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ABSTRACT

Minimal extensions of the Standard Model (SM), such as the so-called Two Higgs

Doublet Model (2HDM), can possess several accidental discrete symmetries whose

spontaneous breakdown in the early universe usually lead to the formation of domain

walls. We extend an earlier work [33] on this topic by studying in more detail the

analytic properties of electrically charged and CP-violating kink solutions in the Z2-

symmetric 2HDM. We derive the complete set of equations of motion that describe

the 1D spatial profile of both the 2HDM vacuum parameters and the would-be

Goldstone bosons G1,2,3 of the SM. These equations are then solved numerically

using the gradient flow technique, and the results of our analysis are presented in

different parametrizations of the Higgs doublets. In particular, we show analytically

how an electrically charged profile should arise in 1D kink solutions when asymmetric

boundary conditions are imposed on the Goldstone mode G2 at spatial infinities,

i.e. as x→ ±∞. If asymmetric boundary conditions are selected at x→ ±∞ for the

Goldstone mode G3 or the longitudinal mode θ corresponding to a would-be massive

photon, the derived kink solutions are then shown to exhibit CP violation. Possible

cosmological implications of the electrically charged and CP-violating domain walls

in the 2HDM are discussed.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been tested in many different low-energy
and collider experiments [1–5], and some of its predictions have been verified to a high degree
of accuracy. Nevertheless, we still believe that the SM is not a complete theory, since it is
unable to explain certain cosmological phenomena, such as the origin of dark matter and the
matter-antimatter asymmetry in our universe. For the latter, CP violation is necessary to
explain why there is more matter than antimatter in our universe [6]. Although signatures
of CP violation have been observed in particle physics experiments [7–11] in fairly good
agreement with SM predictions, this CP violation in the electroweak sector is deemed to be
insufficient to explain the observed Baryon Asymmetry in the Universe (BAU) [12, 13].

Many models that extend the particle content of the SM have been proposed in the litera-
ture, with the aim to address the cosmological problems mentioned above. One such minimal
and well studied extension of the SM is the so-called Two Higgs Doublet Model (2HDM) [14].
The 2HDM adds one more complex scalar doublet to the SM, and so predicts the existence
of five physical scalar particles, one of which can be identified with the SM Higgs boson
which was observed at the LHC [4]. The 2HDM potential could provide new sources of CP
violation [15–19] that would be needed to account for the BAU [20].

There are several accidental symmetries that the 2HDM can acquire if certain parameter
choices are met [21–24]. The breaking of these symmetries can lead to topological defects
in the model, such as domain walls, vortices and global monopoles [23, 25, 26]. The nature
of the defect can be determined by the topology of the vacuum manifold [27]. Here we will
focus on the discrete symmetry Z2, even though our approach can apply equally well to
the other two discrete symmetries, such as the standard CP symmetry and its descendent
symmetry CP2. Domain walls are formed when the Z2 symmetry is broken during a phase
transition of our universe. In this case, the vacuum manifold consists of disconnected regions
of minima. During symmetry breaking, regions in space that are causally disconnected can
fall into different minima of the potential. As a consequence, domains are formed and the
boundary surfaces separating them are called domain walls.

Domain walls are of some concern because they can have detrimental cosmological
implications. In the early universe, discrete symmetries of a scalar potential are generically
restored for sufficiently high temperatures. However, as the universe cools while possibly
undergoing a series of symmetry breaking phase transitions, domain walls can form. Sub-
sequently, the energy density of the domain walls decreases as the universe expands. We
may naively estimate the rate of decrease using a self-scaling argument. Within a Hubble
radius r, the total energy of the domain walls is proportional to Er2, where E is the energy
per unit area of a domain wall. Then, the energy density of the domain wall ρdw, which is the
energy per unit volume, follows the relation ρdw ∝ Er−1. Since the horizon expands at the
speed of light, we have ρdw ∝ Et−1. Therefore, the energy density of domain walls scales as
(time)−1. However, the energy densities of matter and radiation scale down much faster as
(time)−2 in their respective epochs [28]. Consequently, domain walls would grow relative to
matter and radiation, and eventually dominate the energy density of the universe [29, 30].
Today we do not observe domain walls and as such, their absence indicates the possible
existence of a mechanism, like inflation, or entails a specific choice of model parameters that
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renders them harmless [31, 32].

Recently, it was found in numerical simulations [33] that 1D kink solutions obtained in
2HDMs may violate both the electric charge and CP, when asymmetric boundary conditions
at spatial infinities, x→ ±∞, are imposed on the would-be Goldstone (longitudinal) modes,
G1,2,3 and θ, related the SM gauge bosons, W± and Z, and to a would-be massive photon.
The asymmetric boundary conditions on the Goldstone modes represent a general pragmatic
choice that one has to make in order to realistically describe the formation of domain walls
and their evolution starting from initial random field configurations.

In this paper, we complement the earlier work of [33] by studying in more detail the
analytic properties of charged and CP-violating kink solutions in the Z2-symmetric 2HDM.
We first derive the equations of motion for all the parameters defining the vacuum manifold
of the 2HDM, including the Goldstone modes. We use a non-linear representation of the two
Higgs doublets, where the rotation angles are the would-be Goldstone bosons after electro-
weak symmetry breaking [34]. In particular, we show analytically how self-consistency of
the kink solutions with asymmetric boundary conditions for the Goldstone modes neces-
sarily implies the occurence of charged and CP-violating domain walls. These findings are
confirmed by solving numerically the pertinent equations of motion using the gradient flow
technique, and they are in good agreement with the earlier study in [33].

The present article is organised as follows. After this introductory section, in Section II we
present a brief discussion of the 2HDM, including different parameterisations of the two Higgs
doublets, along with the mass matrices of the physical scalars. In Section III, we consider
the most general parametrization of the two Higgs doublets by means of an electroweak
gauge transformation and thus allow for the possible presence of charge-breaking and CP-
violating vacua. In addition, we study analytically all the kink solutions for each Goldstone
mode individually, and verify our findings by solving numerically the pertinent equations
of motion using the gradient flow method. Basic aspects of the gradient flow method are
reviewed in Appendix A. Finally, Section IV summarises our results and discusses possible
cosmological phenomena due to the electrically charged and CP-violating domain walls that
may take place in the 2HDM and beyond.

