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177University of Sheffield, Sheffield S3 7RH, United Kingdom
178South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
179South Dakota State University, Brookings, SD 57007, USA
180University of South Carolina, Columbia, SC 29208, USA
181Southern Methodist University, Dallas, TX 75275, USA
182Stony Brook University, SUNY, Stony Brook, NY 11794, USA
183Sungkyunkwan University, Suwon, 16419, Korea, visitor to the collaboration
184Sun Yat-Sen University, Guangzhou, 510275
185University of Sussex, Brighton, BN1 9RH, United Kingdom
186Syracuse University, Syracuse, NY 13244, USA
187Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
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Abstract. The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR)
originating in the core of the Sun would provide a unique signature of dark matter annihila-
tion. Since excellent angle and energy reconstruction are necessary to detect this monoener-
getic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities,
is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed
KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions
and the response of DUNE. We find that, although reconstruction of the neutrino energy and
direction is difficult with current techniques in the relevant energy range, the superb energy
resolution, angular resolution, and particle identification offered by DUNE can still permit
great signal/background discrimination. Moreover, there are non-standard scenarios in which
searches at DUNE for KDAR in the Sun can probe dark matter interactions.

Keywords: Dark matter, Solar WIMPs, indirect WIMP search
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1 Introduction

There has been recent interest from the experimental community in detecting the neutrinos
produced by kaon decay at rest (KDAR) [1, 2]. One application for these techniques is the
search for neutrinos produced when gravitationally-captured dark matter annihilates in the
core of the Sun [3–5]. If dark matter annihilation produces u, d, and s quarks, then the
result of subsequent hadronization and fragmentation would be a large number of K+ which
come to rest in the dense solar medium before decaying. 64% of these decays (K+ → µ+νµ)
produce monoenergetic νµ with an energy of ∼ 236 MeV [6–8]. The oscillations of these
neutrinos while passing through the dense solar medium and vacuum results in approximately
comparable fluxes of active neutrinos in all three flavors at Earth [9]. Recent work has focused
on developing new techniques for utilizing the excellent particle identification and energy and
angular resolution of DUNE to identify the energy and direction of the incoming 236 MeV
neutrino [10]. The identification of a flux of 236 MeV neutrinos arriving from the Sun would
be an extraordinary signal of new physics, providing a new handle on dark matter interactions
which could be a unique probe of non-standard dark matter models [11]. This work further
develops techniques for measuring the monoenergetic neutrinos arising from KDAR in the
Sun, with a focus on increasing the signal-to-background ratio.

At water Cherenkov (WC) neutrino detectors, it is very difficult to determine the direc-
tion of an O(100) MeV neutrino because the charged lepton produced by a charged-current
interaction is largely isotropic at these energies. But in a large fraction of neutrino-argon
CC-interactions, a proton is ejected preferentially in the forward direction. Though this pro-
ton cannot be seen in a WC detector, its energy and direction can be well-measured in a
liquid argon time projection chamber (LArTPC) detector, such as DUNE. Thus, although
WC detectors will generally have a statistical advantage due to their size, LArTPC detectors
can have an advantage in reducing some systematic uncertainties, due to a greater ability to
reject background.

In [10], it was proposed that one search for DUNE events with exactly one proton and one
charged lepton with a total energy of 236 MeV, and with the proton directed away from the
Sun. It was found that this directionality strategy should improve DUNE sensitivity to dark
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matter annihilation in the Sun, while yielding a signal-to-background ratio as high as ∼ 40%.
In this paper, we use the LArSoft package [14] to realistically model the detector response,
including the asymmetric response due to the orientation of the detector with respect to the
incoming neutrino, and we use the Pandora package [16] to perform track reconstruction. We
also find that, although the charged lepton is produced roughly isotropically, its direction is
correlated with that of the proton, providing a new method for rejecting background that
can significantly improve the signal-to-background ratio.

At DUNE, the charged current interaction ν` + 40Ar → `− + p+ + 39Ar produces an
ejected proton and charged lepton which can be well-measured [12]. But the recoil of the
remnant 39Ar will not be well-measured, and although the kinetic energy of the remnant
nucleus will be small, its momentum may be substantial. But given a hypothesis for the
energy and momentum of the neutrino (i. e., a 236 MeV neutrino arriving from the Sun), the
momentum of the remnant nucleus can be reconstructed using momentum conservation. We
find that when the struck proton is very forward-directed, the remnant nucleus is typically
backscattered (more on this in Section 2 and Fig. 10). Utilizing this correlation, we find that
for models where evidence can be found at 90% C.L. with a 400 kT yr exposure of DUNE,
the signal-to-background ratio can be as high as 2.2.

