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We present a complete model of a dark QCD sector with light dark pions, broadly motivated

by hidden naturalness arguments. The dark quarks couple to the Standard Model via

irrelevant Z- and Higgs-portal operators, which encode the low-energy effects of TeV-scale

fermions interacting through Yukawa couplings with the Higgs field. The dark pions,

depending on their CP properties, behave as either composite axion-like particles (ALPs)

mixing with the Z or scalars mixing with the Higgs. The dark pion lifetimes fall naturally

in the most interesting region for present and proposed searches for long-lived particles,

at the LHC and beyond. This is demonstrated by studying in detail three benchmark

scenarios for the symmetries and structure of the theory. Within a coherent framework,

we analyze and compare the GeV-scale signatures of flavor-changing meson decays to dark

pions, the weak-scale decays of Z and Higgs bosons to hidden hadrons, and the TeV-

scale signals of the ultraviolet theory. New constraints are derived from B decays at CMS

and from Z-initiated dark showers at LHCb, focusing on the displaced dimuon signature.

We also emphasize the strong potential sensitivity of ATLAS and CMS to dark shower

signals with large multiplicities and long lifetimes of the dark pions. As a key part of

our phenomenological study, we perform a new data-driven calculation of the decays of a

light ALP to exclusive hadronic Standard Model final states. The results are provided in a

general form, applicable to any model with arbitrary flavor-diagonal couplings of the ALP

to fermions.
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1 Introduction and the model

A light, confining hidden sector coupled feebly to the Standard Model (SM) is in general

an interesting possibility for new physics, often referred to as a hidden valley (HV) [1].

More sharply, it can be part of the answers to outstanding questions of the SM. The

(little) hierarchy problem may be solved by models of neutral naturalness [2–4], where the

partners of the top quark are not charged under SM color but a dark color symmetry,

and dark confinement around the GeV scale is a generic prediction [5]. If the hierarchy

problem is solved by cosmological relaxation, a confining hidden sector may be the origin

of the backreaction potential that stops the relaxion [6]. Dark strong dynamics can also

provide attractive scenarios for dark matter, with several plausible candidates found among

the dark hadrons.

If at least some of the dark hadrons decay to SM particles, the feeble coupling connect-

ing the hidden and visible sectors generally implies macroscopic lifetimes. Thus, hallmark

signatures of HV models are given by long-lived particles (LLPs), which have been a topic

of rapidly increasing interest at the Large Hadron Collider (LHC) [7] and beyond [8]. At

the LHC, searches for LLPs hold a strong discovery potential, provided that dedicated and

innovative strategies can be implemented at the level of event selection and analysis. This

is especially true for “dark jet” or “dark shower” topologies, where the decay of a heavy

particle (such as a Z or Higgs boson) to the hidden sector produces jets made of light dark

hadrons. The associated phenomenology deserves further attention.1 Areas where impor-

tant progress is needed include maximizing the dark shower coverage of existing detectors

(primarily ATLAS, CMS and LHCb), understanding the interplay with low-energy pro-

duction processes such as flavor-changing neutral current (FCNC) meson decays, as well

as comparing to the sensitivity of proposed LLP-specific experiments. In this paper we

study a model of dark QCD with light pseudo Nambu-Goldstone bosons (pNGBs), namely

dark pions, coupled to the SM through irrelevant Z and Higgs portals. This theory of dark

pions provides a new coherent framework to address the above questions.

The low-energy spectrum of the hidden (or dark) sector depends on the number of

light quark flavors, N , charged under the dark QCD (assumed to have SU(Nd) as the color

group) and having masses below the strong scale Λ. If N = 0, dark glueballs are at the

bottom of the spectrum [10]. An example is the Fraternal Twin Higgs model [5], where the

lightest dark glueball is expected to mix with the Higgs boson, giving rise to phenomenology

that has been extensively studied [5, 11]. For N = 1, the low-energy spectrum contains

several mesons with masses around Λ, the lightest being a (η′-like) pseudoscalar, a vector,

and a scalar [12]. For instance, this scenario has been thoroughly analyzed in a realization

of the tripled top framework for supersymmetric neutral naturalness [13] that features

electroweak-charged top partners, where the dark mesons mix dominantly with the Z

boson [14]. When N ≥ 2 (but still below the conformal window, N . 4Nd), one expects

chiral symmetry breaking and N2−1 associated pNGBs, which in a slight abuse of notation

we call dark pions, π̂, for any N . As familiar from the SM, the dark pions can be much

lighter than the rest of the hadrons, whose masses are at or above the dark QCD scale:

1A very recent appraisal can be found in Ref. [9].
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mπ̂ � Λ. Here we focus on the multi-flavor case. The lifetimes of the dark pions depend on

the amount and pattern of explicit isospin breaking, yielding a larger parameter space to

explore compared to the one-flavor theory. With respect to the latter, notable differences

are that dark meson production and decay are less tightly connected, and dark vector

mesons dominantly decay to dark pions if the phase space is open, whereas for N = 1 they

decay to SM particles.

The light dark quarks must be singlets under the SM if their masses are below O(100)

GeV, to satisfy collider bounds. The interactions connecting them to the visible sector

dictate the phenomenology. Here we focus on the interesting possibility of irrelevant portals

obtained by integrating out heavy states [14–20], which have been less studied compared

to renormalizable ones, even though they have solid theoretical motivations. A concrete

example is given by the scenario of Ref. [14], where the mediation is provided by heavy

fermions charged under both the SM electroweak (EW) and hidden color gauge symmetries,

allowing for renormalizable Yukawa interactions between dark-colored quarks and the SM

Higgs doublet. The supersymmetric partners of the heavy fermions play the role of scalar

top partners, hence the mediation scale is naturally around TeV.

The model. Drawing from the above discussion, the theory of dark pions considered

in this work contains N > 1 flavors of Dirac fermions ψi, transforming in the fundamental

representation of the dark color SU(Nd), but singlets under all SM gauge symmetries.

In addition, N EW-doublet Dirac fermions Qi = (Qu Qd)
T
i with hypercharge 1/2 are

included, which also transform in the fundamental representation of SU(Nd). This field

content allows for Yukawa couplings involving the SM Higgs doublet,

− LUV = QLY ψRH +QRỸ ψLH +QLMQR + ψLωψR + h.c. , (1.1)

where Y , Ỹ , M , and ω are N × N matrices in flavor space. The mass matrices M

and ω can be diagonalized with real and positive diagonal elements by separate unitary

transformations on the QL,R and ψL,R fields, respectively, so we assume this form without

loss of generality. The coupling matrices Y , Ỹ can be complex in general, withN2+(N−1)2

independent phases, decreasing to (N−1)2 if one of Y , Ỹ , or ω vanishes. In addition there

is always the strong CP phase of dark QCD, which will be consistently set to zero in this

work. The masses M of the heavy dark quarks are taken to be larger than Λ (and around

TeV). The masses of the light dark quarks, which receive independent contributions of order

ω and Y Ỹ v2/M , where v is the Higgs vacuum expectation value (VEV), are assumed to

be much smaller than Λ. Hence, the dark QCD has N light flavors. If N . 4Nd [21], at

low energies the light quarks are confined and form a condensate. The SU(N)L×SU(N)R
chiral symmetry is spontaneously broken to the diagonal SU(N)V , resulting in N2 − 1

pNGB dark pions.

The Y = yt1, Ỹ = 0 limit of Eq. (1.1), together with appropriate TeV-scale su-

persymmetry breaking, embodies a solution to the little hierarchy problem à la tripled

top [13, 14].2 This sets a well-motivated target for the chiral structure and mediation

2In the tripled top model there are two SU(3) dark color gauge groups, each with one flavor of SM-singlet

fermions which can be very light [14]. However, variations where the dark QCD has more than one light

flavors are straightforward to construct, for example, by identifying the two dark color groups.
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strength, with Y ∼ yt ∼ 1 and M ∼ TeV. On the other hand, the same Lagrangian (1.1)

was employed in the relaxion solution to the hierarchy problem [6],3 to generate a back-

reaction potential without running into difficulties with the SM strong CP problem. In

both cases N = 1 was originally chosen for the sake of minimality, but not necessity. The

fact that this setup emerges naturally in very different approaches to the Higgs naturalness

puzzle makes it a compelling choice for a benchmark theory of dark pions.

The properties of the individual dark pions depend on the symmetries and structure

of the dark sector. If the CP symmetry is preserved, the dark pions are classified into odd

and even states: for example, with N = 2 the π̂1 and π̂3 are CP -odd (JPC = 0−+) while

the π̂2 is CP -even (0−−), where the index corresponds to SU(2) generators. Therefore,

this theory provides a coherent framework to study both CP -odd and -even light scalars

feebly coupled to the SM. The CP -odd dark pions decay to SM particles through the Z

portal, i.e., by mixing with the longitudinal component of the Z boson through dimension-6

operators. They behave as ALPs with an effective decay constant parametrically given by

fa ∼ min

{
M2

Y 2fπ̂
,
M2

Ỹ 2fπ̂

}
, (1.2)

where fπ̂ is the dark pion decay constant, defined in analogy with the SM pion decay

constant fπ ≈ 93 MeV. The precise form of Eq. (1.2) is derived later, but one can already

see that for Y ∼ 1, M ∼ TeV and fπ̂ ∼ GeV, the CP -odd dark pions have fa ∼ PeV.