II. THE Z2-SYMMETRIC TWO HIGGS DOUBLET MODEL

The scalar potential of the Z2-symmetric 2HDM reads

V (Φ1,Φ2) =− µ2
1(Φ

†
1Φ1)− µ2

2(Φ
†
2Φ2) + λ1(Φ

†
1Φ1)

2
+ λ2(Φ

†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+ (λ4 − |λ5|)[Re(Φ†1Φ2)]
2

+ (λ4 + |λ5|)[Im(Φ†1Φ2)]
2
.

(II.1)

Obviously, the potential as defined in (II.1) is invariant under the Z2 symmetry [35],

Φ1 → Φ1 , Φ2 → −Φ2 . (II.2)
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A. Parametrizations of the Higgs Doublets

There are different ways to parametrize or represent the Higgs doublets in the 2HDM.
The simplest representation is the linear one:

Φ1 =

(
φ1 + iφ2

φ3 + iφ4

)
, Φ2 =

(
φ5 + iφ6

φ7 + iφ8

)
. (II.3)

Another equivalent and perhaps more intuitive parametrization to interprete our results in
Section III is the non-linear representation, which employs an electroweak gauge trans-
formation and so renders the potential occurence of charge- and CP-breaking vacua
manifest [33]. Such vacua are in general admissible in the 2HDM [16] and may be expressed
in terms of the four vacuum parameters v1, v2, v+ and ξ as follows:

Φ0
1 =

1√
2

(
0
v1

)
, Φ0

2 =
1√
2

(
v+
v2e

iξ

)
. (II.4)

If v1 is non-zero, then a non-vanishing value for v+ implies that the ground state (Φ0
1 , Φ0

2)
is charge-violating or electrically charged, while a relative non-zero phase ξ (possibly not
a multiple of π/2 [16]) between the two neutral vacuum parameters v1,2 implies that the
ground state violates CP. To allow for the most general vacuum field configurations beyond
the unitary gauge, we parametrize the Higgs doublets Φ1,2 non-linearly by means of an
SU(2)L × U(1)Y gauge transformation,

Φ1 = U Φ0
1 , Φ2 = U Φ0

2 , (II.5)

where

U = eiθ exp

(
i
Ga

vSM

σa

2

)
= eiθ exp

(
iĜaσa

2

)
(II.6)

is an element of the SU(2)L × U(1)Y gauge group. In (II.6), θ and Ga = (G1, G2, G3) (with

Ĝa ≡ Ga/vSM) are the would-be Goldstone bosons after electroweak symmetry breaking, and
vSM ' 246 GeV is the vacuum expectation value (VEV) of the SM Higgs doublet. In this
parametrization, we may easily count that we have eight parameters in total to represent
the vacua, i.e. v1,2, ξ, v+, G

a and θ, which is the same number of parameters as in the linear
representation (II.3).

On the other hand, using the bilinear scalar-field formalism [21, 36, 37], we may introduce
a four-vector Rµ which is invariant under electroweak gauge transformations:

Rµ ≡ Φ†σµΦ =


Φ†1Φ1 + Φ†2Φ2

Φ†1Φ2 + Φ†2Φ1

−i[Φ†1Φ2 − Φ†2Φ1]

Φ†1Φ1 − Φ†2Φ2

 , (II.7)

where Φ = (Φ1,Φ2)
T. The index µ in σµ runs from 0 to 3, with σ0 = I2 and σ1,2,3 being the

Pauli matrices. In terms of Rµ, the general 2HDM potential may be written as

V = −1

2
MµR

µ +
1

4
LµνR

µRν , (II.8)
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where
Mµ =

(
µ2
1 + µ2

2 , 2Re(m2
12) , −2Im(m2

12) , µ
2
1 − µ2

2

)
, (II.9)

Lµν =


λ123 Re(λ67) −Im(λ67) λ̄12

Re(λ67) λ4 + Re(λ5) −Im(λ5) Re(λ̄67)
−Im(λ67) −Im(λ5) λ4 − Re(λ5) −Im(λ̄67)

λ̄12 Re(λ̄67) −Im(λ̄67) λ̄123

 . (II.10)

The first term in (II.8) contains the mass terms, while the second term describes the quartic
couplings. In (II.10), we have used the notations: λab = λa + λb, λ̄ab = λa − λb, λabc =
λa+λb+λc and λ̄abc = λa+λb−λc. Since Rµ is invariant under the unitary transformations U
of the SM gauge group, we can use the charge-breaking ground state (Φ0

1 , Φ0
2) (in the unitary

gauge) to express this four-vector as follows:

Rµ =
1

2


v21 + v22 + v2+
2v1v2 cos ξ
2v1v2 sin ξ
v21 − v22 − v2+

 . (II.11)

Inverting the relations in (II.11), we can express the vacuum parameters in terms of the
components Rµ. In particular, v+ is related to the components Rµ by

v2+ =
RµR

µ

R0 +R3
. (II.12)

Therefore, we can determine whether a solution is charge-violating by looking at either the
parameter v+, when for v1 6= 0, or the norm of the 4-vector Rµ. Imposing the condition
RµR

µ = v21v
2
+ = 0, known as the vacuum neutrality condition [21], would imply that v+ = 0

or v1 = 0.

However, in order to properly describe the dynamics emerging from the Goldstone mode θ,
we have to extend the above bilinear formalism and promote Rµ to an SU(2)L-invariant six-
vector RA [23, 24],

RA =



Φ†1Φ1 + Φ†2Φ2

Φ†1Φ2 + Φ†2Φ1

−i[Φ†1Φ2 − Φ†2Φ1]

Φ†1Φ1 − Φ†2Φ2

ΦT
1 iσ

2Φ2 − Φ†2iσ
2Φ∗1

−i[ΦT
1 iσ

2Φ2 + Φ†2iσ
2Φ∗1]


=

1

2


v21 + v22 + v2+
2v1v2 cos ξ
2v1v2 sin ξ
v21 − v22 − v2+
−2v1v+ cos 2θ
−2v1v+ sin 2θ

 . (II.13)

Note that RA is a null vector, and its U(1)Y -violating components R4,5 do explicitly depend
on θ which would correspond to a massive photon for possible non-zero values of v+.

