergence
of higher partial waves as they enter the finite-volume energies. This is represented by the tables
4-8, which summarize the known geometric part of contribution of the `th partial wave’s leading
contribution to various energies.

This work clearly opens the door to many generalizations, including expansions of the two-body
formalism for non-identical and non-degenerate masses, for multiple channels and for particles with
intrinsic spin, as well lifting the restriction to the trivial irrep. Another class of extensions would
be to adjust the expansion to accommodate poles in tan δ`(p), that generically arise in systems
with a narrow resonance. In all cases it should be stressed that an expansion can never contain
more information than a direct numerical solution of the quantization condition, provided the later
is evaluated with the same angular-momentum truncation and the same scattering amplitudes.
Nevertheless, the analytic understanding provided by this approach is highly instructive and will
be a useful tool on the way to increasingly ambitious multi-particle lattice calculations.
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A F function

The geometric function F , for a single channel of identical spin-zero particles, is defined as [10–
12, 14]

F`′m′,`m(E,P , L) =
1

2
lim
α→0+

[
1

L3

∑
k

−
∫
k

]
Y`′m′(k?)Y∗`m(k?)e−α(k?2−p?2)

2ωk2ωP−k(E − ωk − ωP−k + iε)
. (A.1)

The sum-integral difference is specified using

1

L3

∑
k

=
1

L3

∑
k=2πv/L

v∈Z3

,

∫
k

=

∫
d3k

(2π)3
, (A.2)

where the sum runs over integer-vector multiples of (2π/L) and the integral has the usual momentum-
space normalization. The various factors of ω are defined via

ωk =
√
m2 + k2 , ωP−k =

√
m2 + (P − k)2 . (A.3)

The CoM frame vector k? satisfies

Λµν(−P /E)

(
ωk
k

)ν
=

(
ω?k
k?

)µ
, (A.4)

where Λµν(−P /E) is the Lorentz boost with velocity given by the argument, i.e. the boost for
which

Λµν(−P /E)

(
E

P

)ν
=

(
E?

0

)µ
. (A.5)

We denote the magnitude and direction of k? by k? and k̂?, respectively, i.e. k? = k?k̂?.

The numerator of eq. (A.1) includes the generalized spherical harmonics

Y`m(k?) =
√

4π

(
k?

p?

)̀
Y`m(θ?, φ?) , (A.6)
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where p? is defined in terms of E? by eq. (2.6) and the angles defined via
k̂? = (sin θ? cosφ?, sin θ? sinφ?, cos θ?). The exponential in the numerator is used to regulate the
ultraviolet behavior of the sum and integral individually and, as indicated, the regulator indepen-
dent definition of F is given by sending α→ 0+. Finally, the iε pole-prescription in F in inherited
from the pole-prescription defining the Feynman diagrams appearing in the definition of M(E?)

and is also required to make the integral well-defined.

As was shown in refs. [10–12, 14], the F -functions can be rewritten in terms of generalized zeta
functions. For example

F00,00(E,P , L) =
1

2
lim
α→0+

[
1

L3

∑
k

−
∫
k

]
e−α(k?2−p?2)

2ωk2ωP−k(E − ωk − ωP−k + iε)
, (A.7)

=
1

4E?
lim
α→0+

[
1

L3

∑
k

ω?k
ωk
−
∫
k?

]
e−α(k?2−p?2)

p?2 − k?2 + iε
, (A.8)

=
1

16πE?
lim
s→−1

1

γ(q,d, L)πL

∑
v∈Z3

[
q2 − Γ(v|q,d, L)

]s
+ i

p?

16πE?
, (A.9)

where in the second and third lines we have dropped terms scaling as e−mL. This result, together
with

M00,00(E?)−1 =
p? cot δ0(p?)− ip?

16πE?
, (A.10)

implies eq. (2.9) of the main text.