This highlights how the ALP decay constant does not necessarily correspond to a physical

scale (no threshold exists near the PeV in our model), but is a combination of parameters

of the underlying theory if the ALP is composite. The CP -even states decay to SM

particles through the Higgs portal, i.e., by mixing with the Higgs boson through dimension-

5 operators. As we show in detail later, the mixing angle is parametrically

sin θ ∼
2πf2

π̂Y Ỹ v

Mm2
h

, (1.3)

where mh is the Higgs boson mass. Since small dark pion masses are well motivated in our

setup, and the dark pions couple to all SM fermions including quarks, the phenomenological

analysis presented here requires a detailed description of ALP decays for an ALP mass

ma . 3 GeV, where exclusive hadronic SM final states must be considered. We obtain this

by means of a novel calculation that extends the data-driven methods proposed in Ref. [24].

We emphasize that the results, reported in Appendix A, apply to any ALP with arbitrary

flavor-diagonal couplings to SM fermions. For the decays of light scalars, we make direct

use of previous calculations [25].

As can be gleaned from Eqs. (1.2) and (1.3), dark pion theories with Y ∼ Ỹ and with

Y � Ỹ are very different, because in the former the dimension-5 Higgs portal dominates,

whereas in the latter the dimension-6 Z portal is most important. In addition, in general

the dark sector contains CP violation, which leads to mixing of different states and induces

couplings of all dark pions to both Z and Higgs portals, with relative strengths determined

3See also later studies of the ω,M < Λ [22] and ω, Y Ỹ v2/M < Λ < M [23] scenarios.
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by the model parameters. On the other hand, some dark pions may be stable, if they

are charged under an exact subgroup of the SU(N)V flavor symmetry. Here we consider

benchmark scenarios that demonstrate quantitatively all of these features. Related previ-

ous work includes studies of light dark pions coupled to the SM through different heavy

mediators [18, 19], and a general analysis of elusive dark sectors with non-renormalizable

portals [20].4

The presentation is organized as follows. In Section 2 we write the low-energy effective

field theory (EFT) for dark quarks interacting with the SM, obtained by integrating out

the heavy EW-charged fermions Q. We then discuss constraints from the invisible Z and h

widths, and indirect bounds including EW precision observables. In Section 3 the EFT for

dark quarks is matched to an EFT for dark pions coupled to the SM, using both current

algebra arguments and a chiral Lagrangian for the dark sector (the latter is reported in

Appendix B). The dark pion EFT is used to determine the complete set of decay widths

and branching ratios to SM particles. For CP -odd dark pions we make use of the new,

general calculation in Appendix A, where data-driven methods are exploited to evaluate

ALP decays for ma . 3 GeV. In Section 4 several benchmark scenarios are presented,

based on different symmetries that the theory may possess. Lifetimes and decay patterns

are calculated for representative parameters in each benchmark scenario, forming the basis

for the phenomenological applications discussed in the next two sections. In Section 5 we

study dark pion production from FCNC meson decays. The decay rates for B → K(∗)π̂

and K → ππ̂ in our model are carefully derived. We obtain relevant constraints from

displaced decays of CP -odd dark pions to dimuons at the CHARM, LHCb, and for the

first time, CMS experiments. In Section 6 we consider LHC dark shower signals initiated

by Z decays, which have been overlooked so far in experimental searches. We focus on

π̂ → µ+µ− decays, recasting a published LHCb search to obtain new constraints on the

parameter space. We also comment briefly on the promising potential sensitivity of ATLAS

and CMS. Finally, in Section 7 we return to the ultraviolet (UV) model and examine the

LHC reach on direct production of the EW-doublet fermion mediators. The current bound

and future reach are obtained from searches for supersymmetric EWinos, which share the

same experimental signatures (provided the dark jets are mostly invisible). Our conclusions

and some directions for further exploration are provided in Section 8.

2 Effective theory for dark quarks

Starting from the Lagrangian (1.1) and assumingM � Y v, Ỹ v, where 〈H〉 = ( 0 , v/
√

2 )T

with v ≈ 246 GeV, we can integrate out the Q fields at tree level and obtain the EFT

LEFT =
1

2
ψRY

†M−2Y
[
|H|2i /D + iγµH†DµH

]
ψR + h.c.

+
1

2
ψLỸ

†M−2Ỹ
[
|H|2i /D + iγµH†DµH

]
ψL + h.c. (2.1)

− ψLωψR + ψLỸ
†M−1Y ψR|H|2 + h.c. ,

4In a broader perspective, see also studies of heavier dark pions with masses above the EW scale [26, 27].

In addition, dark pions have been extensively examined as dark matter candidates, stabilized by symmetries

within the hidden sector, e.g. in Refs. [28–37]. In this work we offer only some brief comments about the

possibility of dark pion dark matter.
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where we have retained operators up to dimension 6. In general, this effective Lagrangian

contains the same number of complex phases that appear in the UV, except if either Y

or Ỹ vanish, in which case the counting is reduced to (N − 1)(N − 2)/2 [the “apparently

missing” phases then appear in additional operators that were not included in Eq. (2.1)].

The first terms in square brackets in the first two lines of Eq. (2.1) renormalize the dark

quark kinetic terms after inserting the Higgs VEV. These small corrections are neglected

in the following, unless otherwise noted. The second terms in square brackets in the first

two lines generate interactions of the ψ with the Z boson. The third line gives rise to the

mass matrix,

mψ = ω − v2

2
Ỹ †M−1Y , (2.2)

where the last term is induced by the seesaw mechanism. For general Y and Ỹ the

mass eigenstates ψ′ are obtained via unitary transformations ψL,R = UL,Rψ
′
L,R , and their

diagonal mass matrix is

mψ′ = U †LmψUR . (2.3)

Barring cancellations, the ψ′i are light if both terms in Eq. (2.2) are small compared to

Λ. This occurs most naturally if there is an (approximate) chiral symmetry acting on ψL
(or ψR) to suppress both ω and Ỹ (or Y ). For example, that is the case in the tripled

top model, where Ỹ = 0 [13, 14]. The third line of Eq. (2.1) also generates the leading

couplings of the dark quarks to the Higgs.

2.1 Constraints from Z and Higgs invisible decays

The first, important constraints on the parameter space are obtained by assuming that

the dark hadrons mostly go undetected at colliders, so that the bounds on the Z invisible

width from LEP and on the Higgs invisible width from LHC apply. The EFT in Eq. (2.1)

induces Z decays to dark quarks via dimension-6 operators,

Γ(Z → ψ′ψ
′
) '

Ndm
3
Z

96
√

2πGF

{
Tr
[
(Y †M−2Y )2

]
+ (Y → Ỹ )

}
, (2.4)

where the small dark quark masses were neglected. For M = M1, this gives a branching

ratio

BR(Z → ψ′ψ
′
) ≈ 1.8× 10−4

(
NdTr(Y Y †Y Y †) + (Y → Ỹ )

3

)(
1 TeV

M

)4

. (2.5)

The LEP measurement of the Z invisible width requires ∆Γinv
Z < 2 MeV at 95% CL [38],

and from Eq. (2.4) we obtain

M & 0.7 TeV

(
NdTr(Y Y †Y Y †) + (Y → Ỹ )

3

)1/4

. (2.6)

If Y ∼ Ỹ parametrically, the leading interaction of the dark sector with the Higgs boson

is the dimension-5 operator in the third line of Eq. (2.1), yielding

Γ(h→ ψ′ψ
′
) ' Ndmh

8
√

2πGF
Tr
[
Y †M−1Ỹ (Y †M−1Ỹ )†

]
. (2.7)
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For M = M1 the associated branching ratio is

BR(h→ ψ′ψ
′
) ≈ 2.2× 10−2

(
NdTr(Y Y †Ỹ Ỹ †)

3× 10−4

)(
1 TeV

M

)2

, (2.8)

where we have taken Y ∼ Ỹ ∼ 0.1 as reference value for the Yukawas. Satisfying the

current invisible Higgs width constraint, BR(h→ inv) < 0.13 at 95% CL [39], requires

M & 0.4 TeV

(
NdTr(Y Y †Ỹ Ỹ †)

3× 10−4

)1/2

. (2.9)

Note that for Y ∼ Ỹ ∼ 1 the bound is M & 40 TeV. The above Z, h → invisible bounds

are applied widely in the rest of the paper, as we focus mainly on GeV-scale dark pions,

for which assuming invisible dark jets is a reasonable first approximation. Nonetheless, it

should be kept in mind that these bounds may be weakened or lifted in regions of parameter

space where most dark pions are short lived.

A quick glance at Eqs. (2.6) and (2.9) indicates that the product Y Ỹ is much more

severely constrained than Y 2 or Ỹ 2. Given a new physics scale M , scenarios where Y ∼ Ỹ
parametrically are subject to a coupling constraint about one order of magnitude stronger

than scenarios with Ỹ or Y ∼ 0. This will have an important impact on the phenomenology,

as the dark pion lifetimes scale with the fourth power of the Yukawa couplings. In addition,

if Ỹ ∼ 0 [Y ∼ 0] the dominant decay of the Higgs to the dark sector is either to ĝĝ via the

one-loop operator

L = cQTr
(
Y †M−2Y + Ỹ †M−2Ỹ

) αd
24π
|H|2ĜAµνĜAµν , (2.10)

where cQ = 1 arises from integrating out the Q at one loop,5 or to ψ′ψ
′
via the first [second]

line of Eq. (2.1). These processes are too suppressed to lead to current constraints from

h→ invisible, but are discussed here for completeness. The one-loop Higgs decay to dark

gluons gives

Γ(h→ ĝĝ) '
c2
Q(N2

d − 1)α2
dm

3
h

2304
√

2π3GF

[
Tr(Y †M−2Y + Ỹ †M−2Ỹ )

]2
, (2.11)

resulting in a branching ratio for M = M1,

BR(h→ ĝĝ) ≈ 1.3× 10−4 c2
Q

(
αd(mh/2)

0.2

)2((N2
d − 1)

[
Tr(Y Y † + Ỹ Ỹ †)

]2
8

)(
1 TeV

M

)4

.