To fully cover the parameter space of the vacuum manifold, we may choose R0, R1, R2, R3

and R4, together with G1, G2 and G3, as our free vacuum parameters. Evidently, these are
eight independent quantities, in agreement with the total number of parameters needed to
parametrise the vacuum manifold in the linear representation [cf. (II.3)].
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B. Mass Matrices

In the 2HDM, we have five physical Higgs states, which in the absence of CP violation,
the two scalars, h and H, are CP-even, one is CP-odd, A, and the remaining two scalars H±

are electrically charged. To find the mass matrices, it would be useful to use the following
representation of the Higgs doublets:

Φ1 =

(
φ+
1

1√
2

(
v1 + φ1 + ia1

)) , Φ2 = eiξ
(

φ+
2

1√
2

(
v2 + φ2 + ia2

)) , (II.14)

where φ+
1 and φ+

2 are complex scalar fields. φ1 and φ2 can be expressed as a rotation of the
CP-even fields h and H, while a1 and a2 can be expressed as a rotation of the CP-odd fields
G0 and A. More explicitly, we have(

φ1

φ2

)
=

(
cα −sα
sα cα

)(
h
H

)
,

(
a1
a2

)
=

(
cβ −sβ
sβ cβ

)(
G0

A

)
, (II.15)

where the short-hand notations sx ≡ sinx and cx ≡ cosx are employed for the trigonometric
functions. We note that G0 is the would-be Goldstone boson associated with the longitudinal
polarization of the Z boson. Since the Z2-symmetric 2HDM potential is CP-preserving, we
may set ξ = 0 [33] to a good approximation, with possible exceptions arising from instanton
effects [32]. Substituting the representations of the Higgs doublets in (II.14) back into the
Z2-symmetric potential in (II.1), the CP-even, CP-odd and charged scalar mass matrices
are found respectively to be

M2
h,H =

〈
∂2V

∂φi∂φj

〉
=

(
2λ1v

2
1 λ̃345v1v2

λ̃345v1v2 2λ2v
2
2

)
, (II.16)

M2
A =

〈
∂2V

∂ai∂aj

〉
= |λ5|

(
v22 −v1v2
−v1v2 v21

)
, (II.17)

M2
H± =

〈
∂2V

∂φ+
i ∂φ

−
j

〉
= −1

2
(λ4 − |λ5|)

(
v22 −v1v2
−v1v2 v21

)
. (II.18)

The squared masses of the five physical scalars, h, H, A and H±, are then given by

M2
h = λ1v

2
1 + λ2v

2
2 −

√
(λ1v21 − λ2v22)

2
+ λ̃2345v

2
1v

2
2 , (II.19)

M2
H = λ1v

2
1 + λ2v

2
2 +

√
(λ1v21 − λ2v22)

2
+ λ̃2345v

2
1v

2
2 , (II.20)

M2
A = |λ5|v2SM , (II.21)

M2
H± = −1

2
(λ4 − |λ5|)v2SM , (II.22)

with λ̃345 ≡ λ3 +λ4−|λ5|. The VEVs of the Higgs doublets are related to the SM VEV vSM
by the mixing angle β that enters the diagonalisation of CP-odd scalar matrix, i.e.

v01 = cβ vSM , v02 = sβ vSM . (II.23)
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As done in [33], in all our numerical simulations, we choose the masses of all the new heavy
scalars to be equal: MH = MA = MH± = 200 GeV, tan β = 0.85, and cos(α − β) = 1
obeying the alignment limit, as this is dictated by a maximally symmetric Sp(4) realization
of the 2HDM [38, 39]. Moreover, we adopt the Type-I pattern of Yukawa interactions to
avoid the majority of the phenomenological quark-flavour constraints.

III. ELECTRICALLY CHARGED AND CP-VIOLATING KINK SOLUTIONS

In a 1D spatial approximation, e.g. along the x-direction, the total energy density of the
electroweak gauged Z2-symmetric 2HDM may be conveniently determined as [33]

E =
dΦ†1
dx

dΦ1

dx
+
dΦ†2
dx

dΦ2

dx
+ V (Φ1,Φ2) , (III.1)

where the scalar potential V (Φ1,Φ2) is defined in (II.1). If we now use the non-linear
representation as given in (II.5) for the two Higgs doublets, i.e. Φ1,2 = UΦ0

1,2, we then observe

that the 2HDM scalar potential simplifies as V (Φ1,Φ2) = V (Φ0
1,Φ

0
2), and all Goldstone

modes G1,2,3 and θ contained in the unitary matrix U [cf. (II.6)] vanish identically.

To further simplify matters, we consider that only one normalized Goldstone mode Ĝa ≡
Ga/vSM is non-zero each time of our analytical investigation and may possess asymmetric
boundary conditions at spatial infinities as x→ ±∞. This corresponds to choosing a fixed
given axis for performing an SU(2)L gauge rotation. With this simplification, we have

dU

dx
= i

(
dθ

dx
+
dĜa

dx

σa

2

)
U , (III.2)

where we reiterate that the index a is not summed over. Substituting (II.5) into (III.1), and
using (III.2), we find that the kinetic part of the energy density can be expressed as

Ekin =

∣∣∣∣dΦ0
i

dx

∣∣∣∣2 + |Φ0
i |

2

(dθ
dx

)2

+
1

4

(
dĜa

dx

)2
+ Φ0†

i U
†
(
dθ

dx

)(
dĜa

dx

)
σaUΦ0

i

+

[
i
dΦ0†

i

dx
U †

(
dθ

dx
+
dĜa

dx

σa

2

)
UΦ0

i + H.c.

]
,

(III.3)

where summation over the index i = 1, 2 is implied. Since the unitary matrix U in (III.3)
involves the exponentiation of only one Pauli matrix σa, it commutes with the Pauli matrix
σa itself. Hence, Ekin will take on the simpler form

Ekin =

∣∣∣∣dΦ0
i

dx

∣∣∣∣2 + |Φ0
i |

2

(dθ
dx

)2

+
1

4

(
dĜa

dx

)2
+ Φ0†

i

(
dθ

dx

)(
dĜa

dx

)
σaΦ0

i

+

[
i
dΦ0†

i

dx

(
dθ

dx
+
dĜa

dx

σa

2

)
Φ0
i + H.c.

]
.

(III.4)
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A. Goldstone Bosons

Considering the simplified energy density Ekin in (III.4) where each time only one of the

would-be Goldstone bosons Ĝa is non-zero, we can derive a simpler set of equations for Ĝa,

d

dx

[
1

2
|Φ0

i |
2dĜa

dx
+ Φ0†

i σ
aΦ0

i

dθ

dx
+

(
i

2

dΦ0†
i

dx
σaΦ0

i + H.c.