B Level crossing with two-particle energies

In this appendix we show that, while non-interacting two-particle levels never intersect as a function
of mL for P = [000], such crossings do occur for non-zero momenta in the finite-volume frame. We
also comment on the consequences of this for the definition of the index n, within n = n,P ,Λ.

The non-crossing for P = [000] follows immediately from the series of inequalities

ν2
n2
> ν2

n1
=⇒ m2 +

4π2

L2
ν2
n2
> m2 +

4π2

L2
ν2
n1

=⇒ En2
> En1

. (B.1)

To see that this breaks for non-zero P consider this particular example for P = [003]:

E
(0)
2,[003],A1g

=

√
m2 + 2

4π2

L2
+

√
m2 + 5

4π2

L2
,

(
νn = (0, 1, 1)

)
, (B.2)

E
(0)
3,[003],A1g

= m+

√
m2 + 9

4π2

L2
,

(
νn = (0, 0, 0)

)
, (B.3)

where we have explicitly included the ordering index, determined in the large mL limit. The two
energies coincide at mL = 3π/

√
2 ∼ 6.7. This represents a second kind of accidental degeneracy.

Although perturbative results, such as the that given in eq. (2.39), hold on either side of the
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P LG(P ) Nelements Nirreps
[000] Oh 48 10
[00a] C4v 8 5
[0aa] C2v 4 4
[0ab] Cs 2 2
[aaa] C3v 6 3
[aab] Cs 2 2
[abc] C1 1 1

Table 9: Basic properties of finite-volume little groups for a given P , including the name of LG(P ),
the number of group elements and the number of irreps. For more details see refs. [11, 12, 51, 52].

intersection point, the expansion coefficients become arbitrarily large and diverge as the intersection
is approached and thus the expansion breaks down.

Finally, for asymptotically large mL one can use the non-relativistic expansion to show

(
ν2
n2

+ (d− νn2
)
2
)
>
(
ν2
n1

+ (d− νn1
)
2
)

=⇒ En2
> En1

,
(
L→∞

)
, (B.4)

i.e. a definitive ordering is restored. This can be used to unambiguously index the energies in
studying expansions where such crossings occur.

C Finite-volume symmetry and projectors

In numerical lattice calculations, one generally considers finite-volume energies in a given irrep of
the relevant symmetry group. For a cubic, periodic geometry, the relevant group is determined
by the total momentum: For P = [000] the system is invariant under the elements of Oh, the
48-element octahedral group (including parity transformations), while for nonzero P the invariance
is reduced to a subgroup of Oh, called the point group or little group and denoted by LG(P ),
built from all elements that do not transform the total momentum. In table 9 we list the little
groups for all possible total momentum assignments. In order to extract scattering information
from lattice results, the quantization condition must also be projected to a fixed irrep, as we have
done in eq. (2.2). This is discussed elsewhere in great detail; see for example refs. [11, 12, 51, 52].
Here we only describe a few key points relevant to this work.

Restricting attention first to P = [000], and thus the Oh group, and considering only the trivial
irrep A1g, our first aim is to work out the projectors introduced in eq. (2.2), denoted PA1g,`m in
this case. The defining property of PA1g,`m is that, when the m index is contracted with Y`m(k̂),
the resulting function is invariant under the group elements, i.e. for any R ∈ Oh,∑

m

PA1g,`mY`m(k̂) =
∑
m

PA1g,`mY`m(R · k̂) , (C.1)

where we stress that the sum only runs over m. One can inspect that the following quantity has
this property

PA1g,`m =
1

N
∑
R∈Oh

Y ∗`m(R · ê) , (C.2)
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where N is a normalization constant for nonzero vectors and ê is a generic unit vector. To see that
the projector satisfies eq. (C.1), note

∑
m

PA1g,`mY`m(k̂) =
∑
m

1

N
∑
R′∈Oh

Y ∗`m(R′ · ê)Y`m(k̂) , (C.3)

