Effective Field Theory interpretations of ATLAS measurements

Carsten D. Burgard

on behalf of the ATLAS Collaboration **Higgs 2021**, October 19th, 3pm EST

Introduction

- > The LHC has not found any new physics beyond SM + Higgs boson
- Direct searches for SUSY or exotics continue, but focus on indirect exploration increases
 - independent of specific model of new physics
 - applicable to wide range of analyses
- Interpretation in context of Effective Field Theories complementing (or superseding) other interpretations
 - interim κ-framework (Higgs)
 - anomalous couplings (SM, Top)
 - polarization measurements (SM, Top)
- > Plethora of ATLAS results contain interpretations in terms of EFT
 - limited time for individual results, provide references instead of details
 - focus on interpretation methodology and new developments

Standard Model Effective Field Theory

Introduce new effective operators with free coefficients to capture new physics appearing beyond scale A (typically chosen as 1 TeV)

$$\mathscr{L} = \mathscr{L}_{\mathrm{SM}} + rac{1}{\Lambda^2}\sum_i c_i^{(6)}\mathcal{O}_i^{(6)} + rac{1}{\Lambda^4}\sum_i c_i^{(8)}\mathcal{O}_i^{(8)} + \dots$$

- > New heavy internal particles are integrated out and are represented as vertices in the new effective theory
- > Most common: Warsaw-basis (59+h.c. dim-6 operators)

SMEFT in a nutshell

- \mathscr{L}_{SM} is dim-4, high orders only valid in the low-energy regime $E \ll \Lambda$
- terms with odd dimensionality violate B L symmetry and are usually not considered for LHC physics
- Wilson coefficients $c \equiv 0$ for SM, deviations might indicate new physics

Parametrization

> Analyses primarily measure cross-sections (or signal strengths) with likelihood fit

$$L(\mu, \theta) = \prod_{i}^{\text{bins}} P\left(n_i^{\text{obs}} \mid \mu_i n_i^{\text{sig}}(\theta) + n_i^{\text{bkg}}(\theta)\right) \cdot \prod_{j}^{\text{nuis}} G(\theta_j)$$

> For direct interpretation, replace $\mu n_i^{sig}(\theta) \rightarrow n_i^{sig}(\boldsymbol{c}, \theta)$ for the Wilson coefficients \boldsymbol{c}

$$\boldsymbol{n}^{\text{sig}}(\boldsymbol{c}) \cdot \mathcal{L}^{-1} = \sigma_{\text{SM}} + \sum_{j} \underbrace{\frac{c_{j}}{\Lambda^{2}} \int \left| \mathcal{M}_{\text{SM}}^{d-1} \mathcal{O}_{j}^{(6)} \right| d\Omega}_{\text{SM}} + \sum_{jk} \underbrace{\frac{c_{j}c_{k}}{\Lambda^{4}} \int \left| \mathcal{M}_{\text{SM}}^{d-2} \mathcal{O}_{j}^{(6)} \mathcal{O}_{k}^{(6)} \right| d\Omega}_{\text{SM}} + \dots$$

> For indirect (re)interpretation perform the same procedure on the cross-sections in the rewritten likelihood based on published, unfolded result with data bin correlation matrix C

$$L(\mathbf{\Delta}\sigma) = \frac{1}{\sqrt{(2\pi)^{n_{\text{bins}}} \det C}} \exp\left(-\frac{1}{2}\mathbf{\Delta}\sigma^T C^{-1}\mathbf{\Delta}\sigma\right) \qquad \text{ with } \mathbf{\Delta}\sigma = \sigma^{\text{obs}} - \sigma^{\text{sig}}$$

Considerations: Quadratic terms

1

- > same order as linear dim-8 terms not possible to interpret at fixed order in EFT
- > often only included as an estimate for higher order corrections
- > for some processes, linear terms are suppressed here quadratic terms drive sensitivity!