)]
= 0 (III.5)

Equation (III.5) implies that the terms inside the derivative must add up to an x-independent
constant. Since the x-derivatives of all the vacuum parameters should vanish as x→ ±∞ to
ensure that the total energy of the kink solution is finite, this integration constant can only
be zero. In this way, we arrive at a first order differential equation describing the spatial

profiles of Ĝa,

1

2
|Φ0

i |
2dĜa

dx
+ Φ0†

i σ
aΦ0

i

dθ

dx
+

(
i

2

dΦ0†
i

dx
σaΦ0

i + H.c.

)
= 0 . (III.6)

By analogy, a similar first-order differential equation may be derived for θ(x),

2|Φ0
i |

2 dθ

dx
+ Φ0†

i σ
aΦ0

i

dĜa

dx
+

(
i
dΦ0†

i

dx
Φ0
i + H.c.

)
= 0 . (III.7)

We note that the first-order differential equations in (III.6) and (III.7) reflect the conser-
vation of the Noether currents associated with the local symmetries of the original theory
under the SU(2)L×U(1)Y group [33].

In the following, we will derive the equations of motion for all the vacuum parameters

by assuming that only one would-be Goldstone boson at the time, i.e. θ(x) or Ĝ1,2,3, is
non-zero. Such a simplification enables us to better understand the analytic properties of
the kink solutions when asymmetric boundary conditions are imposed on each of the would-
be Goldstone bosons. In tandem, we use the gradient flow technique to obtain numerical
solutions which will then be compared with our analytical findings. A brief introduction to
the gradient flow technique is given in Appendix A.

1. The θ-Scenario

We start by considering the case where only θ(x) is non-zero, with all G1,2,3(x) = 0. For
brevity, we call this the θ-scenario. This means that the unitary matrix U in (II.6) describing
an arbitrary gauge rotation is simply U = eiθ(x)12. In this case, the kinetic energy density
of the system becomes

Ekin =
1

2

(
dv1
dx

)2

+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx

)2

+
1

2
v22

(
dξ

dx

)2

+
1

2
(v21 + v22 + v2+)

(
dθ

dx

)2

+ v22
dξ

dx

dθ

dx
.

(III.8)
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The gradient flow equations for v1, v2, ξ, v+ and θ are then found to be

∂v1
∂t

=
∂2v1
∂x2

− v1
(
∂θ

∂x

)2

+ µ2
1v1 − λ1v31 −

1

2
λ3v1v

2
+ −

1

2
(λ34 − |λ5|c2ξ)v1v22,

∂v2
∂t

=
∂2v2
∂x2

− v2

[(
∂ξ

∂x

)2

+

(
∂θ

∂x

)2

+ 2
∂ξ

∂x

∂θ

∂x

]
+ µ2

2v2 − λ2v2(v22 + v2+)− 1

2
(λ34 − |λ5|c2ξ)v21v2 ,

∂v+
∂t

=
∂2v+
∂x2

− v+
(
∂θ

∂x

)2

+ µ2
2v+ − λ2v+(v22 + v2+)− 1

2
λ3v

2
1v+ ,

∂ξ

∂t
= v22

(
∂2ξ

∂x2
+
∂2θ

∂x2

)
+ 2v2

∂v2
∂x

(
∂ξ

∂x
+
∂θ

∂x

)
− 1

2
|λ5|v21v22s2ξ ,

∂θ

∂t
= (v21 + v22 + v2+)

(
∂2θ

∂x2

)
+ v22

∂2ξ

∂x2
+ 2

∂θ

∂x

(
v1
∂v1
∂x

+ v2
∂v2
∂x

+ v+
∂v+
∂x

)
+ 2v2

∂v2
∂x

∂ξ

∂x
,

(III.9)
where t represents a fictitious time upon which each vacuum parameter is assumed to depend
in this gradient flow method. A solution describing the ground state of the system is declared
to be found, once the left-hand sides (LHSs) of the partial differential equations in (III.9)
will all vanish, up to a given degree of numerical accuracy. More details of the gradient flow
method are given in Appendix A.

Assuming that the derivatives of all Goldstone bosons and vacuum parameters tend to
zero at the boundaries as x→ ±∞, the gradient flow equation for θ(x) in the ground state
will be

(v21 + v22 + v2+)
dθ

dx
+ v22

dξ

dx
= 0 . (III.10)

Solving this last equation for dθ/dx yields

dθ

dx
= − v22

v21 + v22 + v2+

dξ

dx
. (III.11)

Equation (III.11) is one of the central results of this paper. It tells us that if asymmetric
boundary conditions at infinity are imposed on θ(x), i.e. θ(−∞) 6= θ(+∞), so that dθ/dx
happens to be non-zero for a finite x-interval, then one must necessarily have dξ/dx 6= 0
for a correlated x-interval of finite size, provided v2 6= 0 in the same interval. As expected
from earlier considerations where the effect of Goldstone bosons was ignored [23], this is
indeed the case, so the 1D kink solution for the CP phase ξ(x) will be non-zero for some
finite interval close to the origin. This signifies that the kink solution itself violates CP, even
though the Z2-symmetric 2HDM is CP invariant as well as it cannot realize spontaneous CP
violation [14, 16]. Moreover, since v2(x) is an odd function of x and dθ/dx is an even function
(due to the asymmetric boundaries), one should expect that self-consistency of (III.11) would
require that ξ(x) (dξ/dx) is an odd (even) function of x.

The above analytical observations may also be verified by our numerical simulations.
To confirm these observations, we first impose symmetric boundary conditions, such that
θ(−L)) = θ(L) = π/2 at both the left hand (LH) and the right hand (RH) boundary of a
finite interval −L ≤ x̂ ≤ L, with x̂ ≡ Mhx (see Appendix A). Here, L is a length cut-off in
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FIG. 1: Numerical estimates of the vacuum parameters and the energy density using the gradient

flow method for different boundary conditions on θ(x̂): (a) θ(x̂) = π/2 at both boundaries, (b) R-

field space profiles with θ(x̂) = π/2 at both boundaries, (c) θ(x̂) = 0 at the LH boundary and

θ(x̂) = π/2 at the RH boundary. The dash-dotted line through the boundary points is shown for

comparison, (d) R-field space profiles with θ(x̂) = 0 at the LH boundary and θ(x̂) = π/2 at the

RH boundary.

units of M−1
h that should be send to infinity upon completion of the simulation. The results

of our analysis for the five vacuum parameters, v1, v2, ξ, v+ and θ, are shown in Figure 1(a),
and the corresponding x-profiles in the bilinear R-space are displayed in Figure 1(b). As
expected, we find that the kink solutions in Figure 1(a) are both charge and CP-preserving,
with v+(x) = 0 for all x. The latter is reflected in Figure 1(b), with the kink solution obeying
the vacuum neutrality condition: RµR

µ = 0.