=
2`+ 1

4π

1

N
∑
R′∈Oh

P`(k̂ ·R′ · ê) , (C.4)

=
2`+ 1

4π

1

N
∑

R′′∈Oh

P`(k̂ ·R ·R′′ · ê) , (C.5)

=
∑
m

PA1g,`mY`m(R · k̂) . (C.6)

Similar relations can be used to prove

| N |2 = |Oh|
∑
R∈Oh

∑
m

Y ∗`m(R · ê)Y`m(ê) . (C.7)

As an example, applying this for ` = 4 gives

PA1g,4m′ =
1

2
√

6

(√
5, 0, 0, 0,

√
14, 0, 0, 0,

√
5
)
m′
. (C.8)

This is then used to define f40 and f44, used in section 2.5.

To make this useful for general ` we return to the expressions of section 2.5, beginning with the
definition of M``′ , eq. (2.44), which we repeat for convenience

Mn
``′ = 4πPA1g,`m PA1g,`′m′

1

|Oh|
∑
R∈Oh

Y`m(R · ν̂n)Y ∗`′m′(R · ν̂n) . (C.9)

Now note that, because of eq. (C.1), the sum over rotations is redundant and thus

Mn
``′ = 4πPA1g,`m PA1g,`′m′Y`m(ν̂n)Y ∗`′m′(ν̂n) . (C.10)

From this it is clear that Mn
``′ is rank one: We write Mn

``′ =
√
P`
√
P`′ where

P` = 4π
(
PA1g,`mY`m(ν̂n)

)2

. (C.11)

Finally substituting our expression for the projector yields

P` = 4π

(
1

N
∑
m

∑
R∈Oh

Y ∗`m(R · ê)Y`m(ν̂n)

)2

, (C.12)

= 4π

(
|Oh|

∑
R∈Oh

∑
m

Y ∗`m(R · ê)Y`m(ê)

)−1(∑
m

∑
R∈Oh

Y ∗`m(R · ê)Y`m(ν̂n)

)2

. (C.13)

where in the second line we have substituted the result for N , eq. (C.7).

At this point, a few comments are in order about the arbitrary vector ê in eq. (C.2). To fully specify
the role of this vector we take a small detour over some basics of groups and representations. While
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` specifies an irrep of the group of continuous rotations SO(3), it is no longer irreducible with
respect to the subgroup of the finite volume system. Instead, a given ` value splits into a set of
finite-volume irreps. This manifests in the quantization condition by the fact that finite-volume
energies in the given irrep are shifted by the partial wave. For the case of Oh, the symmetry group
of P = [000], all even ` besides ` = 2 contain at least one embedding of the trivial irrep. In addition,
while exactly one embedding occurs for ` = 0, 4, 6 and 10, for ` = 12 and some other higher values,
multiple embeddings can arise.

Consider first the values of ` for which exactly one embedding appears. Then PA1g,`m must be
uniquely specified up to a phase and any choice of ê will give the same result, up to that ambiguity.
Within the definition of P`, it is particularly convenient to choose ê = ν̂n, from which follows

P` = 4π
1

|Oh|
∑
R∈Oh

∑
m

Y ∗`m(R · k̂)Y`m(ν̂n) , (C.14)

= (2`+ 1)
1

|Oh|
∑
R∈Oh

P`(ν̂n ·R · ν̂n) . (C.15)

This matches eq. (2.46) of the main text.