We find that, with a 400 kT yr exposure, DUNE can probe O(103) m−2 s−1 fluxes of
236 MeV νµ emanating from the Sun. As a specific example, we consider the case of low-
mass dark matter (m . 10 GeV) which scatters inelastically with nuclei. We estimate the
sensitivity of DUNE to models which cannot be probed by direct detection experiments.

The plan of this paper is as follows. In Section 2, we describe our simulation framework
and analysis cuts. In Section 3, we describe the resulting sensitivity to a flux of KDAR
neutrinos, and as an example, interpret this as a sensitivity to a particular class of dark
matter models which cannot be probed by direct detection experiments. We conclude with
a discussion of our results in Section 4.

2 Event Simulation and Analysis Cuts

Dark matter annihilation at the core of the Sun can produce light mesons, whose decays-
at-rest can produce monoenergetic neutrinos. KDAR (K+ → µ+νµ) will produce a Eν =
236 MeV monoenergetic νµ at the core of the Sun. On the other hand, K− and π− will tend
to be Coulomb-captured by nuclei. Hence the flux of neutrinos from K− and π− is small [17].
π+ decay-at-rest in the Sun will produce a monoenergetic 30 MeV neutrino. But this signal
is less promising [8], because the background from atmospheric neutrinos is larger at these
energies, while the ν − 40Ar cross section is smaller. Moreover, the scattering of a 30 MeV
neutrino is less likely to eject a proton, which is needed for directionality. Dark matter
annihilation can also produce muons which decay at rest, but this signal is less promising
because it does not yield a monoenergetic neutrino. As a result, we focus on the 236 MeV
νµ produced by KDAR in the Sun.

By the time this neutrino reaches Earth, it will have oscillated into all three flavors. But
only νµ and νe can produce a charged-current interaction at this energy. In this analysis, we
only consider νµ. We are interested in charge-current events in which a muon is produced and
a proton is ejected from the nucleus, since these particles can leave crisp tracks in DUNE, as
shown in Fig. 1.
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Figure 1. Time (ticks) vs. wire (number) view of a 236 MeV νµ event simulated at DUNE. The
color corresponds to the voltage read out on the wires (in ADCs). Each tick is 500 ns. Each panel
corresponds to an individual wire plane. The wire spacing for the top (collection) plane is 4.79 mm.
The wire spacing for the middle and bottom (induction) planes is 4.67 mm. The collection plane
is aligned with the vertical of the detector frame and the induction planes are angled 35.7◦ with
respect to vertical. A muon and a proton are ejected. The muon is the longest track. Fig. 2 shows
the distributions of the kinetic energies of the ejected protons and muons. The right panel shows a
background event stemming from a neutrino of 190 MeV.
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Figure 2. NuWro [18] generated proton and muon kinetic energies for the 1 proton + 1 muon =
2 total particles case. Generally, if we do not enforce a 2 particle cap, 13% of the CC events are
multi-proton at generator level. 76% are single proton. 10% are without protons.

2.1 Event Generation

We use NuWro [18] to simulate neutrino-nucleus scattering events because it allows us to
model the nuclear response using a spectral function to simulate the nucleus [20], rather
than the Fermi Gas model . Final state interactions are modeled using an intra-nuclear
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cascade (INC) [21]. At 236 MeV, the NuWro neutrino event generator predicts a 4% MEC
(meson exchange current) contribution, a 32% NCQE (neutral current quasi-elastic) contri-
bution, and a 64% CCQE (charged current quasi-elastic) contribution to the neutrino-argon
scattering cross section, with a negligible contribution for all other processes (pions are pro-
duced 0.04% of the time). However, neutral current interactions do not eject muons. We
do not include NC in our analysis because we expect excellent muon identification in DUNE
and hence very few NC events in which a muon is identified. This expectation is motivated
by the success of the dE/dx vs. residual range method at ProtoDUNE-SP (as shown in [13]).
At 236 MeV, neutrino charged-current interactions with nucleons are mostly quasi-elastic
(CCQE), ν` + n→ `− + p+. Fig. 2 shows the expected distribution, generated by NuWro, of
the kinetic energies of the muons and protons produced by charged current interactions of a
236 MeV νµ.

Thus, we are interested in charged-current quasi-elastic (CCQE) νµ + 40Ar interactions.
We simulate CCQE signal events - 236 MeV neutrinos arriving from the direction of the Sun
- and background events (atmospheric neutrino events, assumed to be isotropic) in NuWro.
We do not consider non-DM KDAR in the Sun as a background. True, cosmic rays impinge
on the Sun and produce KDAR but this contribution is negligible [8].