Let us now impose an asymmetric boundary condition on θ(x), with θ(−L) = 0 at the
LH boundary and θ(L) = π/2 at the RH boundary. This corresponds to a relative U(1)Y
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gauge rotation of the vacua at infinity [33]. The initial guess function for θ(x, t = 0) at the
origin of time t is chosen to be a straight line connecting the two boundaries at x = ±L. The
gradient flow numerical results are shown in Figure 1(c), with the corresponding R-space
profiles shown in Figure 1(d). As before, we see that the kink solution is electrically neutral
with v+(x) = 0 for all x, satisfying the vacuum neutrality condition: RµR

µ = 0. This should
not be surprising, since v+(x) = 0 is the lowest energy configuration which is still compatible
with all the imposed boundary conditions.

Nevertheless, we see from Figure 1(c) that ξ(x) is a non-zero and odd function of x
for an interval close to the origin. This also gives rise to a non-zero x-profile in the same
region for the component R2 in the bilinear R-space. As a consequence, the so-determined
kink solution is CP-violating, and its analytic behaviour agrees well with our discussion
in connection with (III.11). We also observe that the ground state solution for θ(x̂) tends
asymptotically to a straight line with a non-zero slope π/(4L) at the boundaries, x̂ = ±L,
where L = 20 is the length cut-off (in units of M−1

h ) used in our gradient flow analysis.
This may cause some concern regarding the validity of our results. However, in realistic
situations, we must send L→∞. Hence, we have

dθ

dx̂

∣∣∣∣
x̂=±L

=
π

4L
→ 0 , (III.12)

as the length cut-off L goes to infinity. In particular, given the analytic behaviour of
dθ/dx̂ ∝ 1/L in (III.12) at the boundaries, it is not difficult to check using (III.4) that
the total (kinetic) energy of the kink solution,

Ekin(L) =

∫ L

−L
dx̂ Ekin(x̂) , (III.13)

is proportional to 1/L, and so remains finite in the limit L→∞, as it is expected on general
theoretical grounds.

2. The G1-Scenario

Our second simplified scenario will be to consider the effect of a non-zero Goldstone
mode G1(x), but take all other Goldstone modes to vanish, i.e. by setting θ(x), G2,3(x) = 0,
for all x. In this G1-scenario, the relevant electroweak gauge transformation matrix becomes

U = exp

(
iĜ1(x)σ1

2

)
=

 cos
(
Ĝ1/2

)
i sin

(
Ĝ1/2

)
i sin

(
Ĝ1/2

)
cos
(
Ĝ1/2

) . (III.14)

Substituting (III.14) into (III.4), the kinetic energy density evaluates to

Ekin =
1

2

(
dv1
dx

)2

+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx

)2

+
1

2
v22

(
dξ

dx

)2

+
1

8
(v21 + v22 + v2+)

(
dĜ1

dx

)2

+
1

2

(
v+ sin ξ

dv2
dx

+ v+v2 cos ξ
dξ

dx
− v2 sin ξ

dv+
dx

)
dĜ1

dx
.

(III.15)
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For this second G1-scenario, the gradient flow equations are found to be

∂v1
∂t

=
∂2v1
∂x2

− 1

4
v1

(
∂Ĝ1

∂x

)2

+ µ2
1v1 − λ1v31 −

1

2
λ3v1v

2
+ −

1

2
(λ34 − |λ5|c2ξ)v1v22 ,

∂v2
∂t

=
∂2v2
∂x2

+
1

2
v+ sin ξ

∂2Ĝ1

∂x2
− v2

(
∂ξ

∂x

)2

− 1

4
v2

(
∂Ĝ1

∂x

)2

+ sin ξ
∂Ĝ1

∂x

∂v+
∂x

+ µ2
2v2 − λ2v2(v22 + v2+)− 1

2
(λ34 − |λ5|c2ξ)v21v2 ,

∂v+
∂t

=
∂2v+
∂x2

− 1

2
v2 sin ξ

∂2Ĝ1

∂x2
− 1

4
v+

(
∂Ĝ1

∂x

)2

− sin ξ
∂Ĝ1

∂x

∂v2
∂x
− v2 cos ξ

∂Ĝ1

∂x

∂ξ

∂x

+ µ2
2v+ − λ2v+(v22 + v2+)− 1

2
λ3v

2
1v+ ,

∂ξ

∂t
= v22

∂2ξ

∂x2
+ 2v2

∂v2
∂x

∂ξ

∂x
+

1

2
v+v2 cos ξ

∂2Ĝ1

∂x2
+ v2 cos ξ

∂v+
∂x

∂Ĝ1

∂x
− 1

2
|λ5|v21v22s2ξ ,

∂Ĝ1

∂t
=

1

4
(v21 + v22 + v2+)

∂2Ĝ1

∂x2
+

∂

∂x

(
1

2
v+ sin ξ

∂v2
∂x

+
1

2
v+v2 cos ξ

∂ξ

∂x
− 1

2
v2 sin ξ

∂v+
∂x

)
+

1

2

(
v1
∂v1
∂x

+ v2
∂v2
∂x

+ v+
∂v+
∂x

)(
∂Ĝ1

∂x

)
.

(III.16)

In order to obtain a finite-energy kink solution, the derivatives of all Goldstone bosons
and vacuum parameters should tend to zero at the boundaries. In the ground state, the

gradient flow equation for Ĝ1 takes the form:

1

4
(v21 + v22 + v2+)

dĜ1

dx
− 1

2
v22 sin2 ξ

d

dx

(
v+

v2 sin ξ

)
= 0 . (III.17)

We may now solve this last equation for dĜ1/dx,

dĜ1

dx
=

2v22 sin2 ξ

v21 + v22 + v2+

d

dx

(
v+

v2 sin ξ

)
. (III.18)

To get the lowest contribution from ξ(x) to Ekin in (III.15) compatible with its vanishing

boundary conditions at x = ±L, one must have dξ(x)/dx = ξ(x) = 0 for all x. If dĜ1/dx
varies significantly for some finite interval of x enforced by the asymmetric boundary values
of G1(x) at x = ±L, then the analytic property (III.18) can only hold true when v+(x) does
not vanish everywhere in x. In this asymmetric G1-scenario, one may expect that the kink
solution violates charge conservation, but respects CP.