$m DD ightarrow 4\ell$

- > 4ℓ events with isolated same-flavour (SF), opposite-charge (OC) pairs $(4e, 4\mu, 2e2\mu)$
 - construct lepton pairs by proximity to Z-mass (smallest $|m_{2\ell} m_Z|$)
 - define 4 regions by $m_{\ell\ell}$; single-Z, on-shell ZZ, off-shell ZZ, and $H \rightarrow 4\ell$
 - pre-unfolding efficiency correction reduce assumptions on signal modelling
 - subtract background from misidentified leptons
 - unfold differential fiducial cross-section in m_{12} , m_{34} , $m_{4\ell}$, p_{24}^T , $p_{4\ell}^T$, $\Delta \Phi_{\ell\ell}$, ΔY_{ee} using Iterative Bayesian Unfolding

JHEP 07 (2021) 005

only linear term

Obs 95% interva

-0.0090. 0.015 1

1-0.63.0.28

1-0.29. 0.131

1-0.75.0.211

1-0.19.0.571

1-0.51 0.121

1-0.15 0.53

1-25.0 100.0

1-0.36 0.631

18.0. 130.0

[-1.3. 3.0]

[-17.0, 70.0 1

1-0.18, 0.501

[-1.1, 0.47]

1-10.2.31

[-1.6, 6.1]

- reparametrize unfolded result (indirect) with Wilson coefficients
- > fit rewritten LH to unfolded data, one coefficient at a time
- > use most sensitive observable each

Other SM differential measurements

more involved analyses with similar interpretation strategies

Z+dijet with 139 fb⁻¹

- > SF OC lepton pair $|m_{\ell\ell} m_Z| < 10 \, {
 m GeV}$
- > two VBF/VBS-like jets (m_{jj} > 1 TeV, Δy_{jj} > 2)
- > Z within (+ balanced against) dijet system
- > data-driven estimate for QCD Z + jj bkg.
- > Iterative Bayesian Unfolding to 4 obs.
- > reparametrize $\Delta \Phi_{ii}$ to infer Wilson coeff.
- p-values derived with 1000 toys

Eur. Phys. J. C 81 (2021) 163

M _{d6} ² no [Expected -0.30, 0.30]	Observed	45.9%
no (-0.30, 0.30]	[-0.19, 0.41]	45.9%
Ves			40.070
,00	-0.31, 0.29]	[-0.19, 0.41]	43.2%
no	-0.12, 0.12]	[-0.11, 0.14]	82.0%
yes [-0.12, 0.12]	[-0.11, 0.14]	81.8%
no [-2.45, 2.45]	[-3.78, 1.13]	29.0%
yes [-3.11, 2.10]	[-6.31, 1.01]	25.0%
no [-1.06, 1.06]	[0.23, 2.34]	1.7%
yes [-1.06, 1.06]	[0.23, 2.35]	1.6%
	no yes no yes no yes	no [-0.12, 0.12] yes [-0.12, 0.12] no [-2.45, 2.45] yes [-3.11, 2.10] no [-1.06, 1.06] yes [-1.06, 1.06]	$\begin{array}{llllllllllllllllllllllllllllllllllll$

WW+ \geq 1 jet with 139 fb⁻¹

- > one DF OC lepton pair with $m_{e\mu}$ > 85 GeV
- > \geq 1 central jet with p_T > 30 GeV, no *b*-jets
- > additional signal region with $p_T^{\rm jet}$ > 200 GeV to reduce helicity-suppression of dim-6 interference term
- Iterative Bayesian Unfolding to 12 obs.
- > use $m_{e\mu}$ to infer limits on c_W
- > strongest limits from quadratic term

JHEP 06 (2021) 003

Energy asymmetry in $t\bar{t}j$ production

> semileptonic top: isolated $\ell + b$ -jet + E_{τ}^{miss}

arXiv:2110.05453

> hadronic top: large-R-jet ($p_T > 350 \,\text{GeV}$) ATI AS $\sqrt{s} = 13 \text{ TeV} \ 139 \text{ fb}^{-1}$ A_F (expected) > boosted: +1 hard iet ($p_T > 100 \text{ GeV}$) - 68% CI > non-prompt bkg.: data-driven matrix method ---- 95% CI ++--++ C_{00}^{11} > Fully Bayesian Unfolding of jet scattering angle and energy asymmetry C_{Oa}^{18} $\Delta E = E_t - E_{\overline{t}}$ $N^{\text{opt}}(\theta_i) = N(\theta_i | y_{t\bar{t}i} > 0) - N(\pi - \theta_i | y_{t\bar{t}i} < 0)$ In the second se C_{ta}^1 in the second se C_{tra}^8 ++---+-++ $C^1_{t_i}$ C_{tu}^8 -4 -3 -2 -1 0 1 2 3 4 5 $C (TeV/\Lambda)^2$

Energy asymmetry in $t\bar{t}j$ production

arXiv:2110.05453

> many more contours in the paper!