Next consider a case such as ` = 12, for which multiple embeddings of the trivial irrep ap-
pear. Provided the state of interest does not exhibit an accidental degeneracy, one can show
that using eq. (C.15) still gives the correct result for the leading-order shift. To prove this gen-
erally, suppose that a given ` value has K > 1 embeddings of A1g forming a basis of vectors
PA1g(1),`m,PA1g(2),`m, · · · ,PA1g(K),`m. Choose PA1g(1),`m as the vector generated by ê = ν̂n. Next
note that, since the projectors are orthonormal, for any k 6= 1 one has

∑
m

PA1g(k),`mP∗A1g(1),`m =
1

N
∑
m

PA1g(k),`m

∑
R∈Oh

Y`m(R · ν̂n) = 0 . (C.16)

This implies that PA1g(k),`m annihilates the expression for F`m,`′m′ , expanded to leading-order
about the non-accidentally degenerate state of interest, meaning that no solution appears for the
given state and embedding. For states with an accidental degeneracy, by contrast, one must keep
the full subspace spanned by PA1g(1),`m,PA1g(2),`m, · · · ,PA1g(K),`m to identify the complete set of
interacting solutions. For the rest frame this is a highly obscure case, since it requires ` = 12 or
higher and the first accidentally degenerate state is the 8th excited state.

These results generalize readily to nonzero P with A1g replaced by A1, the label of the trivial irrep
for all groups besides Oh. As with the rest frame case, the key observation is that

PA1,`m =
1

N
∑

R∈LG(P )

Y ∗`m(R · ν̂?n) , (C.17)

defines a generic projector that can be used to derive the contribution of all partial waves to the
leading-order energy shift.

D Equivalence of poles and non-interacting energies

In this appendix we show that the set of v solving

q2 − Γ(v|q,d, L) = 0 , (D.1)
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exactly corresponds to the set satisfying

E = ωv + ωd−v , (D.2)

provided that E? > 0.

As a first step we follow ref. [14] to write

q2 − Γ(v|q,d, L) = q2 − 1

γ(q,d, L)2

(
v‖ −

d

2

)2

− v2
⊥ , (D.3)

= (E?/2− ω?v)× Ξ(v, E,d, L) , (D.4)

where v‖ and v⊥ are the components of v that are parallel and perpendicular to d, respectively. In
the second line we have introduced

Ξ(v?, E,d, L) ≡ L2

4π2

(
E?/2 + ω?v

)
+ 2

d

E
· v? − d2

E2
(E?/2− ω?v) , (D.5)

=
L2

4π2

[
E?

2

(
1− β2

)
+

4π

L
β · v? + ω?v

(
1 + β2

)]
. (D.6)

The result (D.4), derived in ref. [14], together with the fact that Ξ is finite for all finite values of
its arguments (and nonzero L) is enough to show that a solution of E? − 2ω?v = 0 also satisfies
q2 − Γ = 0.

To show the converse, that a solution of q2 − Γ = 0 also satisfies E? − 2ω?v = 0, we now prove that
Ξ cannot vanish for E? > 0. This can be achieved by demonstrating the inequality

−2β · k? − ω?v
(
1 + β2

)
<
E?

2

(
1− β2

)
, (D.7)

where we have defined k? ≡ 2πv?/L. This can be demonstrated via the equality

−2β · k? < ω?v
(
1 + β2

)
, (D.8)

which is a stronger result since 1− β2 > 0. To see that (D.8) holds, note that the left-hand side is
maximized when −2β · k? = 2|β||k?|. Squaring both sides gives

4k?2 < (m2 + k?2)
(1 + β2)2

β2
, (D.9)

which holds since x+1/x > 2 for x ∈ [0, 1). It follows that Ξ 6= 0 for all real values of its arguments,
provided E? > 0.

Having shown that the set satisfying q2 − Γ = 0 is equivalent to that satisfying E? − 2ω?v = 0, it
remains only to prove that the latter is also equivalent to the set of v satisfying the moving frame
condition: E −ωv −ωd−v = 0. This is the case, due to the fact that the following expressions have
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the same set of roots for E? > 0

E? − 2ω?v ⇔ (E? − ω?v + ω?v)(E? − 2ω?v) , (D.10)

⇔ (E? − ω?v)2 − k?2 −m2 , (D.11)

⇔ (P − k)2 −m2 , (D.12)

⇔ (E − ωv − ωd−v)(E − ωv + ωd−v) , (D.13)

where ⇔ is used here to indicate that the two expressions have the same roots. Here we have
introduced P ?µ = (E?,0) and k?µ = (ω?v,k

?) and used the fact that (P − k)2 is a Lorentz scalar to
rewrite it in the finite-volume frame.