The results of a gradient flow analysis are shown in Figure 2. Figure 2(a) presents a

numerical simulation using symmetric boundary conditions Ĝ1 = π/2 at both LH and RH
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FIG. 2: Numerical estimates of the kink parameters for two different boundary conditions on Ĝ1(x̂):

(a) Ĝ1(x̂) = π/2 at both boundaries, (b) Ĝ1(x̂) = 0 at the LH boundary and Ĝ1(x̂) = π/2 at the

RH boundary. The dash-dotted line through the two boundary points is also shown for comparison.

boundaries. Instead, Figure 2(c) displays a simulation by imposing asymmetric boundary

conditions, with Ĝ1 = 0 at the LH boundary and Ĝ1 = π/2 at the RH boundary. No charge
violation was noticeable for both types of symmetric and asymmetric boundary conditions

on Ĝ1, i.e. v+(x) = 0 for all x. In addition, the CP-odd vacuum parameter ξ(x) is also
zero everywhere in x, according to our discussion given above. However, for the asymmetric
case, the finding of an unobservable charge violation is a bit unexpected, but it may be
attributed to a good extent to the dispersive (non-localised) feature of the obtained solution

for Ĝ1(x). The G1(x) solution from a gradient flow computation has a non-vanishing and
almost constant slope π/(4L), for the entire x-interval (−L ,L). Hence, dG1/dx will vanish
for all x, as L→∞. Moreover, the kinetic and total energies of the kink can then easily be
shown to remain finite in the same limit for L.

3. The G2-Scenario

In our third G2-scenario, we study the effect of G2(x) alone by setting θ(x), G1,3(x) = 0,
for all x. In this case, the unitary matrix U describing electroweak gauge transformations
assumes the SO(2) form:

U = exp

(
iĜ2(x)σ2

2

)
=

 cos
(
Ĝ2/2

)
sin
(
Ĝ2/2

)
− sin

(
Ĝ2/2

)
cos
(
Ĝ2/2

) . (III.19)
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Taking this last expression of U into account, the kinetic energy density becomes

Ekin =
1

2

(
dv1
dx

)2

+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx

)2

+
1

2
v22

(
dξ

dx

)2

+
1

8
(v21 + v22 + v2+)

(
dĜ2

dx

)2

+
1

2

(
v2 cos ξ

dv+
dx
− v+ cos ξ

dv2
dx

+ v2v+ sin ξ
dξ

dx

)
dĜ2

dx
.

(III.20)

For this G2-scenario, the gradient flow equations may be cast into the form:

∂v1
∂t

=
∂2v1
∂x2

− 1

4
v1

(
∂Ĝ2

∂x

)2

+ µ2
1v1 − λ1v31 −

1

2
λ3v1v

2
+ −

1

2
(λ34 − |λ5|c2ξ)v1v22 ,

∂v2
∂t

=
∂2v2
∂x2

− v2
(
∂ξ

∂x

)2

− 1

2
v+ cos ξ

∂2Ĝ2

∂x2
− 1

4
v2

(
∂Ĝ2

∂x

)2

− cos ξ
∂v+
∂x

∂Ĝ2

∂x

+ µ2
2v2 − λ2v2(v22 + v2+)− 1

2
(λ34 − |λ5|c2ξ)v21v2 ,

∂v+
∂t

=
∂2v+
∂x2

+
1

2
v2 cos ξ

∂2Ĝ2

∂x2
− 1

4
v+

(
∂Ĝ2

∂x

)2

+ cos ξ
∂v2
∂x

∂Ĝ2

∂x
− v2 sin ξ

∂ξ

∂x

∂Ĝ2

∂x

+ µ2
2v+ − λ2v+(v22 + v2+)− 1

2
λ3v

2
1v+ ,

∂ξ

∂t
= v22

∂2ξ

∂x2
+

1

2
v2v+ sin ξ

∂2Ĝ2

∂x2
+ 2v2

∂v2
∂x

∂ξ

∂x
+ v2 sin ξ

∂v+
∂x

∂Ĝ2

∂x
− 1

2
|λ5|v21v22s2ξ ,

∂Ĝ2

∂t
=

1

4
(v21 + v22 + v2+)

∂2Ĝ2

∂x2
+

1

2

(
v1
∂v1
∂x

+ v2
∂v2
∂x

+ v+
∂v+
∂x

)(
∂Ĝ2

∂x

)

+
1

2

∂

∂x

(
v2 cos ξ

∂v+
∂x
− v+ cos ξ

∂v2
∂x

+ v2v+ sin ξ
∂ξ

∂x

)
.

(III.21)

Exactly as we did before, the following constraining equation for Ĝ2(x) may be derived
in the ground state:

dĜ2

dx
= − 2v22 cos2 ξ

v21 + v22 + v2+

d

dx

(
v+

v2 cos ξ

)
. (III.22)

Following a line of argumentation as we did before for the G1-scenario, Equation (III.22)
implies that the kink solution should respect CP, but it can violate charge conservation,

only when asymmetric boundary conditions are chosen and dĜ2/dx 6= 0 for a localised finite
interval of x as L→∞.

We investigate two different cases by imposing symmetric and asymmetric boundary

values on Ĝ2(x). The G2 solution preserves the neutrality of the ground state, i.e. v+(x) = 0

for all x, for the symmetric case when Ĝ2 is set to π/2 at both boundaries, as can be
seen from Figure 3(a). However, when asymmetric gauge rotated vacua are selected at the
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FIG. 3: Numerical estimates of the kink parameters for different boundary conditions on Ĝ2(x̂):

(a) Ĝ2(x̂) = π
2 at both boundaries, (b) Ĝ2(x̂) = 0 at the LH boundary and Ĝ2(x̂) = π/2 at the

RH boundary, (c) R-field space profiles with Ĝ2(x̂) = 0 at the LH boundary and Ĝ2(x̂) = π/2 at

the RH boundary, (d) maximum value for v+ as a function of the value of Ĝ2 at the RH boundary.

boundaries with Ĝ2(−L) = 0 and Ĝ2(+L) = π/2, we then observe in Figure 3(b) a localised
violation of charge, i.e. v+(x) 6= 0 close to the origin, having the same width as the v2(x)
kink solution. Instead, the CP phase ξ(x) = 0 everywhere respecting CP invariance. These
analytic properties are consistent with those derived from (III.22).

We should comment here that our results shown in Figure 3 are in good agreement with
those presented in [33] (see, e.g., Figure 10), where a peak in v+ was observed when a relative
gauge rotation of π/2 was applied to γ1 at the RH boundary. Note that the angle γ1 in [33]

corresponds to Ĝ2/2 here, as long as all the other electroweak group parameters are set to
zero, i.e. γ2 = γ3 = θ = 0. We complement the analysis given in [33] by showing explicitly
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the x-profile of Ĝ2(x), so to better assess its direct impact on v+(x), by virtue of (III.22).