For signal events, the neutrino is assumed to arrive from the direction of the Sun, but at
a randomized time (which determines the orientation of the Sun with respect to the detector).
For an atmospheric neutrino background event, the orientation of the neutrino with respect to
the detector is randomized. The distribution of signal event directions relative to the detector
are show in Fig. 3. In particular, and unlike atmospheric neutrinos, neutrinos arriving from
the Sun cannot have an arbitrary orientation with respect to the detector wires, but must
instead arrive from directions within the yellow band of Fig. 3.
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Figure 3. Solar directions (a = altitude, A = azimuth) seen at DUNE. The band is the finite
angular coverage of the Sun. Azimuth winds clockwise from x̂ to ẑ in the detector frame and altitude
goes up from the xz plane to ŷ. Note, these angles are often defined respect to the cardinal directions
rather than the detector.

2.2 Event Simulation and Reconstruction

In each event, the particles generated with NuWro serve as input for LArSoft [14], which
propagates the particles through argon (using GEANT4 [15]) and simulates the detector
response to the drifted ionization electrons. LArSoft also searches the simulated TPC wire
waveforms for regions of interest and deconvolves and fits them to a Gaussian. These cleaned
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up “hits” are 2D (each plane of wires is an image of ticks vs. wire) and are shown in Fig 1.
Finally, Pandora [16], a pattern recognition software kit, maps the 2D hits from the 3 wire
plane projections to 3D and then clusters the 3D positions into tracks and showers.

2.3 Energy and Angular Resolution

We can estimate the angular resolution with which proton and muon tracks can be recon-
structed by comparing the direction of the outgoing particle at the event generator level
to the direction of the fully reconstructed tracks. We find that roughly 50% of tracks are
reconstructed to within 5◦ of the true particle direction (Fig. 4). Furthermore, we infer the
particle momenta via “range” (track length). Fig. 5 compares the true (GEANT4) and the
reconstructed track lengths and gives us faith in this method. The true track length is the
distance over which GEANT4 propagates the particle before it stops or decays, while the
reconstructed track length is based on the hits generated by the ions created by this particle.
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Figure 4. Cumulative distribution functions of the angular difference between the true and recon-
structed track directions. φp is the proton angular difference and φµ is the muon angular difference.

The charge read out on the LArTPC wires can be mapped to the kinetic energy of the
culprit particle which caused the ionization. For events in which a proton and muon track
are identified, we can measure the proton and muon energies, including the particle rest mass
and the kinetic energy.

We reconstruct the νµ energy using the expression

Erecon
νµ ≡ Ep + Eµ + (m39

Ar −m40
Ar). (2.1)

In Fig. 6, we plot the distribution of reconstructed neutrino energies for events in which a
236 MeV νµ charged-current interaction is simulated in NuWro. The reconstructed neutrino
energies are well clustered around the true energy of 236 MeV, with a variance of 30 MeV.
Eq. 2.1 does not include the kinetic energy of the remnant 39Ar. Although the maximum
momentum transfer to the nucleus is O(200) MeV, the maximum recoil energy is O(1) MeV,
which is negligible compared to the 30 MeV energy resolution.
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Figure 5. Comparison of the true (GEANT4) and the reconstructed track lengths for the muon
(left) and proton (right). This analysis uses the track lengths to infer the proton and muon momenta.
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Figure 6. Distribution of the reconstructed neutrino energies. The blue histogram shows events
with a true energy of 236 MeV, while the red histogram corresponds to the atmospheric background
in the 150-400 MeV range. The area of both distributions is normalized to 1. The signal (blue) has
a standard deviation of ±30 MeV. This informs our choice of the relevant background energy - true
energies between 150 and 400 MeV - a range 3 times larger than the reconstructed signal energy
resolution.
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2.4 Event Selection

The atmospheric neutrinos are taken to have energies between 150 MeVand 400 MeV, with
an angle-averaged energy spectrum∗ calculated for Homestake at the solar minimum [19].
We choose this background energy range in order to encompass 3 standard deviations of
the reconstructed signal energy. We are justified in ignoring atmospheric neutrinos whose
true energies lie outside this range, since they can be well distinguished from the signal by
reconstruction of the neutrino energy.

NuWro reports the neutrino-nucleus CCQE cross section; for signal events it reports the
cross section at Eνµ = 236 MeV, and for atmospheric neutrinos it reports the average cross
section weighted by the neutrino energy spectrum between 150 MeVand 400 MeV.

These cross sections are

σsig
νµ−40Ar

= 2.6× 10−38 cm2,

σbgd.
νµ−40Ar

= 2.8× 10−38 cm2. (2.2)

In simulating the CC cross section, we only have events with produced muons, and with
neutrinos in the aforementioned energy range. The CCQE cross section is weighted and
averaged only over this range. We have not simulated neutral current events, because such
events do not produce a muon.

As an initial event selection cut, we consider events in which exactly two tracks are
reconstructed, that of a muon and a proton. Although it is expected that DUNE will have
excellent particle identification, for simplicity, we only require that Pandora identify exactly
two tracks, and we assume that the longer track is a muon while the shorter track is a proton.
At 236 MeV, GEANT4 predicts this to be the case 93% of the time. Out of these 93%, 97%
are correctly reconstructed as the longer track. Also, a small number of events passing the
cuts contain additional ejected nucleons at the event generator level, but for which only one
nucleon track was reconstructed.