Finally, to see that the unwanted factor in the final line does not induce any additional solutions,
note that it has the same roots as the following:

E − ωv + ωd−v ⇔ (E − ωv + ωd−v)(E + ωv + ωd−v) (D.14)

⇔ (E + ωv′)2 − ω2
d−v′ (D.15)

⇔ (P + k′)2 −m2 , (D.16)

⇔ (E? + ω′?k )2 − ω′?2k , (D.17)

⇔ E?(E? + 2ω′?k ) , (D.18)

where we have introduced v′ = d− v and k′µ = (ω′k,−2πv′/L). The final expression is manifestly
nonzero for E? > 0. This completes the proof.

E Two observations concerning accidental degeneracy

In this appendix, we prove the assertions given in section 2.6.

We begin by demonstrating that, for total momentum types P = [00a] and P = [aaa], accidental
degeneracies in the trivial irrep are only broken when ` = 4 is included, even though ` = 2 con-
tributes to the energies. We also show the converse, that for all other non-zero total momenta the
degeneracy is broken by ` = 2.

Before turning to the various cases in the moving frame, we review the situation for P = [000].
Here ` = 4 is the first non-trivial partial wave that contributes to trivial-irrep energies and, as
we discuss in section 2.6, including this partial wave does indeed split the accidentally degenerate
states. The splitting occurs because the matrix f``′ , truncated to `max = 4 and then expanded to
leading order about the non-interacting solution, has rank exceeding one whenever the solution of
interest is accidentally degenerate.

The condition that the truncated and expanded f``′ is rank one is equivalent to the relation

∑̀
m=−`

PA1g,`mY`m(ν̂n) =
∑̀
m=−`

PA1g,`mY`m(v̂) , ∀v ∈ Sn , (E.1)

and this holds for the low lying states, for which all elements of Sn are rotations of νn, but generally
fails at ` = 4 whenever an accidental degeneracy occurs. For example, one can readily check that the
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left-hand side gives different values when evaluated at νn = (0, 0, 3) as compared to νn = (1, 2, 2).
Since both of these three-vectors are within Sn for the 8th excited state, this is sufficient.

Returning to non-zero P , note that νn and ν′n represent degenerate states if and only if

ωνn + ωd−νn = ων′
n

+ ωd−ν′
n
, (E.2)

but νn cannot be transformed into either ν′n or d− ν′n via an element of the little group, LG(P ).

Next, defining ν?n as the result of boosting (Lωνn/(2π),νn) with velocity β = −P /(ωνn + ωd−νn),
we see that eq. (E.2) implies

2ων?
n

= 2ων′?
n
, (E.3)

and thus3

(ν?⊥)2 + (ν?‖ )
2 = (ν′?⊥ )2 + (ν′?‖ )2 , (E.4)

where ν?⊥ and ν?‖ are three-vectors parallel and perpendicular to d satisfying ν? = ν?⊥+ν?‖ . Because
ν?‖ and ν′?‖ are boost dependent, while ν?⊥ = ν⊥ and ν′?⊥ = ν′⊥ are not, one can additionally infer

(ν?⊥)2 = (ν′?⊥ )2 , (ν?‖ )
2 = (ν′?‖ )2 . (E.5)

We are now in position to determine whether the ` = 2 partial wave will lead to a splitting in the
corresponding energies. As with the rest-frame case, a splitting will occur whenever the f``′ matrix,
truncated to `max = 2 and expanded about the state of interest, has a rank exceeding one. This, in
turn, occurs whenever

2∑
m=−2

PA1,2mY2m(ν̂?) 6=
2∑

m=−2

PA1,2mY2m(ν̂′?) , (E.6)

where PA1,`m is a projector to the trivial irrep of LG(P ).