The lowest total energy Etot of the 2HDM kink solution is obtained for v+ = 0, in
which case we have Etot = 0.354 (in Mh units) per unit area. As shown in Figure 3(d),
the maximum value of v+ increases for large asymmetric boundary values of G2. For this
asymmetric G2-scenario, we have

√
RµRµ = |R4|, since both ξ(x) and θ(x) are zero for all x,

which is a relation satisfied by our R-field space profiles shown in Figure 3(c).

4. The G3-Scenario

Our last scenario of interest to us is the case where only the Goldstone field G3(x) is non-

zero, whereas all other would-be Goldstone modes vanish, i.e. θ(x), Ĝ1,2(x) = 0. For this
G3-scenario, the electroweak gauge transformation matrix U is given by

U = exp

(
iĜ3(x)σ3

2

)
=

(
eiĜ

3/2 0

0 e−iĜ
3/2

)
. (III.23)

In this case, the kinetic energy density becomes

Ekin =
1

2

(
dv1
dx

)2

+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx

)2

+
1

2
v22

(
dξ

dx

)2

+
1

8
(v21 + v22 + v2+)

(
dĜ3

dx

)2

− 1

2
v22
dξ

dx

dĜ3

dx
.

(III.24)

Given the form of U in (III.23), we may derive a new set of gradient flow equations,

∂v1
∂t

=
∂2v1
∂x2

− 1

4
v1

(
∂Ĝ3

∂x

)2

+ µ2
1v1 − λ1v31 −

1

2
λ3v1v

2
+ −

1

2
(λ34 − |λ5|c2ξ)v1v22 ,

∂v2
∂t

=
∂2v2
∂x2

− v2
(
∂ξ

∂x

)2

− 1

4
v2

(
dĜ3

∂x

)2

+ v2
∂ξ

∂x

∂Ĝ3

∂x
+ µ2

2v2 − λ2v2(v22 + v2+)

− 1

2
(λ34 − |λ5|c2ξ)v21v2 ,

∂v+
∂t

=
∂2v+
∂x2

− 1

4
v+

(
∂Ĝ3

∂x

)2

+ µ2
2v+ − λ2v+(v22 + v2+)− 1

2
λ3v

2
1v+ ,

∂ξ

∂t
= v22

∂2ξ

∂x2
− 1

2
v22
∂2Ĝ3

∂x2
+ 2v2

∂v2
∂x

∂ξ

∂x
− v2

∂v2
∂x

∂Ĝ3

∂x
− 1

2
|λ5|v21v22s2ξ ,

∂Ĝ3

∂t
=

1

4

(
v21 + v22 + v2+

) ∂2Ĝ3

∂x2
− 1

2
v22
∂2ξ

∂x2
+

1

2

(
v1
∂v1
∂x

+ v2
∂v2
∂x

+ v+
∂v+
∂x

)
∂Ĝ3

∂x
− v2

∂v2
∂x

∂ξ

∂x
.

(III.25)
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FIG. 4: Numerical evaluation of the kink parameters for different boundary conditions on Ĝ3(x̂):

(a) Ĝ3(x̂) = π/2 at both boundaries, (b) R-field profiles with Ĝ3(x̂) = π/2 at both boundaries,

(c) Ĝ3(x̂) = 0 at the LH boundary and Ĝ3(x̂) = π/2 at the RH boundary. The dash-dotted

line through the boundary points is shown for comparison. (d) Profiles in the R-field space with

Ĝ3(x̂) = 0 at the LH boundary and Ĝ3(x̂) = π/2 at the RH boundary.

From the gradient flow equation for Ĝ3, we obtain the constraining relation,

dĜ3

dx
=

2v22
v21 + v22 + v2+

dξ

dx
. (III.26)

Equation (III.26) tells us that if we have dĜ3/dx 6= 0 for some localised and finite interval
of x as L → ∞, we should then have dξ(x)/dx 6= 0 and v2(x) 6= 0 on this correlated x-
interval. Hence, we expect that the resulting kink solution be CP-violating, but electrically
neutral.
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In Figure 4, we show our results obtained by the gradient flow approach. Figure 4(a)

shows the result using the boundary conditions Ĝ3 = π/2 at both the LH and RH boundaries,
with the corresponding profiles in the R-space shown in Figure 4(b). Figure 4(c) shows the

results obtained by imposing Ĝ3 = 0 at the LH boundary and Ĝ3 = π/2 at the RH boundary,
with the corresponding x-profiles in the R-space depicted in Figure 4(d). Like in the θ- and

Ĝ1-scenarios, no violation of the vacuum neutrality condition is observed, independently of

whether symmetric or asymmetric boundary conditions are applied to Ĝ3. If asymmetric
boundary conditions are used, however, we find a non-zero ξ(x) close to the kink at the
origin. The latter implies that the 2HDM kink solution violates CP, as can be analytically
inferred from (III.26).

IV. DISCUSSION

It is well known that the Two Higgs Doublet Model (2HDM) may possess accidental
discrete symmetries like CP or Z2 symmetry, which can be utilised to explain the origin of
CP violation in nature [14], or forbid tree-level flavour-changing neutral currents in Higgs in-
teractions [35]. However, the spontaneous breakdown of such symmetries during the electro-
weak phase transition in the early universe can give rise to the formation of domain walls
that may have detrimental effects on the cosmic evolution of the early universe.

In this paper, we have extended a recent work on this topic [33] and studied in more
detail the analytic properties of charged and CP-violating kink solutions in a Z2-symmetric
2HDM. To do so, we have first derived the complete set of equations of motion that describe
the 1D spatial profiles, not only of the 2HDM vacuum parameters alone as done in [33], but
also of the would-be Goldstone bosons G1,2,3 associated with the SM W± and Z bosons,
and the mode θ corresponding to a would-be massive photon emerging from a possible
spontaneous breakdown of the U(1)em group of electromagnetism. These equations are
then solved numerically using the gradient flow method, and the results of our analysis
are presented in the non-linear and R-space field representations. In particular, by virtue
of (III.22), we have analytically demonstrated how an electrically charged profile can arise
in 1D kink solutions when asymmetric boundary conditions are imposed on G2 at spatial
infinities, such that G(2)(−∞) 6= G(2)(+∞). If similar asymmetric boundary conditions
are selected for the longitudinal mode θ or the Goldstone mode G3, we have shown how
the derived kink solutions obeying the constraining equations (III.11) and (III.26) exhibit
CP violation, while preserving electric charge. These findings were corroborated by our
numerical analysis based on the gradient flow method. We note, however, that the kink
solutions obtained when asymmetric boundary values were imposed on G1 do appear to
respect both CP and electric charge, at least at the level of our numerical accuracy. Hence,
where comparisons were possible, our results agree well with the numerical simulations
carried out in [33].