The requirement that we reconstruct the interaction with an interaction point within
the fiducial volume justifies our assumption that the dominant background arises from at-
mospheric neutrinos. There are a variety of other cosmogenic backgrounds at DUNE, but
these backgrounds are unlikely to produce an identified muon track which is reconstructed
to begin within the detector. In other words, we have assumed that the analysis is based on
a fiducial volume chosen such that the rate of such backgrounds is negligible.

2.5 Neutrino directionality

Since the momentum transfer to 39Ar is non-negligible, one cannot use ~pµ and ~pp to recon-
struct the direction of the incoming neutrino.† Instead we note that, given a hypothesis for
the direction of the incoming neutrino, one can use momentum conservation to determine

∗Besides an angle-averaged spectrum, [19] provides direction-dependent fluxes binned in the cosine of the
zenith angle, Z, and azimuth, φ. The fractional variance of the direction-dependent fluxes compared to the
angle-averaged flux decreases with energy for the energies relevant to this study. At 236 (600) MeV, it is 0.34
(0.19). In using the average, the maximum overestimate at 236 MeV is a factor of 3.7. This happens between
(-0.8,-0.9) in cos(Z) and between (90,120) degrees in φ. The maximum underestimate is by a factor of 2.2.
This happens between (0, 0.1) in cos(Z) and between (270, 300) degrees in φ.

†Note, for higher energy neutrinos, the momentum transfer to the remnant nucleus is negligible compared
to the energy of neutrino, in which case the momentum of the charged lepton and of the hadronic ejecta is
sufficient to reconstruct the neutrino direction effectively. These techniques were used in [22].
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the momentum transfer to the remnant nucleus. We define the kinematic variable

~p39Ar ≡ (236 MeV)p̂� − ~pµ − ~pp, (2.3)

where p̂� is a unit vector pointing from the Sun to the detector. If the incoming 236 MeV
neutrino were actually arriving from the Sun, then ~p39Ar would be the reconstructed momen-
tum of the remnant nucleus.

As noted in [10], the ejected proton tends to emerge preferentially in the forward di-
rection. As such, the angle θp between the proton and the direction from the Sun, defined
by cos θp = (p̂� · ~pp)/|~pp|, is one of the kinematic variables upon which we will impose cuts
(Fig. 7).
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�1.0 �0.5 0.0 0.5 1.0
cos ✓µ

DUNE Simulation

Signal

Figure 7. Signal distribution of the reconstructed proton and muon angles respect to the incoming
neutrino. The proton tends to fly out forward.

We also find that a useful kinematic variable is θN , defined by cos θN ≡ p̂� · ~p39Ar/|~p39Ar|.
If the neutrino does indeed arrive from the direction of the Sun with an energy of 236 MeV,
then θN would evaluate to the angle between the reconstructed remnant nucleus momentum
and the direction of the Sun. We plot a generator level (reconstruction level) 2D histogram
of cos θp vs. cos θN in Fig. 8 (Fig. 9).

Unsurprisingly, both signal and background distributions contain events in which cos θN
is close to 1, since the definition of ~p39Ar biases it in the forward direction. Perhaps more
surprisingly, the signal distribution contains a significant population of events in which
cos θp ∼ 1, while cos θN ∼ −1. There is no similar population of events in the background
distribution, implying that a good way to reject background is to select events in which the
proton is ejected in the direction away from the Sun, while ~p39Ar points back to the Sun.

After reconstruction (Fig. 9), the discrimination between signal and background is
poorer. Although the angular distribution for the charged lepton is isotropic, it is never-
theless correlated with that of the proton; for events where the ejected proton and recoiling
nucleus are (anti-)collinear with the neutrino, the charged lepton track also lies upon the
same line. In this case, the reconstruction algorithm may be unable to distinguish the proton
and charged leptons tracks, leading to an event reconstructed with just a single track, which

– 8 –



�1.0 �0.5 0.0 0.5 1.0
cos ✓N

�1.0

�0.5

0.0

0.5

1.0
co

s
✓ p

�0.5 0.0 0.5 1.0
cos ✓N

�1.0

�0.5

0.0

0.5

1.0

NuWro

Signal Background

Figure 8. 2D histograms of the proton and the remnant nucleus angles respect to the incoming
neutrino at the generator level (not put through the detector simulation and reconstruction). These
events passed our aforementioned topology and energy selection. Note, cos θN and cos θp are always
well-defined. Signal/background is on the left/right. For the atmospheric background, assuming that
the incoming neutrino points to the Sun, rather than isotropically, violates momentum conservation
and leads to an incorrect nuclear recoil and a distinct angular distribution.
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Figure 9. Reconstructed 2D histograms of cos θp and cos θN . These events have gone through the
detector simulation and reconstruction and passed the energy cut. Comparing to Fig. 8, the discrim-
ination between the signal (left) and background (right) is much reduced due to poor reconstruction
of back to back tracks.

would be rejected by the event selection cuts. However, we will see that the shift in dark
matter sensitivity due to this reconstruction failure is less than O(10).