(2.12)

If Ỹ = 0 we obtain, using the dark quark equation of motion (EOM),

Γ(h→ ψ′ψ
′
) ' Ndmh

32
√

2πGF
Tr
[
ωY †M−2Y (ωY †M−2Y )†

]
(2.13)

and for ω ≈ mψ′1 and M = M1, the branching ratio is

BR(h→ ψ′ψ
′
) ≈ 1.4× 10−5

(
NdTr(Y Y †Y Y †)

3

)(
mψ′

0.5 GeV

)2(1 TeV

M

)4

. (2.14)

In the opposite case Y = 0, one replaces Y → Ỹ and ω → ω† in Eq. (2.13).

5More generally, cQ may receive contributions from additional states, e.g. scalars in the tripled top

model [13, 14].
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2.2 Indirect constraints

At one loop, integrating out the heavy fermions Q in Eq. (1.1) also generates higher-

dimensional operators built only of SM fields, which can be subject to relevant constraints.

The most important one is (H†
↔
DµH)2, encoding a contribution to the EW T parameter [40,

41]. In fact T is most easily calculated in the UV theory, by applying, e.g., the results of

Ref. [42]. The derivation of a general analytical expression is rather cumbersome, but the

calculation simplifies if the dark Yukawas are diagonal, Y = diagi yi and Ỹ = diagi ỹi :

T̂ ' Nd

16π2

N∑
i= 1

v2

3M2
i

(
y4
i + ỹ4

i +
1

2
y2
i ỹ

2
i

)
, (2.15)

at leading order in the large -Mi expansion and taking real couplings for simplicity. The

general case including flavor mixing can be treated numerically in a straightforward manner.

It is useful to compare the T parameter and Z → invisible constraints, in the simple scenario

M = M1, Y = Y 1 and Ỹ = 0,

M & 0.9 TeV Y 2
(NdN

6

)1/2
, (T parameter) (2.16)

M & 0.8 TeV Y
(NdN

6

)1/4
, (Z → invisible) (2.17)

where for the former we have used the rough estimate T̂ . 10−3 and the latter follows

from Eq. (2.6). Since the two are comparable for Y ∼ O(1), and additional beyond-

SM contributions can a priori alter the interpretation of the T constraint, in most of our

discussion we stick to the more robust invisible Z width bound. When Y ∼ Ỹ , both are

subleading to the invisible h branching ratio constraint.

The operators |H|2BµνBµν and |H|2W i
µνW

µν i are also generated at one loop. However,

since the Qd are electrically neutral and the Qu are charged but do not couple to the Higgs,

we expect the operators to come in the linear combination |H|2(g2W i
µνW

µν i− g′ 2BµνBµν)

which gives a vanishing contribution to the hγγ coupling.

CP violation in the dark sector could feed into the visible sector, inducing electric

dipole moments (EDMs) for SM particles. The strongest limit comes from the electron

EDM [43]. Corrections to the electron EDM arise through the loop-suppressed operator

O
BB̃

= |H|2BµνB̃µν , which in turn contributes at one loop to the EDM (similar consider-

ations apply to |H|2W i
µνW̃

µν i). Inspection of the relevant diagrams shows that O
BB̃

does

not arise at one loop. Furthermore, if Ỹ = 0 or Y = 0 the two-loop contributions turn out

to be strongly suppressed by an extra ∼ ω2/M2 factor. If both Y and Ỹ are non-vanishing

we estimate c
BB̃
∼ NdY

2Ỹ 2g′ 2/[(4π)4M2], leading to a constraint M & 1.5 TeV Y Ỹ

for Nd = 3 [44]. This is much weaker than the Higgs invisible branching ratio bound,

M & 40 TeV Y Ỹ from Eq. (2.9). In summary, we find that EDMs do not provide addi-

tional constraints in this model.

3 Effective theory for dark hadrons

At energies below Λ, the SU(Nd) gauge group confines and the dark quarks and gluons form

hadrons. For N ≥ 2, the lightest hadrons are pNGBs of the SU(N)L×SU(N)R → SU(N)V
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symmetry breaking and belong to the adjoint representation of SU(N)V . As the simplest

example and representative case for phenomenological studies, in this work we focus on

N = 2. The three dark pions π̂a are defined in the basis where the light quark mass matrix

is diagonal,

π̂a ∼ i(ψ
′
Lσaψ

′
R − ψ

′
Rσaψ

′
L) = ψ

′
iσaγ5ψ

′ , (3.1)

where σa are the Pauli matrices. Importantly, the π̂2 has JPC = 0−− whereas π̂1,3 have

0−+, as can be derived from Eq. (3.1) using ψ
′
2PL,Rψ

′
1

C→ ψ
′
1PL,Rψ

′
2 . Note that in the

absence of a U(1) flavor symmetry, i.e., if Y , Ỹ are not diagonal, π̂1 and π̂2 are distinct

states. Their degeneracy will be lifted by Y , Ỹ interactions, as demonstrated later by

explicit examples. We do not discuss in detail the dark flavor-singlet η̂ ′, which at small Nd

receives a large mass from the dark U(1)A anomaly.

The couplings of the dark pions to the Z boson can be derived from the interactions

in the dark quark EFT of Eq. (2.1),

− gZv
2

4

(
ψRY

†M−2Y γµψR + ψLỸ
†M−2Ỹ γµψL

)
Zµ , (3.2)

where gZ =
√
g2 + g′2. We rewrite this as

−gZ
2

(
ψ
′
RA γµψ′R+ψ

′
L Ã γµψ′L

)
Zµ = −gZ

4

3∑
q= 0

{
Tr[σq(A+ Ã)]jµq + Tr[σq(A− Ã)]jµ5q

}
Zµ ,

(3.3)

where the dimensionless matrices A and Ã are defined as

A ≡ v2

2
U †RY

†M−2Y UR , Ã ≡ v2

2
U †LỸ

†M−2Ỹ UL , (3.4)

and σ0 ≡ 12. In addition,

jµq = jµLq + jµRq , jµ5q = jµRq − j
µ
Lq , jµL,R q = ψ

′
L,Rγ

µσq
2
ψ′L,R . (3.5)

The pions are excited by the axial vector current. We define their decay constant from

〈0|jµ5a(0)|π̂b(p)〉 = − iδabfπ̂ pµ , (3.6)

with normalization corresponding to fπ ≈ 93 MeV in the SM. Thus the last term on the

right-hand side of Eq. (3.3) yields a tree-level π̂a -Z mixing, and the partial width for the

decay to a pair of SM fermions f is

Γ(π̂a
Z→ ff̄ ) =

Nf
c

4π

∣∣∣Tr[σa(A− Ã)]
∣∣∣2G2

Fa
2
fm

2
ff

2
π̂mπ̂a

(
1− 4m2

f

m2
π̂a

)1/2
, (3.7)

where af = T 3
Lf and Nf

c = 3 (1) for quarks (leptons). It is important to note that, in the

absence of CP -violating phases, π̂1,3 decay through the single Z exchange but π̂2 does not,

because

Tr[σ2(A− Ã)] = i[(A− Ã)12 − (A− Ã)∗12] = 0 , (3.8)
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where we have used the hermiticity of A, Ã. For light dark pions it is in fact convenient

to integrate out the Z boson, obtaining

g2
Zfπ̂

8m2
Z

Tr[σa(A− Ã)]∂µπ̂af̄γ
µ(vf − afγ5)f . (vf = T 3

Lf − 2s2
wQf , af = T 3

Lf ) (3.9)

Due to the conservation of the vector current, the interaction relevant to describe dark

pion decays is

− ∂µπ̂b

f
(b)
a

cf f̄γ
µγ5f ,

1

f
(b)
a

≡ fπ̂
2v2

Tr [σb(A− Ã)], cf = T 3
Lf , (3.10)

where f
(b)
a is the effective decay constant of π̂b . Equation (3.10) enables us to apply the

new calculations presented in Appendix A, where for arbitrary (flavor-diagonal) ALP-SM

fermion couplings we perform the matching to the SM chiral Lagrangian, augmented with

exchange of scalar, vector, and tensor resonances above 1 GeV, and by extending data-

driven methods pioneered in Ref. [24] we evaluate the ALP decay widths to an extensive

set of exclusive hadronic SM final states. The results are reported in Fig. 1, which is one

of the main novelties of this work. The lifetime is also shown in Fig. 8, see Appendix A.

To gain some initial insight on the scales we take, e.g., Ỹ = 0, giving the parametric

scaling

f (1)
a ∼ f (3)

a ∼ M2

Y 2fπ̂
∼ 103 TeV

(
M/Y

TeV

)2(GeV

fπ̂

)
(3.11)

where CP conservation was assumed for simplicity. As the constraint from Z → invisible

gives roughly M/Y & TeV, see Eq. (2.6), for fπ̂ ∼ GeV the CP -odd dark pions can be

regarded as light ALPs with effective decay constants & PeV.