It is important to stress here that the total finite energy of the 2HDM kink solutions
depends on the boundary conditions on the Goldstone modes θ and Ga at spatial infinities.
It gets higher when these conditions are asymmetric thereby triggering electric charge or
CP non-conservation. In a fashion very analogous to the well-known Lee’s mechanism of
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spontaneous CP violation [14] caused by the zero-energy vacuum state of a CP-invariant
2HDM potential, charged and CP-violating kink configurations of the ground state will now
induce electric charge and CP violation for the constrained Z2-symmetric 2HDM potential.
It should be appreciated here the fact that spontaneous CP violation is not possible in an
exact Z2-symmetric 2HDM potential [16], but only through topological kink configurations
as discussed in this paper.

Electrically charged and CP-violating domain walls may have a number of cosmological
implications while they are decaying in the early universe. They will interact with photons
and other light charged particles affecting the CMB spectrum, and in certain instances, they
may even affect gravitational wave detectors, such as LIGO [40–43]. Since the photons can
become massive inside the domain walls, the latter will acquire superconducting properties as
other topological defects [44]. Moreover, photons will be reflected by the walls for sufficiently
low frequencies below the symmetry-breaking scale [45]. In a decaying domain-wall scenario,
charge violation of the kink solution may lead to conversions of electrons or muons into
neutrinos and photons or other gauge bosons [46], potentially modifying the relic abundances
of the latter particles. Even though numerical simulations and estimates are bound to be
highly model-dependent, the minimal Z2-symmetric 2HDM that we have been considering
here is certainly an archetypal framework for conducting realistic studies.

We note that electrically charged and CP-violating domain walls do not only occur in
the Z2-symmetric 2HDM under study, but they can also be a generic feature of many SM
extensions for which domain walls happen to carry electroweak or other charges of gauge
groups that mix with the U(1)em group. For instance, this can be the case for some breaking
patterns of Grand Unified Theories like SO(10) [47, 48], which can go to the SM gauge
group via the Pati–Salam (PS) subgroup [49]: SO(10) → SU(4)PS × SU(2)L × SU(2)R →
SU(3)c× SU(2)L× SU(2)R×U(1)B−L×C → SU(3)c× SU(2)L×U(1)Y → SU(3)c×U(1)em.
In this breaking pattern [50, 51], C is a discrete charge conjugation symmetry, which reflects
the symmetry of the theory under the interchange of left and right chiral fields belonging
to the SU(2)L and SU(2)R groups, respectively, followed by a charge-conjugation of their
representations. An alternative left-right symmetric theory with a similar discrete symmetry
(not embeddable in SO(10)) was given in [52]. Thus, an asymmetric spontaneous symmetry
breaking of the SU(2)L and SU(2)R gauge groups through hierarchical VEVs will break C
spontaneously, producing a system of domain walls bounded by strings [50, 51]. Hence, the
spontaneous breaking of C will potentially give rise to electrically charged and CP-violating
domain walls, even in the absence of any explicit or spontaneous source of CP violation.

Finally, it would be interesting to explore whether other topological defects, such as
cosmic strings and monopoles, may also carry electric charge, or whether they can localise a
non-trivial CP-violating phase close to their origin. An ultimate goal of such studies would
be to understand the role that the so-generated CP-violating topological defects can play in
the dynamics of electroweak baryogenesis in the 2HDM and beyond.

Acknowledgements

We thank Richard Battye for useful discussions. The work of AP is supported in part
by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics, under STFC
research grant ST/T001038/1.



20

Appendix A: Gradient Flow Technique in the Z2-symmetric 2HDM

In order to solve rather complex time-independent equations of motion that give rise
to stable topological defects in extensions of the SM, like the 2HDM, we must rely on
numerical methods. One such convenient method is the so-called gradient flow technique,
which enables one to numerically solve a set of coupled second-order differential equations,
with well defined Neumann or Dirichlet initial conditions [23, 53]. We have applied the
gradient flow technique to obtain numerical solutions for one-dimensional (1D) topological
kink configurations.

In detail, the 1D energy density E of the Z2-symmetric 2HDM is given by the {00}
component of the energy stress tensor, T 00, i.e.

E(Φ1,Φ2) =
dΦ†1
dx

dΦ1

dx
+
dΦ†2
dx

dΦ2

dx
+ V (Φ1,Φ2) + V0 , (A.1)

where V (Φ1,Φ2) is the Z2-symmetric potential given in (II.1) and V0 is a constant introduced
here in order to shift the minimum energy density to zero, such that E is non-negative for
all x. We use the gradient flow technique to find solutions that minimize the total energy of
the system, E =

∫
dx E(Φ1,Φ2). In three spatial dimensions, this represents the energy per

unit area of the system. We introduce a fictitious time parameter t, so that the ground-stated
functions within the Higgs doublets, collectively denoted here as fi, become t-dependent,

fi = fi(x, t) . (A.2)

Since we wish our field solutions to minimize the total energy E of the system, we set

ḟi = −δE
δfi

. (A.3)

We introduced in (A.3) a negative sign before the functional derivative, because we want the
fields to evolve in a way such that the energy decreases and eventually reaches a minimum.

In our numerical analysis, we have appropriately redefined the length x, the vacuum
parameters v1,2,+ and the energy density E , so as to become dimensionless,

x̂ ≡ Mhx , v̂1,2,+ ≡
v1,2,+
vSM

, Ê ≡ E
M2

hv
2
SM

, (A.4)

where Mh = 125 GeV is the value used for the SM Higgs mass and vSM = 246 GeV is the
VEV assumed for the SM Higgs field. These values coincide with their central values as
determined by experiment [4]. Finally, we have redefined all relevant kinematic parameters
of the Z2-symmetric 2HDM to facilitate the rescaling of the energy density:

µ̂2
1 =

µ2
1

M2
h

, µ̂2
2 =

µ2
2

M2
h

, λ̂i =
λiv

2
SM

M2
h

, (A.5)

with i = 1, 2, 3, 4, 5.
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