Two-dimensional scans from $t\bar{t}$

highly sensitive analyses can probe several coefficients at once

boosted $t\bar{t}$ all-hadronic ATLAS-CONF-2021-050 boosted $t\bar{t}$ + jets

ATLAS-CONF-2021-00

- > two large-*R* jets with $p_T > 500/350 \,\text{GeV}$
- > top-tagging, masses close to the top mass, b-matching of associated small-R-jets
- Iterative Bayesian Unfolding to 13 observables (plus 12 × 2d, 1 × 3d distribution)
- > results prepared on particle-level and parton-level
- > reparametrize p_T^{t1} distribution

- > select exactly one lepton close to a *b*-jet and far from a top-tagged jet, cut on E_T^{miss} & m_T^W
- > Iterative Bayesian Unfolding to 18 1d and 4 2d observables
- > reparametrizing $p_T^{top_{had}}$ distribution

Coeff.	Marginalised 95% intervals		Individual 95% intervals	
	Expected	Observed	Expected	Observed
C_{tG}	[-0.44, 0.44]	[-0.68, 0.21]	[-0.41, 0.42]	[-0.63, 0.20]
$C_{tq}^{(8)}$	[-0.35, 0.35]	[-0.30, 0.36]	[-0.35, 0.36]	[-0.34, 0.27]

Two-dimensional scans from $t\bar{t}$

highly sensitive analyses can probe several coefficients at once

boosted $t\bar{t}$ all-hadronic ATLAS-CONF-2021-050 boosted $t\bar{t}$ + jets

- two large-R jets with $p_T > 500/350 \,\text{GeV}$
- top-tagging, masses close to the top mass. b-matching of associated small-R-iets
- Iterative Bayesian Unfolding to 13 observables (plus $12 \times 2d$, $1 \times 3d$ distribution)
- results prepared on particle-level and parton-level
- reparametrize p_T^{t1} distribution

- > select exactly one lepton close to a *b*-iet and far from a top-tagged jet, cut on $E_T^{\text{miss}} \& m_T^W$
- > Iterative Bayesian Unfolding to 18 1d and 4 2d observables
- > reparametrizing $p_{T}^{top_{had}}$ distribution

Consideration: Cross sections vs. EFT coefficients?

- > unfolded spectra are important results in their own right
- > precision measurements sensitive to wide array of coefficients
- > what about measurements targeting individual coefficients?

Single t/\bar{t} polarization limits on tWb dipole

- > focus on t-channel exchange of a W boson in single-top events – dominant process at the LHC
- > V-A structure of the *tWb* vertex \Rightarrow top quarks spin aligned with *d*-quark or spectator quark
- > predicted t/t polarization alongside spectator: 0.9/0.86
- > Warsaw basis: only OtW affects pol. angle (CtW & CitW)
- > rely on leptonic top decays: events with ℓ + $E_T^{\rm miss}$ + 2 jets
 - · one b-jet, one "specatator" jet
- > specialized geometrical cuts enhance s/b
- > CR for $t\bar{t}$ and W+jets, data-driven method for multijet
- > split SR and CRs by lepton charge, slice SR 3*d* space of $\cos \theta_{\ell X'}$, $\cos \theta_{\ell Y'}$, $\cos \theta_{\ell Z'}$ into octants
- > use Iterative Bayesian Unfolding to obtain angular differential distributions in $\cos \theta_{\ell X'/Y'/Z'}$

ATLAS-CONF-2021-027

Top summary plots

ATL-PHYS-PUB-2021-036

- > compilation of single-operator results
- > sorted into two-fermion, four-fermion and FCNC operators

Top summary plots

ATL-PHYS-PUB-2021-036

- compilation of single-operator results
- sorted into two-fermion, four-fermion and FCNC operators

All of these results use unfolded precision measurements

> next slides explore other approaches measuring EFT coeff.