It may seem counterintuitive that the remnant nucleus should be backscattered in CCQE
events. But an examination of the corresponding events at generator level provides an ex-
planation; in the majority of events in which the proton is forward-directed and the remnant
nucleus is backward-directed, the nucleon struck by the neutrino had an initial momentum
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in the direction away from the Sun (Fig. 10). When the struck nucleon is already moving
away from the Sun, the outgoing nucleon is also typically very forward-directed, while the
remaining nucleons have a net momentum in the opposite direction, leading to a backward
directed remnant nucleus.
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Figure 10. NuWro generated (normalized) distribution of the angles of the struck nucleons -
before scattering - with respect to the incoming signal neutrino arriving from the Sun. For the grey
histogram, only the event selection cuts are imposed. The blue histogram is for cases with forward
ejected protons (θp < 10◦). This figure shows that such protons are correlated with nucleons which
were forward-going before the interaction.
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Figure 11. Signal 2D histograms of the reconstructed muon and proton momenta projected along
the incoming neutrino direction. The left plot has only event selection cuts, whereas the right plot
only includes such events with very forward protons ( cos θp < 30◦ ). The white line ((~pν − ~pp −
~pµ) · p̂ν = 0) separates forward/backscattered remnant nuclei. Momentum conservation means that
~p39Ar = ~pν−~pp−~pµ. Hence, the nucleus backscatters when ~p39Ar · p̂ν < 0 (to the right of the line). This
figure emphasizes that the remnant nucleus tends to be backscattered if the proton is very forward
scattered.

To illustrate this point, we plot the distribution of signal events in the (~pp · p̂�, ~pµ · p̂�)
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plane (Figs. 11). The left panel is the distribution of all signal events passing event selection
cuts, while the right panel is the distribution of such events for which cos θp < 30◦. In both
panels, the white diagonal line indicates (~pp + ~pµ) · p̂� = 236 MeV; events to the right of
this line have cos θN < 0, while events to the left have cos θN > 0,.

We define the signal efficiency ηµS to be the fraction of signal neutrino events which pass
the event selection cuts as well as the the energy and directionality cuts we impose. Similarly,
we define the background efficiency ηµB to be the fraction of atmospheric neutrino events with

a neutrino energy between Ebgdmin = 150 MeV and Ebgdmax = 400 MeV which pass these cuts.
Only a negligible fraction of atmospheric neutrinos outside the range 150 − 400 MeV pass
the cuts.

Motivated by the reconstructed energy resolution of the signal events, we impose an
energy cut by selecting only events with reconstructed neutrino energy in the range 236 ±
30 MeV. Also, since protons often fly out forward, we require them to lie within an angular
cone centered on the direction pointing from the Sun. A similar approach for the leptons
is fruitless. At such energies, their ejection is largely isotropic. Finally, we impose cuts on
cos θN .

Various cuts and their effect on DUNE’s sensitivity to a 236 MeV flux of νµ emanating
from the Sun are listed in Table 1.

3 Solar KDAR νµ Flux

We will first determine the number of background atmospheric neutrino events which are
expected to pass our cuts over a given exposure of DUNE.

Nµ
B = ηµB

∫ Ebgdmax

Ebgdmin

dEν dΩ
d2Φµ

B

dEνdΩ
×
(
Ā

(µ)
eff T

)
, (3.1)

where ηµB, Ebgdmin and Ebgdmax are defined as in the previous section. d2Φµ/dEνdΩ is the dif-
ferential flux of atmospheric νµ, and T is the exposure time. The effective area of DUNE
effective is the product of the neutrino-nucleus scattering cross section with the number of

nuclei in the fiducial volume. We take DUNE’s effective area to atmospheric νµ, Ā
(µ)
eff , to be

given by

Ā
(µ)
eff = (6.0× 10−10 m2)

(
σ

(µ)bgd.
ν-Ar

10−38 cm2

)(
Mtarget

40 kT

)
, (3.2)

where σ
(µ)bgd.
ν-Ar is the νµ-Ar charged-current scattering cross section, weighted by the atmo-

spheric neutrino spectrum in the energy range
(
Ebgdmin, E

bgd
max

)
, as described in Section 2.