In fact, from the quark-level EFT in Eq. (2.1) we can directly derive that the dark

pions couple to the Higgs current, namely L ⊃ iH†
↔
DµH∂

µπ̂b/f
(b)
a .6 Because the dark pions

are appropriate degrees of freedom only at energies below Λ and the latter is smaller than

the EW scale in most of our parameter space, the use of the broken EW phase is warranted

and such an effective description is not fully justified. Nonetheless it affords us a first brief

discussion of FCNC meson decays [45–47], by applying the leading-log results of Ref. [48].

The flavor-changing couplings of the dark pions to quarks arise at one loop,

− ga(b)
ij ∂µπ̂bd̄Ljγ

µdLi + h.c., g
a(b)
ij = − g2

4f
(b)
a

∑
q ∈u,c,t

V ∗qjVqi

16π2

m2
q

m2
W

log
M2

m2
q

. (3.12)

Note that the appropriate mass scale to cut off the logarithm is M ∼ TeV – the largest

physical threshold here – and not f
(b)
a , which is a combination of parameters with dimension

of a VEV and does not correspond to the mass of any particle. In addition, owing to the

modest separation between M and mt, finite pieces are expected to be important. Both

expectations are confirmed by the explicit calculation in Section 5. There, we show that

6In turn, this can be rewritten in terms of dark pion-SM fermion couplings using the leading order EOM

for the hypercharge gauge field, iH†
↔
DµH = −2

∑
Ψ∈chiral YΨΨγµΨ − (2/g′)∂νBνµ, noticing that the piece

involving B vanishes upon integration by parts.

– 10 –
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Figure 1: Decay widths (top) and branching ratios (bottom) of a light ALP coupled to SM

fermions with cf = T 3
Lf . In the top left panel the vertical dot-dashed line indicates thema =

mtrans
a where our evaluation of the total hadronic width transitions from

∑
i Γ(a→ excl i)

to Γ(a → gg). Correspondingly, in the bottom left panel the dot-dashed curve displays

the branching ratio that is not captured by the considered exclusive modes. Note that at

mtrans
a the NLO QCD correction to Γ(a → gg) in Eq. (A.3) is 235αs(m

trans
a )/(12π) ≈ 1.6

times the leading order, suggesting a sizable residual uncertainty for this width.

current meson FCNC constraints are at the level fa ∼ 103 TeV, as obtained from B → Xsπ̂

decays (where Xs denotes a strange hadron state) with long-lived π̂ → µ+µ− at CHARM,

LHCb and CMS for mπ̂ & 2mµ , and from searches for K+ → π+π̂ with invisible π̂ at E949

and NA62 for smaller dark pion masses.

The dark pions can also decay through tree-level Higgs exchange. To derive the decay

width, the starting point are the following interactions in Eq. (2.1),

ψ
′
LBψ

′
Rh+ h.c. =

1

2
ψ
′[
B +B† + (B −B†)γ5

]
ψ′h , B ≡ v U †LỸ

†M−1Y UR , (3.13)

where we have already rotated to the quark mass eigenstate basis and the coupling matrix

B is dimensionless. The piece of Eq. (3.13) containing γ5 is relevant for dark pion decay,

and we rewrite it as

− 1

2

3∑
q= 0

Tr
[
iσq(B −B†)

]
ψ
′ iσq

2
γ5ψ

′h . (3.14)
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Finally, recalling Eq. (3.1) we have

〈0|ψ ′ iσa
2
γ5ψ

′(0)|π̂b(p)〉 = − δabfπ̂
m2
π̂a

Tr(mψ′)
, (3.15)

which allows us to calculate the decay width mediated by a single Higgs exchange,

Γ(π̂a
h→ ff̄ ) =

Nf
c

4π

∣∣∣Tr[iσa(B −B†)]
∣∣∣2 GF

4
√

2
m2
f

f2
π̂B̂

2
0mπ̂a

m4
h

(
1− 4m2

f

m2
π̂a

)3/2

(
1− m2

π̂a

m2
h

)2 , (3.16)

where we have employed the relation m2
π̂a

= B̂0Tr(mψ′), valid at leading order in the dark

sector chiral perturbation theory (ChPT), see Appendix B. It is immediate to see that

if CP is conserved, the trace in Eq. (3.16) can be non-vanishing only for a = 2, since

(iσ2)∗ = iσ2 whereas (iσ1,3)∗ = −iσ1,3 . Note that the interference between the Z- and

h-mediated amplitudes vanishes in the π̂a → ff̄ process.

Comparing Eqs. (3.7) and (3.16), for Y ∼ Ỹ we find Γ(π̂
h→ ff̄ )/Γ(π̂

Z→ ff̄ ) ∼
M2B̂2

0/m
4
h which is O(1) for typical choices M ∼ 1 TeV and B̂0 ∼ 10 GeV (dimensionally,

we expect B̂0 ∼ 4πfπ̂). However, for hierarchical Yukawas the ratio is suppressed by Ỹ 2/Y 2

or viceversa, and the pions decaying via the Z mediation can have much shorter lifetimes

than those decaying via the Higgs exchange.

For GeV-scale dark pions, Higgs-mediated decays to exclusive hadronic SM final states

become important. We do not attempt to reassess them here, but account for them fol-

lowing the results of Ref. [25] (see also Ref. [49] for a recent reappraisal), by matching to

their definition of the couplings

− s(a)
θ

mf

v
π̂af̄f , s

(a)
θ =

fπ̂
2

m2
π̂a

Tr(mψ′)

Tr[iσa(B −B†)]
m2
h −m2

π̂a

. (3.17)

As in Ref. [25] we take ms = 95 MeV, however we include the running of mc,b in the

perturbative spectator model and consider the decay to photons,

Γ(φ→ γγ) =
s2
θα

2m3
φ

256π3v2

∣∣∣∣∣ ∑
i∈ fermions

2N i
cQ

2
ixi
[
1+(1−xi)f(xi)

2
]
−
[
2+3xW+3xW (2−xW )f(xW )2

]∣∣∣∣∣
2

,

(3.18)

where xi ≡ 4m2
i /m

2
φ and the function f(x) is defined in Eq. (A.4). The matching constant

parametrizing φ → 4π, ηη, . . . [25] is fixed to C ≈ 4.8× 10−9 GeV−2. The resulting decay

widths and branching ratios are shown in Fig. 2.

Parametrically, the dark pion-Higgs mixing angle takes on the scaling,

s
(2)
θ ∼ 2πf2

π̂

Y Ỹ v

Mm2
h

∼ 3× 10−6

(
fπ̂

GeV

)2( Y Ỹ /M

0.03 TeV−1

)
, (3.19)

where, as in Eq. (3.11), CP conservation was assumed for simplicity. Since the bound

from h → invisible reads roughly Y Ỹ /M . 0.03 TeV−1 (see Eq. (2.9)), for fπ̂ ∼ GeV the

CP -even dark pions can be viewed as Higgs-mixed scalars with mixing angles . 10−6.
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Figure 2: Decay widths (left) and branching ratios (right) of a light CP -even scalar

coupled to the SM via Higgs mixing. The dot-dashed line at mφ = 2 GeV indicates the

point where the description of hadronic decays transitions from dispersive methods to a

perturbative spectator model, following Ref. [25].

When a single dark pion decays through both the Z and h portals in the presence

of CP violation, we neglect the interference between the two amplitudes, which vanishes

for π̂a → ff̄ as already noted, but can a priori be nonzero for more complex final states.

In this work we focus on the mass range mπ̂ . 2mb ∼ 10 GeV, where a wider range of

experiments are relevant and our results are expected to have the most impact.

We end this section with some brief comments on the heavier dark hadrons, including

non-pNGB mesons and baryons. The dark vector (and axial-vector) mesons may be relevant

to intensity frontier phenomenology, where they can be produced first and subsequently

decay to dark pions, if kinematically allowed. In the N = 2, Nd = 3 theory considered

here, lattice QCD calculations at pion masses larger than their physical values can be

repurposed [50] to parametrize the hidden sector, at least for moderately heavy pNGBs

with 0.1 . m2
π̂/m

2
V̂
. 0.7, where V̂ denotes the dark vector resonance. As for the baryons,

the lightest among them is stable due to dark U(1)B, but its relic density can easily be

very suppressed unless a dark baryon asymmetry is present. In this work we focus on the

properties and phenomenology of the dark pions, neglecting the heavier hadrons.

4 Benchmark scenarios for dark pions

In this section we discuss the range of possibilities for the dark pion properties, begin-

ning with general arguments. If the theory respects the SU(2)V isospin symmetry, i.e.,

ω,M ,Y , Ỹ ∝ 12, then A, Ã,B ∝ 12 and all dark pions are stable. It is also possible that

the SU(2)V is explicitly broken to its U(1) subgroup, i.e., ω,M ,Y , Ỹ and hence A, Ã,B

are diagonal. In this case π̂± ≡ (π̂1 ∓ iπ̂2)/
√

2 is charged under the U(1) and therefore

stable, while π̂0 ≡ π̂3 can decay (to avoid any confusion, we remark that the subscripts do

not indicate SM electric charge).