To explore this condition we require some additional notation. We define ν?‖,z = d̂ · ν?‖ as the
component of ν?‖ along the momentum direction. Note that this is equal to |ν?‖ | up to a sign.
Here we include the z-subscript to suggest the definition of a coordinate system with the z-axis
along d. Similarly we introduce (ν?⊥,x, ν

?
⊥,y) as the two components of ν?⊥ along two arbitrary axes

perpendicular to d. With these components in hand the sum over the ` = 2 harmonics takes the
form

|ν?|2
∑̀
m=−`

PA1,`mY`m(ν̂?) = α1

[
(ν?⊥,x)2 + (ν?⊥,y)2

]
+ α2(ν?‖,z)

2

+ β1

[
(ν?⊥,x)2 − (ν?⊥,y)2

]
+ β2ν

?
⊥,xν

?
⊥,y + β3ν

?
‖,zν

?
⊥,x + β4ν

?
‖,zν

?
⊥,x , (E.7)

where α1, α2, β1, β2, β3, and β4 are coefficients that depend on d and on the exact definition of
PA1,2m. Combining eqs. (E.5), (E.6) and (E.7), we deduce that the ` = 2 partial wave cannot break
accidental degeneracies if, for a given P , βi = 0. Thus it remains only to show that this is the case
for P = [00a] and P = [aaa] but not for other values of total momentum.

3To avoid clutter of notation we drop the n subscript for the remainder of this appendix.
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The terms multiplying βi coefficients are all symmetry breaking, i.e. are not invariant under con-
tinuous rotations about the d axis. At the same time, because PA1,`m projects to the trivial irrep,∑
m PA1,`mY`m(ν̂?) must be invariant under the group elements, by construction. This gives a

number of constraints on the coefficients, and it follows that βi = 0 whenever the little group,
LG(P ), is large enough to give the required constraints. In the case of P = [00a] one can readily
identify the required symmetries

ν?⊥,x ↔ ν?⊥,y ⇒ β1 = 0, β3 = β4 , (E.8)

ν?⊥,x ↔ −ν?⊥,x , ν?⊥,y ↔ −ν?⊥,y ⇒ β3 = β4 = 0 , (E.9)

ν?⊥,x ↔ −ν?⊥,x ⇒ β2 = 0 . (E.10)

Similarly for P = [aaa] one can identify constraints from the six elements of the corresponding
little group that ensure βi = 0. To complete the demonstration one must find examples of all
other nonzero momentum types, namely types [0aa], [0ab], [abb], [abc], for which the βi coefficients
are non-zero. We have done this through explicit calculation and have confirmed that whenever
accidental degeneracy occurs, it is broken by the ` = 2 harmonics. Note that this is highly plausible
given the results of table 9. Each of the symmetry groups for which ` = 2 generates the splittings
has 4 or fewer elements, meaning that not enough constraints arise to require βi = 0.

We now turn to the second claim presented in section 2.6 that, in the limit where the coefficients
of higher partial waves are taken arbitrarily small, one of the states in an accidentally degenerate
system is shifted according to the naive result

∆
(1)
E[n],+(L) = gn

E
(0)
n (L)

4ωνnωd−νn

8πa0

γ
(0)
n L3

. (E.11)

This follows directly from noting that the roots of eq. (2.41) (with the ` = 4 replaced by a generic
`) match those of the following relation:[

1− f00(q,d, L)
tan δ0(p)

p

][
1− f``(q,d, L)

tan δ`(p)

p

]
= f`0(q,d, L)2 tan δ0(p) tan δ`(p)

p2
. (E.12)

As δ`(p) tends to zero this manifestly picks up the solution of eq. (2.9) together with non-interacting
solutions.
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