Combining 3.1 and 3.2 gives

N
(µ)
B = ηµB(2.39)

(
σ

(µ)bgd.
ν-Ar

10−38 cm2

)(
MtargetT

400 kT yr

)∫ Ebgdmax

Ebgdmin

dEν
d2Φµ

B

dEνdΩ
( m2 s sr). (3.3)

Setting Ebgdmin = 150 MeV, Ebgdmax = 400 MeV, and σ
(µ)bgd.
ν-Ar = 2.80346 × 10−38 cm2, we can

integrate the spectrum from [19] calculated at Homestake at solar minimum, yielding

N
(µ)
B = ηµB × (6.67× 103)× (exposure/400 kT yr). (3.4)
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Given the background acceptances ηµB listed in Table 1, we can then determine the number
of background events expected to pass the cuts, also listed in Table 1.

We assume that the number of signal and background events seen by DUNE will be
drawn from Poisson-distributions whose means are given by the expected number of signal
and background events, denoted by Nµ

S and Nµ
B, respectively. To estimate the sensitivity of

DUNE, we assume a representative (“Asimov” [32]) data set in which the number of observed
neutrinos is taken to be the number of expected background neutrinos, rounded to the nearest
integer (that is, Nµ

O = round(Nµ
B)). We denote by Nµ,90

S the number of expected signal events
such that the likelihood of an experimental run observing a number of total events larger
than round(Nµ

B) is 90%. A model for which the expected number of signal events satisfies

Nµ
S > Nµ,90

S lies in the region to which we estimate DUNE would be sensitive.

Given Nµ,90
S and ηµS , we can then straightforwardly determine Φ236 MeV, the maximum

flux of 236 MeV neutrinos emanating from the core of the Sun which would be allowed (at
90% CL), given that DUNE observed only a number of events consistent with atmospheric
neutrino background.

Φ236 MeV =
Nµ,90
S

ηµSA
(µ)
eff (Eν)T

= 5.3 m−2 s−1N
µ
S

ηµS

(
σ

(µ)
ν-Ar(Eν)

10−38 cm2

)−1(
exposure

400 kT yr

)−1

, (3.5)

where

A
(µ)
eff (Eν) = (6.0× 10−10 m2)

(
σ

(µ)
ν-Ar(Eν)

10−38 cm2

)(
Mtarget

40 kT

)
, (3.6)

and σ
(µ)
ν-Ar(Eν = 236 MeV) = 2.6× 10−38 cm2.

Φ236 MeV is our primary result, and represents the minimum flux of 236 MeV νµ ema-
nating from the core of the Sun to which DUNE would be sensitive with any given exposure.
This result is independent of the the specific model of new physics which generates this ex-
cess flux of neutrinos, but is determined only by the efficiency with which 236 MeV neutrinos
from the core of the Sun and atmospheric background neutrinos pass the cuts.

We plot Φ236 MeV in Figure 12, as a function of the exposure, for several different
choices of cuts (see Table 1). In each case, the reconstructed neutrino energy is required
to be in the range 236 ± 30 MeV. In one case, cuts on θN and θp are chosen to optimize
signal significance (solid lines), while in the other case, these cuts are chosen to optimize the
signal-to-background ratio (that is, ηS/ηB) (dashed lines). To illustrate the effect of possible
improvements in track reconstruction, we also apply this analysis framework directly to
the muon and proton tracks produced by the event generator; these curves are presented
as green lines. All four of the angular cut choices, along with their efficiencies, sensitivities,
signal-to-background ratios, and number of expected signal and background events, are listed
in Table 1. For the cuts (applied to reconstructed events) which maximize the S/B, the
sensitivity varies discontinuously. This is because, in this case, the number of assumed
events observed is small, and the jumps are where they vary discontinuously.

3.1 Application: Search for Inelastically Scattered Dark Matter

To place this result in context, we consider a dark matter scenario which can be constrained
by data from DUNE, but which would be difficult to constrain with direct detection ex-
periments. In particular, we consider the case of low-mass dark matter (mX . 10 GeV)
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Figure 12. DUNE sensitivity to φ236 MeV, the flux of 236 MeV νµ’s from the Sun, independent of the
new physics model that produces them. The blue lines correspond to the reconstructed quantities in
the first and second rows of Table 1 and the green lines correspond to the generator level quantities in
the third and fourth rows. The dashed lines are for maximum S/B and the filled lines are for maximum
DM sensitivity. The discontinuities are due to the limit of small numbers of events; noticeable when
the number of observed events jumps by one.

which scatters inelastically with nuclei, with the emerging dark particle being δ = 50 keV
heavier than the incoming dark matter particle. In this case, dark matter inelastic scattering
is kinematically inaccessible for detectors on Earth, because there is insufficient energy to
produce the excited state. But because dark matter accelerates as it approaches the Sun, it
may have sufficient kinetic energy to scatter inelastically against solar nuclei, leading to its
gravitational capture [23–26].