Furthermore, specific models can give rise to distinctive patterns for the masses and

couplings. For example, in a setup inspired by the tripled top [14], but where the two
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Scenario
Symmetries possessed Decay portals

Ỹ = 0 exact U(1) exact CP π̂1 π̂2 π̂3

Section 4.1 X 7 7 Z Z Z

Section 4.2 7 X 7 stable stable Z, h

Section 4.3 7 7 X Z h Z

Table 1: Summary of the benchmark scenarios considered in this work. A chiral symmetry

can be the origin of Ỹ = 0. In the second scenario, π̂± = (π̂1 ∓ iπ̂2)/
√

2 is stable because

it is the lightest particle charged under a dark U(1).

hidden sectors share a common dark color gauge group, we expect M = M12, Y ' yt12

and Ỹ ' 0, which implies Ã,B ' 0. In this case the main source of isospin breaking in

the hidden sector comes from the diagonal mψ ' ω. As a result, the U(1) subgroup is

approximately preserved and the π̂1,2 have much longer lifetimes than π̂3.

The above considerations make it clear that, even for the minimal dark pion theory

with N = 2, the parameter space is too vast to be covered systematically in this first

study. Therefore we choose to discuss a few benchmark scenarios that give rise to distinct

phenomenology. With these, our aim is to be illustrative rather than exhaustive, and we

expect that other interesting patterns may be found in future work. We begin with a few

comments on the case of stable dark pions and their possible role as dark matter, and

then turn to the study of three benchmark scenarios where at least some of the pions are

unstable and decay to SM particles. The key features of these three are summarized in

Table 1. For each scenario, in the phenomenological analysis we fix generic textures for the

Yukawa and mass matrices, paying attention to avoiding enhanced symmetry points. This

reduces the number of independent parameters to a manageable handful.

Scenario 0: Isospin-symmetric limit and dark pion dark matter

As already mentioned, for ω,M ,Y , Ỹ ∝ 12 the dark pions form a stable triplet of SU(2)V ,

which is a dark matter candidate.7 However, in this limit the dark pions do not couple to the

Z (see Appendix B), hence reducing their cosmological abundance to a viable level requires

adding extra ingredients to the theory. For N ≥ 3 the number density can be depleted

via 3 → 2 processes mediated by the Wess-Zumino-Witten action, potentially realizing

Strongly Interacting Massive Particle (SIMP) dark matter [31], although an additional

mediation between the dark pions and the SM should still be introduced to transfer the

dark matter entropy to the SM. If the mediator is a dark photon that mixes kinetically

with the hypercharge [51–53], care must be taken to check dangerous decays of singlet

pions, which can be made viable through appropriate mass splittings for odd N [53, 54],

or prevented by imposing suitable discrete symmetries for even N [54]. Such scenarios

provide appealing origins for light thermal dark matter, but as they are rather tangential

to the central aspects of this work, we do not discuss them further.

7Note that in this case the theory contains 1 physical phase, for any N .
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4.1 Scenario 1: Ỹ = 0

In this case there is no constraint from the invisible decay branching ratio of the Higgs. In

general Y contains 1 physical phase, which can be parametrized, e.g., as

Y =

y11 y12e
iα

y21 y22

 (4.1)

with real yij . It is convenient to perform a further redefinition which renders Y †M−2Y

real,8

ψR1 → eiα̂ψR1, α̂ = arctan
sinαy11y12

M2
1

cosαy11y12

M2
1

+ y21y22

M2
2

→ Y =

eiα̂y11 y12e
iα

eiα̂y21 y22

 , (4.2)

and the same for ψL1 so that the mass matrix remains real.9

All three dark pions are unstable. As anticipated, π̂1 and π̂3 have unsuppressed decay

to SM particles via the Z portal, so their lifetimes and branching ratios can be directly

obtained from Appendix A. Since Ỹ = 0, instead of the Higgs portal π̂2 decays through

CP -violating mixing with the other pions. To estimate its lifetime, we need to take into

account several corrections to the leading-order pion Lagrangian:

• The pion mass splitting generated by O(p4) ChPT operators with insertions of the

quark mass matrix, e.g.,

c7B̂
2
0

(4π)2

(
Tr[mψ′U

† − Um†ψ′ ]
)2
⊃ − c7B̂

2
0

4π2f2
π̂

(ω1 − ω2)2π̂2
3 , (4.3)

where c7 is a coefficient expected to be of O(1) by naive dimensional analysis. For

generic dark isospin breaking |ω1−ω2|/(ω1 +ω2) ∼ O(1), as assumed here, Eq. (4.3)

is the leading correction to the pion masses. Therefore, to estimate the CP -violating

decay of π̂2 we can focus only on its mixing with π̂1.10

• The effects of tree-level Z exchange,

−
f2
π̂v

2

32

(
Tr[σaY

†M−2Y ] ∂µπ̂a

)2
, (4.4)

which correct the kinetic term of π̂1 (and π̂3), but not π̂2.

8We assume cosαy11y12/M
2
1 + y21y22/M

2
2 > 0 for definiteness.

9The low-energy quark masses are given by

mψ = ω
(
1− v2

4
Y †M−2Y

)
,

as obtained after applying the leading-order EOM to the first term on the right-hand side of Eq. (2.1).

This is diagonalized to mψ′ by ψL,R = UL,Rψ
′
L,R , but in practice we neglect the (Y v/M) - suppressed

corrections.
10Notice that if ω1 = ω2 the theory actually preserves CP , because the phase α can be removed by a

U(2) rotation of the ψ fields. The same applies if M1 = M2.
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• The one-loop contributions from box diagrams, with parametric scaling

−
f2
π̂

32π2

∑
a,b

Tr[σaY
†M−2Y ] Tr[σbY

†Y ] ∂µπ̂a∂
µπ̂b . (4.5)

These yield in particular a CP -violating mixing of π̂1 and π̂2, provided

1

2
Tr[σ2Y

†Y ] = sin α̂ y21y22 + sin(α̂− α)y11y12 (4.6)

is nonvanishing. This is the case if α 6= 0, all yij 6= 0, and M1 6= M2 (if M1 = M2,

Y †Y is real because Y †M−2Y is).

Once the above effects are included, the kinetic terms for π̂1,2 are made canonical by the

rotationπ̂1

π̂2

→
 cθ12 sθ12

−sθ12 cθ12

π̂1

π̂2

 , tan 2θ12 = − Tr(σ2Y
†Y )

π2v2Tr(σ1Y †M−2Y ) + Tr(σ1Y †Y )
.

(4.7)

To understand quantitatively the dark pion properties we focus on the following pattern

for the Y and M matrices,

y11√
2

=
√

2 y12 = 3y21 = y22 = y , α =
π

3
,

2

3
M1 = M2 = M, (4.8)

which is of generic nature. From Eqs. (3.10) and (4.7) we find the effective decay constants

of π̂1,3 and the CP -violating π̂1-π̂2 mixing angle, respectively,

f (1)
a ≈ 3.0

M2

y2fπ̂
, f (3)

a ≈ −18
M2

y2fπ̂
, tan 2θ12 ≈

0.20

1 + 0.036
(

4πv
M

)2 . (4.9)

The decay width of the physical π̂2 is then Γπ̂2 ≈ sin2 θ12 Γπ̂1 . Dark pion decays are mainly

controlled by the three parameters y/M, fπ̂, and mπ̂. The mediation strength is constrained

by the Z invisible width: Eq. (2.4) gives y/M . 1.1 TeV−1 (assuming Nd = 3).

The dark pion lifetimes are shown in the left panel of Fig. 3, choosing y/M that

saturates the LEP bound and fixing fπ̂ = 1 GeV; other results are obtained by rescaling

τ ∝ f−2
π̂ (y/M)−4, see Eq. (4.9). Remarkably, for y ∼ 1, M ∼ 1 TeV and fπ̂ ∼ 1 GeV, i.e.

parameter choices motivated by (neutral) naturalness [14], the lifetime of π̂1 falls between

10 meters and 1 millimeter across the mass range 2mµ . mπ̂ . 2mb. Therefore, this dark

pion is a natural LLP target for present and future experiments. On the other hand, π̂2

and π̂3 have much longer lifetimes. As θ12 depends on M but not on y, for illustration

we show the range of τπ̂2 obtained by varying M ∈ [1.1, 5] TeV, where the lower edge

corresponds to the current bound on the Q mass from direct searches at the LHC (see

Section 7). We stress that for the π̂2 lifetime we have performed an estimate, rather than

a precise calculation, as sufficient for our purpose. The right panel of Fig. 3 shows selected

branching ratios, which are the same for the three dark pions as they all decay through

the Z portal (if the CP -violating mixing with the other pions is very suppressed, π̂2 may
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Figure 3: Lifetimes (left) and branching ratios (right) of the dark pions for Ỹ = 0. In

the left panel we have fixed y/M to saturate the Z → invisible bound and fπ̂ = 1 GeV. In

the right panel only selected decay channels are shown; see Fig. 1 for the complete picture.

The vertical dot-dashed line indicates the value of mπ̂ where our description of ALP decays

transitions from exclusive hadronic final states to perturbative QCD.

decay through Higgs mediation via a small Ỹ 6= 0, but we do not study that possibility

here).

This benchmark scenario provides a theoretically motivated and remarkably simple

target for current and future experimental probes. The constraints from and future op-

portunities in FCNC meson decays are discussed in Section 5, whereas the prospects for

discovery at the LHC via Z decays to dark showers are presented in Section 6.

4.2 Scenario 2: exact U(1)

If the U(1) symmetry {ψ,Q} → eixσ3{ψ,Q} is preserved, the Yukawa matrices are diagonal.