Measurements of Higgs-Top coupling CP

dedicated analyses of CP-odd and CP-even higgs couplings

ttH H $\rightarrow \gamma \gamma$ with 139 fb⁻¹ PRL 125 061802 (2020) *agF*+2i *H* \rightarrow *WW* with 36 fb⁻¹arXiv:2109.13808v1

background rejection cuts

- two photons + 1 b-tagged iet
- categorization by top decay (lep. or had.)
- different approaches to reconstructing top-guarks
- two BDTs (background-rejection / CP)
- data-driven background estimate

0 -0.5

> ATLAS √s = 13 TeV, 139 fb⁻¹

> use κ_{α} and κ_{γ} from the Run 2 Higgs combination

select two isolated DF OC leptons + 2 jets, various

$$\mathscr{C} = -rac{\mathcal{G}_{Hgg}\kappa_{gg}}{4}\left(G^{a}_{\mu
u}G^{a,\mu
u}\coslpha+ ilde{G}^{a}_{\mu
u} ilde{G}^{a,\mu
u}\sinlpha
ight)\mathcal{H}$$

1.5

 $\kappa.cos(\alpha)$

Measurements of Higgs-Top coupling CP

dedicated analyses of CP-odd and CP-even higgs couplings

VH(\rightarrow bb) resolved + boosted combination ATLAS-CONE-2021-051

- > combination of two $H \rightarrow bb$ analyses
 - resolved: $p_T^V > 75 \,\text{GeV}$ + two separate jets
 - boosted: $p_T^{V} > 250 \,\text{GeV} + \text{one large-}R$ jet
- > binned in lepton multiplicity, selecting E_T^{miss}
- > overlap avoided through cut at $p_T^V = 400 \,\text{GeV}$
- > direct interpretation of p_T^V spectrum
- in-likelihood unfolding with simplified template cross-sections
- > many pairwise contours studied

The more, the merrier

How can we move towards more comprehensive results?

- > Wealth of Wilson coefficients poses a challenge
 - Many analyses are only sensitive to few
 - Constraints typically sufficient for 1d or 2d limits, rarely more
 - Can we avoid having to fix many coefficients to SM?
 - Combine analyses to get a more comprehensive picture!
- > What can we do with coefficients that we are not sensitive to?
 - If the coefficients have no effect on the results, we can still fix them
 - With limited sensitivity, try to measure combination of coefficients
 - Rotate space of coefficients to a basis that allows for maximum extraction of information!

> EFT parametrization

> EFT parametrization

- > combine four EW SM analyses
- correlated treatment of systematic uncertainties
- unfolded fiducial spectra, reinterpreted with Gaussian likelihood (indirect)
- > simultaneous fit of 15 coeff.
- > 2d profile likelihood contours

EFT interpretation of Higgs combination

- > comb. of $H \rightarrow \gamma \gamma / ZZ / WW / \tau \tau / bb$
- > more channels without EFT interpretation in publication
- > corr. treatment of systematics
- in-likelihood unfolding using simplified template cross sections
- parametrization of the full likelihood in terms of EFT (direct)
- > simultaneous fit of 13 coefficients
 - up from 10 coeff. ($H \rightarrow \gamma \gamma / ZZ/bb$)
- > rotation to sensitive basis

ATLAS-CONF-2021-053

EFT interpretation of $SMWW+H \rightarrow WW$

- > combination of H→WW analysis with SMWW analysis
 - $H \rightarrow WW$ directly interprets $\mu_{\rm ggF}/\mu_{\rm VBF}$
 - SMWW interprets unfolded result (indirect, Gaussian likelihood)
- > correlated treatment of systematics
- > simultaneous fit of 8 coefficients
- > rotation to sensitive basis

ATL-PHYS-PUB-2021-010

Conclusions

> Wealth of EFT results published by the ATLAS collaboration

- Standard Model, Top and Higgs analyses
- No significant deviations from the Standard Model observed
- > Many differerent strategies
 - In many cases, EFT results interpret unfolded spectrum
 - Alternatively measure coefficients with the primary likelihood
 - Some specifically tailored to certain EFT operators
- > Challenging to constrain several coefficients simultaneously
 - Currently only achievable by combinations
 - Use of basis rotation to extract maximum information
- > Even possible to combine across different approaches, hope to see more interesting combined results in the future