One example of a scenario in which inelastic scattering can dominate is the case in
which the dark matter is charged under a spontaneously-broken U(1) gauge symmetry. In
this case, a dark matter vector current couples to the dark photon, which can be mediate dark
matter-nucleon scattering. The tree-level scattering process is necessarily inelastic, because
the vector current for a single real particle vanishes. Elastic scattering is instead subleading,
mediated either by multiple dark photon exchange or by other mediators with small couplings.
Although the size of this subleading elastic scattering cross section is model-dependent, it
can be well below current direct detection sensitivity.

After the initial inelastic scatter, the dark matter is gravitationally captured, and con-
tinues to orbit the Sun. As the dark matter passes through the Sun many times, subsequent
inelastic or elastic scatters result in an even greater loss of dark matter kinetic energy, until
the particle settles in the core of the Sun [27, 28]. Once the dark matter has lost enough
kinetic energy, inelastic scattering is no longer kinematically possible, but since the dark
matter continues to pass through the Sun many times during the Sun’s lifetime, even the
subleading elastic scattering cross section can be sufficient to deplete the dark matter kinetic
energy enough for it to settle in the core.

After gravitational capture, we assume dark matter annihilation to first generation
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quarks, with dark matter capture and annihilation being in equilibrium. Even though dark
matter annihilation produces only first-generation quarks, a substantial number of kaons are
produced by subsequent fragmentation and hadronization processes. If the dark matter mass
is & O(5 GeV), then the center of mass energy is large compared to the kaon mass, and the
up, down, and strange quarks can all be treated as light quarks.

We assume that dark matter scattering with nuclei is spin-independent and velocity-
independent, with an equal coupling to protons and neutrons. Because δ � mX , the dark
matter-nucleon scattering matrix element is largely independent of δ. The dependence of
the dark matter-nucleus scattering cross section on δ arises from the final state phase space.
Thus, we will parameterize the dark matter model by σ0, which is the total cross section for
dark matter-nucleon scattering, extrapolated to δ = 0. From this quantity, the differential
cross section for scattering against any nucleus at δ = 50 keV can be determined.

In this scenario, the DM annihilation rate (ΓA) is equal to one-half of the dark matter
capture rate (ΓC). The capture rate is directly proportional to σ0, with ΓC = Cδ(mX)× σ0.
The proportionality constant Cδ(mX) is determined entirely by the dark matter mass, by solar
physics, and the assumption that dark matter has a nominal Maxwell-Boltzmann velocity
distribution with a density of 0.3 GeV/ cm3. Relevant values for the Cδ(mX) can be found
in [29].

In this scenario, we can relate Φ236 MeV to σ0, finding

Φ236 MeV =
(Cδ(mX)× σ0/2)Fµ

4πr2
⊕

(
0.64× 2mX

mK
rK(mX)

)
,

= (3.1× 104 m−2 s−1)

(
Cδ(mX)

1029 pb−1 s−1

)(
σ0

pb

)(
2mX

mK
rK(mX)

)
(3.7)

where Fµ = 0.27 is the fraction of 236 MeV neutrinos which arrive at the detector as νµ,
assuming a normal hierarchy. While an experimental data analysis requires a full treatment
of neutrino oscillations to obtain neutrino spectra and flavor ratios for specific times of
detector operation, for this analysis it is sufficient to assume an annual averaged flavor ratio
taken from [9] (if one assumed an inverted hierarchy Fµ would increase by at most 25%).
r⊕ = 1.5 × 1011 m is the distance from the Sun to the Earth, and rK(mX) is the fraction
of the center of mass energy of the dark matter initial state which is converted into stopped
K+ through dark matter annihilation, the hadronization and fragmentation of the outgoing
particles, and the interactions of those particles with the dense solar medium (values for
rK(mX) can be found in [8]). The factor 0.64 is the branching fraction for K+ decay to
produce a monoenergetic 236 MeVνµ. We can thus relate Φ236 MeV to a 90% CL exclusion
contour in the (mX , σ0)-plane.

In Figure 13, we plot the 90% CL sensitivity of DUNE (400 kT yr) in the (mX , σ0)-plane
for the case where WIMPs annihilate solely to first generation quarks, assuming a search for
monoenergetic neutrinos at 236 MeV from stopped K+ decay. We plot sensitivity curves for
each of the four cuts strategies given in Table 1.

There are a variety of other theoretical uncertainties which can have a significant effect
on DUNE’s sensitivity. For example, we have assumed that dark matter annihilates to
first generation quarks. If dark matter annihilates instead to second generation quarks, the
average number of K+ produced per annihilation (and, thus, the flux of 236 MeV neutrinos)
would increase by about a factor of 2. Furthermore, we have modeled neutrino-nucleus
scattering at this energy with NuWro. Although there are experimental measurements of this
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Figure 13. Projected 90% sensitivity curves for DUNE (400 kT yr) for inelastic dark matter
scattering. All the curves are for the stopped K+ channel. The relevant cuts are listed in Fig. 12 and
Table 1.