Parametrizing the two physical phases as Y = diag (y1, y2), Ỹ = diag (ỹ1e
iα1 , ỹ2e

iα2), the

EFT quark mass matrix (2.2) is diagonal but complex, and is transformed into a real and

positive mψ′ by the rephasings11

ψL → ULψL , UL = diag (eiα̂1 , eiα̂2), α̂i = arctan
sinαi

yiỹiv
2

2Mi

ωi − cosαi
yiỹiv2

2Mi

, (4.10)

which also leave the (real) Zψψ coupling matrix Ỹ †M−2Ỹ unaffected. While the charged

pion π̂± is stable, π̂0 decays through the Z portal and, in the presence of CP violation, the

Higgs portal. The cosmological history can be easily safe. The mass splitting of charged

and neutral pions is controlled by the operator in Eq. (4.3), which yields mπ̂0 < mπ̂+ if

c7 < 0. Then π̂+π̂− → π̂0π̂0 conversions followed by decays of π̂0 to the SM with lifetime

τπ̂0 � 1 s, as realized throughout the interesting parameter space, result in a very small

π̂± relic density without affecting Big Bang nucleosynthesis [18].

11We assume ωi − cosαi yiỹiv
2/(2Mi) > 0 .
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To simplify the analysis of the parameter space we assume ωi = yiỹiv
2

Mi
cosαi, which

can be regarded as a particularly simple case of the scenario where ω and Y Ỹ v2/M are of

the same order. This choice leads to α̂i = αi and mψ′i
= yiỹiv

2/(2Mi).

In addition, we choose the generic patterns

3y1 = y2 = y ,
1

3
ỹ1 = ỹ2 = ỹ , −3

4
α1 = α2 = −π

4
,

1

2
M1 = M2 = M , (4.11)

giving the bounds from invisible Higgs and Z decays

yỹ

M
. 0.023 TeV−1 ,

(yỹ)1/2

M
(r2 + 6.1 r−2)1/4 . 1.4 TeV−1 , (4.12)

respectively, obtained from Eqs. (2.7) and (2.4). We have defined r ≡ y/ỹ. The dark pion

mass reads

mπ̂ =
(

3πfπ̂
yỹv2

M

)1/2 h→ inv

. 3.6 GeV

(
fπ̂

GeV

)1/2

, (4.13)

where we have set B̂0 = 4πfπ̂.

Owing to the CP violation, the decays of π̂0 are an intricate combination of Z- and

h-mediated processes. For the former, the effective decay constant is found from Eq. (3.10),

f (0)
a ≈ − 4.1

M2

yỹfπ̂
(r + 1.3 r−1)−1 . (4.14)

For the latter, the coupling of the dark quarks to the Higgs reads ψLBψRh + h.c. with

B = v U †LỸ
†M−1Y , and we can apply Eq. (3.17) with

1

2v
Tr[iσ3(B−B†)] =

y1ỹ1

M1
sα1+α̂1 −

y2ỹ2

M2
sα2+α̂2 ≈ 1.4

yỹ

M
→ s

(0)
θ ≈ 5.7πf2

π̂

yỹv

M(m2
h −m2

π̂)
.

(4.15)

The first equality holds in general and shows that s
(0)
θ would vanish for ω = 0, as a

consequence of sin(αi + α̂i) = 0. At this stage we can take {yỹ/M,M, r,mπ̂} as the four

independent free parameters, with fπ̂ fixed via Eq. (4.13). In Fig. 4, we set yỹ/M to its

upper bound from h → invisible and explore the remaining three-dimensional parameter

space. As expected, the π̂0 lifetime depends strongly on r: if M ∼ O(TeV), for r � 1 or

� 1 the Z portal dominates (with branching ratios that are well described by Fig. 1). Note

that the dependence of the dark pion lifetime on its mass is very different from scenario 1,

as can be observed by comparing with Fig. 3. The reason is that, while in scenario 1 fπ̂
is independent from mπ̂, here Eq. (4.13) dictates the scaling fπ̂ ∝ m2

π̂, resulting in a much

shorter lifetime as the dark pion mass increases.

Conversely, for r ∼ 1 the Higgs portal plays an important role, dominating the total

width for mπ̂ & 2 - 3 GeV. For this reason, in the bottom panels of Fig. 4 we show the

branching ratios at r = 1, which best illustrate the complexity of the decay pattern. If

mπ̂ . 2 GeV the branching ratio to the CP -even KK final state is of several percent,

which could rise up to ∼ 15% in the region below the cc̄ threshold, although the descrip-

tion adopted here [25], based on the ss̄ final state in a perturbative spectator model, does

not permit a more accurate prediction. For mπ̂ above the cc̄ threshold Higgs exchange
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Figure 4: (Top) lifetime of π̂0 for exact dark U(1). We have set yỹ/M to saturate the

h → invisible bound, while fπ̂ is fixed by Eq. (4.13) as a function of mπ̂ (representative

values are indicated by vertical dot-dashed lines). Filled bands display the full width

varying 1.1 < M/TeV < 5, for three values of r = y/ỹ, where r ≈ 100 and r ≈ 1/41 are

chosen to saturate the Z → invisible bound for M = 1.1 TeV. Dashed curves indicate the

same, but including only the Z-mediated contribution to the width. (Bottom) π̂0 branching

ratios for r = 1,M = 1.1 TeV, and yỹ/M saturating the h → invisible bound. In the left

panel, the hadronic channels mediated by Higgs exchange are indicated by thicker curves.

For γγ, e+e− and µ+µ− the Z- and h-exchange contributions were summed. The vertical

dot-dashed line indicates mπ̂ = 2 GeV, where the description of CP -even decays transitions

from exclusive hadronic final states to a perturbative spectator model. In the right panel,

dashed curves show the contribution to the BRs of the Z-mediated widths.

completely dominates the width, yielding the interesting prediction that a heavier (and

therefore shorter-lived) π̂0 mainly decays to CP -even final states if the dark Yukawa inter-

actions contain sizable CP violation.

4.3 Scenario 3: exact CP

The third and last scenario we consider is one where CP is exactly preserved by the

dark Yukawa interactions. As in scenarios 1 and 2, to reduce the number of independent

parameters the Yukawa and mass matrices are set to definite patterns. These are chosen
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to be of generic nature, avoiding points of enhanced symmetry. We take

Y =

√2 1/
√

2

1/3 1

 y , Ỹ =

4/3 1/5

1 1

 ỹ , M =

3/2

1

M , (4.16)

leading to the h, Z → invisible bounds,

yỹ

M
. 0.010 TeV−1 ,

(yỹ)1/2

M
(r2 + 1.8 r−2)1/4 . 1.0 TeV−1 . (4.17)

In addition we take {ω1, ω2} = κ{1, 2}yỹv2/M , with κ being a dimensionless free parameter,

so that after mass diagonalization Tr(mψ′) = c(κ)yỹv2/M where c is a dimensionless

function. The pion mass is from Eq. (B.2)

mπ̂ =

(
4πc(κ)fπ̂

yỹv2

M

)1/2

. (4.18)

As a consequence of CP invariance, π̂2 decays only through Higgs exchange, with lifetime

dictated by Tr[iσ2(B−B†)] = d(κ)yỹv/M , with d being a dimensionless function. Setting

B̂0 = 4πfπ̂ leads from Eq. (3.17) to

s
(2)
θ = 2πd(κ)f2

π̂

yỹv

M(m2
h −m2

π̂)
. (4.19)

In the top left panel of Fig. 5 we show the π̂2 lifetime as a function of mπ̂, for several values

of κ. τπ̂2 becomes very long for κ� 1, because in the limit κ→ 0 we have B ∝mψ′ which

is diagonal, hence d(κ)→ 0 . τπ̂2 also increases for κ� 1, due to the larger c(κ) which for

fixed mπ̂ requires a smaller value of fπ̂, thereby suppressing s
(2)
θ . The shortest lifetime for

a given mπ̂ is thus obtained for κ ∼ 1, i.e., when the mass scales ω and Y Ỹ v2/M are close.

The CP -odd dark pions π̂1,3 decay only via the Z portal, with decay constants that

depend strongly on r = y/ỹ ,

f (b)
a = p(b)(κ)

M2

yỹfπ̂

(
r + q(b)(κ)r−1

)−1
, b = 1, 3 , (4.20)

where p(b), q(b) are dimensionless functions. It is instructive to compare the lifetimes of

all three pions. To do so we focus on κ = 1, showing in the top right panel of Fig. 5

the lifetimes for illustrative values of r.12 At small masses the CP -even pion π̂2 has the

longest lifetime irrespective of r, but for mπ̂ & 4 (6) GeV it becomes the shortest-lived for

r ∼ 1 (10). Recalling the branching ratio patterns shown in Figs. 1 and 2 for CP -odd and

-even pions, we conclude that the expected signatures from dark shower events display a

striking dependence on mπ̂. For simplicity, here we have considered r ≥ 1; in the opposite

regime r ≤ 1 the behavior is very similar, but with the roles of π̂1 and π̂3 reversed: in

particular, for r � 1 it is π̂3 that has the shortest lifetime.

12For κ = 1, the dimensionless functions take the values c ≈ 1.7, d ≈ − 3.8, p(1) ≈ 2.6, q(1) ≈ − 0.32,

p(3) ≈ 10, q(3) ≈ − 6.0.
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Figure 5: Lifetimes of the dark pions for a CP -conserving dark sector. (Top left) lifetime

of π̂2 for representative values of κ, setting yỹ/M to saturate the h → inv bound. Note

that for a given mπ̂, to each curve corresponds a different value of fπ̂ via Eq. (4.18); the

thin dotted portions have mπ̂ > 4πfπ̂ and are therefore not physical. (Top right) lifetimes

of the three dark pions for κ = 1, M saturating the constraint from direct Q searches,

yỹ/M saturating the h → inv bound, and illustrative choices of y/ỹ consistent with the

Z → inv bound. (Bottom) zooming in on light dark pions with mπ̂ . 2mc,τ and showing

the effect of decreasing yỹ/M . Due to a compensating increase of fπ̂ via Eq. (4.18), the

π̂1,3 lifetimes are not affected, whereas the one of π̂2 is shortened. Dots mark representative

values of fπ̂ in GeV.