Table 1. The angular cuts (including the energy cut of 236± 30 MeV) and the resulting signal and
background efficiencies, the expected number of signal and background events, the expected signal to
background ratio at DUNE, and the maximum flux of 236 MeV neutrinos emanating from the Sun
which would be allowed (at 90% CL). The first two rows are cuts on reconstructed events and the
last two rows are cuts on generator level events (no detector simulation/reconstruction). We include
the generator level information to illustrate the optimistic case of perfect reconstruction.

θrecoP < θrecoN > ηrecoS ηrecoB N reco,90
S N reco

B S/Breco Φreco
236 MeV[ m−2 s−1]

60◦ 162◦ 5.0× 10−4 1.9× 10−4 2.7 1.2 2.2 1.1× 104

60◦ 60◦ 2.7× 10−2 1.4× 10−2 13.9 92.7 0.2 1.1× 103

θP < θN > ηS ηB N 90
S NB S/B Φ236 MeV[ m−2 s−1]

50◦ 171◦ 1.8× 10−3 3.3× 10−5 2.1 0.2 10.5 2.4× 103

50◦ 20◦ 3.9× 10−1 2.6× 10−2 17.8 173.3 0.1 93.1

cross section, there are still significant uncertainties, both in the magnitude of the charged-
current cross section and in the angular dependence. But any stopped pion experiment also
acts as a stopped kaon experiment [30], and a variety of future KDAR measurements are under
consideration [31], and would serve as a calibration for this type of analysis. Importantly,
DUNE itself can provide calibration data, by searching off-axis.

Future improvements in reconstruction techniques that could enable electron channel
to be used effectively, would lead to a significant improvement in sensitivity. The electron
channel is generally expected to be more sensitive than the muon channel for three rea-
sons [10]. First, the atmospheric neutrino background flux is smaller. Second, the effective
area of DUNE is larger for 236 MeV νe than for νµ, because the charged-current scattering
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cross section for νµ is suppressed by the reduced phase space of the outgoing muon. Third,
the flux of 236 MeV νe arriving at Earth from KDAR in the Sun is expected to be larger
than the flux of 236 MeV νµ as a result of oscillation effects in the dense medium of the Sun
(assuming a normal hierarchy) [9].

4 Conclusion

In this work, we have estimated DUNE’s potential to detect the monoenergetic 236 MeV
neutrinos arising from kaon-decay-at-rest in the core of the Sun. Although the charged leptons
produced from a charged-current interaction of a 236 MeV neutrino are roughly isotropic,
many such interactions produce an ejected proton which is forward-directed. Moreover, the
remnant nucleus tends to be backward-directed, and observable kinematic variables can be
used as a proxy for the remnant nucleus momentum, allowing for better discrimination of
signal from background.

We have used these observables in a realistic manner, with the response of the detec-
tor modelled numerically. Although we have found that the discrimination of signal from
background, S/B, can be as large as 2.2 for a model where there are enough signal events
to exclude, a realistic treatment of the detector results in reduced sensitivity with respect to
earlier estimates.

Foreseeing future improvements in reconstruction (for example, via machine learning),
we calculated the expected number of signal and background events which pass our cuts at the
generator level (see Table 1). We’ve also plotted the generator level dark matter sensitivity
curves in green in Fig. 12. These are the limits in the optimistic case of perfect reconstruction,
and we find that this optimal sensitivity matches estimates made previously [10].

There are a variety of non-standard scenarios for dark matter particle physics and
astrophysics in which the sensitivity of direct detection experiments is suppressed, and the
flux of 236 MeV neutrinos produced in the Sun’s core may provide an excellent indirect
probe of dark matter interactions. In this case, DUNE’s ability to identify 236 MeV neutrinos
arriving from the direction of the Sun, while rejecting background, can provide unique control
over systematic uncertainties. As an example, we have estimated DUNE’s sensitivity to low-
mass dark matter which scatters inelastically, with a mass splitting of δ = 50 keV. This is
an example of a dark matter process which is kinematically inacessible for direct detection
experiments on Earth, but for which a search for neutrinos at DUNE may lead to a discovery.

The search for direct evidence of non-gravitational interactions between dark matter
and Standard Model matter has thus far yielded no conclusive positive signals. This has
led to broader theoretical and experimental approaches to dark matter searches, and KDAR
neutrinos can play an important role. It would be interesting to further study the theoretical
scenarios in which searches for KDAR neutrinos provide a competitive advantage.

On the experimental side, it would also be interesting to study in more detail how the
particle identification and track reconstruction at DUNE could be improved in the energy
range relevant for KDAR searches. A possible DUNE module-of-opportunity may use a
wireless design with an isotropic response and could improve the sensitivity to dark matter
annihilation in the Sun, by reducing the loss of efficiency associated with the orientation of
the Sun with respect to the DUNE wires.
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