Thus far, we have fixed yỹ/M to the upper bound from h→ invisible. If this parameter

is decreased by a factor n > 1, fπ̂ must be correspondingly increased by n in order to keep

the same dark pion mass, as dictated by Eq. (4.18). These two effects exactly compensate

(for fixed M) in the decay constants f
(1,3)
a , leaving τπ̂1,3 unvaried, whereas from Eq. (4.19)

we read that the net effect on s
(2)
θ is an n-fold increase, and therefore the π̂2 lifetime becomes

n2 times shorter. We illustrate this somewhat counter-intuitive effect in the bottom panel

of Fig. 5, which shows that even for mπ̂ . 2mc,τ the π̂2 lifetime can be as short as O(1 -

10) m, provided fπ̂ ∼ 10 GeV. Furthermore, π̂2 can easily have the smallest lifetime

among the dark pions. These results are especially interesting in view of a proposed LHCb

search for LLPs decaying to K+K− [55], which may have sensitivity to our π̂2 since in

this mass region its BR to KK is sizable, see Fig. 2. As for the largest plausible value of
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fπ̂, the neutral naturalness framework suggests Λ ∼ 4πfπ̂ . 100 GeV, corresponding to

fπ̂ . 10 GeV, while the ultimate limit is Λ�M , otherwise, the Q’s cannot be treated as

heavy dark quarks anymore, the global symmetry pattern is modified and the EFT breaks

down.

5 FCNC meson decays

Light dark pions may be produced in FCNC meson decays if kinematically allowed. To

describe these decay rates, we calculate the four-fermion effective operators of the form

d̄LαdLβψ
′
ψ′ with α < β. In our theory they arise through two classes of one-loop diagrams:

Z exchange with insertion of the d̄LαdLβZ coupling, and box diagrams containing W and

Qu internal lines. The amplitudes can be fully obtained from the classic results for ds̄→ νν̄

in Ref. [56], leading to

Leff =
GF√

2

g2

4π2
d̄LαγµdLβ

∑
q=c,t

V ∗qαVqβ (5.1)

∑
i,k,j=1,2

ψ
′
iγ
µ v

2

2

(
(U †LỸ

†)ik(Ỹ UL)kj
M2
k

PL +
(U †RY

†)ik(Y UR)kj
M2
k

PR

)
ψ′jD(xq, xu = 0; yk) + h.c.

where xq ≡ m2
q/m

2
W and yk ≡M2

k/m
2
W (recall that the mass of Qku is simply Mk). For our

purposes we can safely take the large-yk limit of D,

D(xq, xu = 0; yk →∞) ' xq
8(xq − 1)2

[
−x2

q

(
log

yk
xq
−2
)
+xq

(
2 log

yk
xq
−7
)
−log

yk
xq

+3 log xq+5
]
.

(5.2)

If the k-dependence of the D function can be neglected (e.g., for M = M12), we arrive at

a simple expression for the relevant effective Hamiltonian,

Heff ⊃
GF√

2

g2

64π2
d̄LαγµdLβV

∗
tαVtβ

3∑
b=1

Tr [σb(A−Ã)]jµ5b

[ m2
t

m2
W

(
log

M2

m2
t

−2
)

+3
]

+h.c., (5.3)

where only the first few terms of the dominant top loop were retained. The meson decay

amplitude is then, assuming factorization of the hadronic matrix elements into a SM factor

and a hidden factor,

〈π̂aX|Heff |B〉 = 〈π̂a|〈X|Heff |B〉|0〉 =
ig2

64π2
V ∗tsVtb〈X|s̄LγµbL|B〉

pµπ̂

f
(a)
a

[ m2
t

m2
W

(
log

M2

m2
t

−2
)

+3
]
,

(5.4)

where we have focused on B → Xπ̂a decays with X = K,K∗, and applied Eq. (3.6). For

the decay widths we find

Γ(B → Kπ̂a) =
m3
B

64π
f0(m2

π̂)2

∣∣∣∣∣ g2V ∗tsVtb

64π2f
(a)
a

[ m2
t

m2
W

(
log

M2

m2
t

− 2
)

+ 3
]∣∣∣∣∣

2 (
1−

m2
K

m2
B

)2
λ

1/2
Kπ̂ ,

Γ(B → K∗π̂a)

Γ(B → Kπ̂a)
=
A0(m2

π̂)2

f0(m2
π̂)2

λ
3/2
K∗π̂(

1− m2
K

m2
B

)2
λ

1/2
Kπ̂

, (CP odd) (5.5)
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where λXπ̂ =
(
1 − (mX+mπ̂)2

m2
B

)(
1 − (mX−mπ̂)2

m2
B

)
. The log-enhanced contribution to Γ(B →

Kπ̂a) is in agreement with what one finds [48] from Eq. (3.12), but the finite terms have

an important quantitative impact: for M = 1 TeV, retaining only the logarithmic piece

overestimates the rate by a factor ≈ 3. The definitions and numerical values of the form

factors f0, A0 are taken from the light-cone QCD sum rules analysis of Ref. [57], with

fB→K0 (0) ≈ 0.27 and AB→K0 (0) ≈ 0.31. An expression analogous to the first line in Eq. (5.5)

applies to K → ππ̂a, with the appropriate replacements of masses, CKM elements, and the

form factors available from lattice QCD with fK→π0 (0) ≈ 0.97 [58].13

FCNC decays can also produce the CP -even dark pions, through Higgs mixing. The

corresponding amplitudes are proportional to the Higgs penguin, resulting in [60, 61]

Leff '
3
√

2GF
16π2

mdβ

v
d̄LαdRβs

(a)
θ π̂a

∑
q=u,c,t

m2
qV
∗
qαVqβ + h.c., (5.6)

and

Γ(B → Kπ̂a) =
m3
B

64π
f0(m2

π̂)2

∣∣∣∣∣3V ∗tsVtb16π2

s
(a)
θ

v

m2
t

v2

∣∣∣∣∣
2 (

1−
m2
K

m2
B

)2
λ

1/2
Kπ̂ ,

Γ(B → K∗π̂a)

Γ(B → Kπ̂a)
=
A0(m2

π̂)2

f0(m2
π̂)2

λ
3/2
K∗π̂(

1− m2
K

m2
B

)2
λ

1/2
Kπ̂

, (CP even) (5.7)

for the decay widths. Evaluating Eqs. (5.5) and (5.7) we find

BR(B{+,0} → {K+π̂b,K
∗0π̂b}) ≈ {0.92, 1.1} × 10−8

(
103 TeV

f
(b)
a

)2

{λ1/2
Kπ̂, λ

3/2
K∗π̂} , (CP odd)

(5.8)

BR(B{+,0} → {K+π̂b,K
∗0π̂b}) ≈ {2.6, 3.3} × 10−12

(
s

(b)
θ

3× 10−6

)2

{λ1/2
Kπ̂, λ

3/2
K∗π̂} , (CP even)

where in the CP -odd case we have set M = 1 TeV in the logarithm.

5.1 Constraints and projected sensitivity

We now highlight a few implications for our parameter space, focusing mainly on mπ̂ >

2mµ. The theoretical predictions in Eq. (5.8) can be compared with the current BaBar [62]

and Belle [63] 90% CL bounds on invisible decays,

BR(B+ → K+νν̄) < 1.6× 10−5 , BR(B0 → K∗0νν̄) < 1.8× 10−5 . (5.9)

For CP -odd scalars, branching ratios at the 10−5 level require f
(b)
a < 100 TeV, but in

this regime the dark pion lifetimes become sufficiently short to ensure that decays to SM

particles occur inside the detector (see Fig. 1 or 8), thus violating the search assumptions.

13Tree-level contributions to K → πa have also been considered [59], but are negligible here since the

ALP couples to fermions with universal strength (in absolute value).
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Therefore more relevant are searches for B → K(∗)(χ → µµ) with long-lived (scalar

or pseudoscalar) χ at LHCb [64, 65], as well as the re-interpretation in terms of these

decays [66] of results from the CHARM beam dump experiment [67]. In addition, CMS

has recently presented a novel search based on data scouting [68], setting limits on the

inclusive branching ratio for B → Xs(χ → µµ) [69]. In our setup this may be related to

the exclusive branching ratios via

BR(B → Xsa) = (4± 1)×
[
BR(B → Ka) + BR(B → K∗a)

]
, (5.10)

as estimated from the observed values of BR(b → s``) and BR(B → K(∗)``) [70]. The

sizable uncertainty reflects the still-unsettled experimental status of these measurements.

The relation (5.10) enables a direct comparison of the CMS and LHCb/CHARM bounds. In

Fig. 6 we show such comparison for four representative ALP masses in the range ma . 2mc ,

where searches for a→ µ+µ− are relevant, as seen from the branching ratios in Fig. 1. The

LHCb and CHARM constraints are taken from Ref. [66], whereas we apply here for the

first time the CMS bound [68] with the help of Eqs. (5.10) and (5.5). For each value of ma,

CMS provides limits for τ = 1, 10, 100 mm, corresponding to the red points in the (fa,BR)

plane of Fig. 6; we simply interpolate between those points and include the uncertainty

band arising from the relation between inclusive and exclusive branching ratios.14

Figure 6 shows a clear pattern: for low (high) mass the strongest constraint comes from

CHARM (CMS), while in the intermediate region LHCb has the best sensitivity. To better

estimate the bounds as functions of the dark pion mass, we combine the above results at

fixed ma with the findings of the Expression of Interest for CODEX-b [71], where con-

straints on fa for an ALP coupled universally to SM fermions were reported following the

analysis of Ref. [66], but with updated lifetime and branching ratio calculations employing

data-driven methods [24]. The main differences between our setup (where the ALP couples

to weak isospin) and the universal coupling scenario [60, 66, 71] are the ALP total width

and the treatment of finite terms in the B → Ka calculation. For the former, a detailed

comparison in Fig. 8 (right panel) shows qualitative agreement, although important quan-

titative differences are present; for the latter, in Refs. [60, 66] only the leading-log term

was retained and the cutoff was set to 1 TeV, which combined with slightly different values

for the form factors gives a rate ∼ 4 times larger than here. In light of these considerations

we apply the fa bounds for universal couplings [71] to our setup, after weakening them

by a factor ∼ 2 to account for the smaller production rate. Where relevant, the resulting

estimates agree with Fig. 6.

For 2mµ . ma . 0.6 GeV, the re-interpretation [66, 71] of CHARM results gives

the strongest constraint.15 In this region we estimate fa & 1.3 -1.9 PeV,16 translating in

14In the top right panel of Fig. 6 we actually use the CMS bound for ma = 610 MeV, as 600 MeV is

masked in the analysis [68]. We neglect the impact of this small difference.
15In the universal coupling scenario [71] the CHARM bound was found to extend up to ma ∼ 1 GeV,

but a direct comparison shows that in our setup it is limited to ∼ 600 MeV, see Fig. 6.
16Here we quote the lower limit on fa from CHARM, but note that a small “wedge” of allowed fa may

remain between the LHCb, CHARM and CMS exclusions for 0.3 . ma/GeV . 0.6, see the top panels of

Fig. 6.
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Figure 6: B → K(a → µ+µ−) branching ratio of an ALP coupled to weak isospin

(dashed blue curve), compared to regions excluded by LHCb ([66], green), CHARM ([66],

orange), and CMS ([68], red), for four representative values of ma. For CMS we display the

uncertainty stemming from the relation between inclusive and exclusive branching ratios.

benchmark scenario 1 to(
y/M

1.1 TeV−1

)2( fπ̂
GeV

)
. 2 (scenario 1, 0.21 . mπ̂/GeV . 0.6) (5.11)

when applied to π̂1 using Eq. (4.9), and taking conservatively the weakest bound in the

given mass range. Thus, for fπ̂ & 2 GeV the CHARM sensitivity surpasses Z → invisible.

Considering inclusive decays would likely strengthen the CHARM bounds compared to

those used here, which were derived from B → K(∗)a only [66].

For ma ∈ [0.6, 1.1] GeV, the limits set by LHCb on BR(B+ → K+χ) BR(χ→ µµ) for

χ lifetimes in the range 0.1 - 103 ps [64] are the strongest. We estimate fa & 0.6 - 0.8 PeV,

which reads(
y/M

1.1 TeV−1

)2( fπ̂
GeV

)
. 4 , (scenario 1, 0.6 . mπ̂/GeV . 1.1) (5.12)

when expressed in terms of the underlying model parameters.

Above ma ∼ 1.1 GeV the CMS scouting search [68] provides the best sensitivity to

date, fa & 1.3 - 2.8 PeV, yielding(
y/M

1.1 TeV−1

)2( fπ̂
GeV

)
. 2 . (scenario 1, 1.1 . mπ̂/GeV . 2.8) (5.13)
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Here again we have been conservative, adopting the weakest bound in this mass range;

close to the upper end, the constraint can actually be about twice as strong, as seen in

the bottom right panel of Fig. 6. It should be emphasized that a theoretical uncertainty

affects this bound, stemming from Eq. (5.10).

Looking ahead, several proposed LLP experiments at the LHC have the potential to

improve the sensitivity on ALPs coupled to fermions in the mass range 2mµ . ma . 2mc,

including CODEX-b [71], FASER 2 [72], and MATHUSLA [73]. Importantly, in contrast

to current bounds that rely on a → µ+µ−, these experiments would be sensitive to any

decays to ≥ 2 charged tracks and therefore to a→ π+π−π0, which in our model dominates

between 1 and 3 GeV (see Fig. 1). As already discussed above for LHCb and CHARM

constraints, we can roughly estimate the projected sensitivities from the results for universal

ALP-fermion couplings in Ref. [71]. Caveats concern the total ALP width, as shown in

Fig. 8, and the production rate, which is assumed to arise dominantly from FCNC B meson

decays. For example, in our setup mixing with π0, η, η
′ may enhance the production, owing

to the non-trivial U(3) transformation properties of the ALP. With these disclaimers, we

obtain for ma = 1 GeV the projections fa & 10 PeV at FASER 2, fa & 20 PeV at CODEX-

b, and fa & 80 PeV at MATHUSLA200. In addition, for SHiP with 1020 protons on target

we find fa & 14 PeV [66], based on the a→ µ+µ− signature.

The decays B → K a, a→ hadrons with ma in the GeV range have also been studied

as probes of a heavy QCD axion, where the dominant coupling to the SM is aGG̃. Both

prompt a → π+π−π0, ηπ+π−, KKπ, φφ [74] and displaced a → π+π−π0 [75] have been

considered and projections for Belle II obtained. Our branching ratio calculations in Ap-

pendix A can serve as the basis to extend those results to the class of models where the

ALP couples dominantly to SM fermions.

For smaller masses, kaon decays provide relevant constraints throughK → π+ invisible

final states: comparing the theory prediction

BR(K+ → π+π̂(b)) ≈ 3.9× 10−11

(
103 TeV

f
(b)
a

)2

λ
1/2
ππ̂ , (5.14)

with the strongest NA62 bound BR(K+ → π+X) < 5 × 10−11 (90% CL) [76], valid for

mX ∈ [160, 250] MeV and τX & 10 ns, we learn that PeV decay constants are currently

being tested. In fact, for benchmark scenario 1 we obtain

BR(K+ → π+π̂1) ≈ 5.7× 10−11

(
fπ̂

3 GeV

)2( y/M

1.1 TeV−1

)4

λ
1/2
ππ̂ , (scenario 1) (5.15)

hence for fπ̂ & 3 GeV NA62 surpasses Z invisible decays, at least for 160 MeV < mπ̂ <

2mµ, where the lifetime is extremely long. For mπ̂ > 2mµ such values of fπ̂ correspond

to a shorter lifetime of O(ns), causing a deterioration of the bound [76].17 For even larger

fπ̂ & 10 GeV the NA48/2 limits [79] become relevant, BR(K+ → π+χ)BR(χ → µµ) .

17The KOTO experiment has produced a bound on KL → π0X, reaching BR ∼ 2 × 10−9 (90% CL)

for mX . 150 MeV [77]. From the relation with K+ → π+X [78], we estimate that its impact on our

parameter space is weaker compared to NA62.
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10−10 - 10−9, valid for τχ . 100 ps. For mπ̂ < mπ0 , the NA62 bounds are very similar to

those from E949 [80].

Finally, for decays to CP -even dark pions we find from Eq. (5.7)

BR(K+ → π+π̂(b)) ≈ 1.3× 10−11

(
s

(b)
θ

10−4

)2

λ
1/2
ππ̂ , (5.16)

hence NA62 [76] is probing mixing angles of O(10−4). Comparing this with the expectation

in benchmark scenario 3,

s
(2)
θ ∼ − 10−7

(
fπ̂

5 GeV

)2( yỹ/M

10−5 TeV−1

)
, (scenario 3) (5.17)

where we have set mπ̂ ∼ 250 MeV and κ = 1 (recall that the product fπ̂ × yỹ/M is then

fixed by Eq. (4.18)), suggests that FCNC meson decays to CP -even dark pions are out of

experimental reach, unless one is willing to consider an extreme hierarchy between fπ̂ and

mπ̂, with the former exceeding the TeV.

6 Z - initiated, muon-rich dark showers at the LHC

In the previous section we have discussed processes at energies well below the weak scale,

where the dark pion properties can be fully described through the low-energy parameter

combinations fa and sθ, for CP -odd and -even states respectively. Here we take a step up

in energy and consider production of dark pions via Z and Higgs decays to dark partons,

followed by showering and hadronization. As we are going to show, these processes access

new directions in parameter space compared to FCNC meson decays.

The LHC inclusive production cross sections for Z and Higgs bosons are (see, e.g.,

Ref. [14])

σ(pp→ Z) ≈ 54.5 (58.9) nb, σ(pp→ h) ≈ 48.6 (54.7) pb, (6.1)

at 13 (14) TeV. The coupling structure of our model implies that Z decays dominate in

scenarios with Y or Ỹ ∼ 0, whereas h decays are most important if Y ∼ Ỹ , as quantified by

the branching ratios to dark quarks in Eqs. (2.5) and (2.8). Here we focus on Z decays to

the dark sector, which are largely unexplored but hold a strong LHC discovery potential,

as the forthcoming discussion illustrates.

The Z → ψ′ψ
′
decay results in two dark jets, dominantly composed of dark pions with

high multiplicity. GeV-scale dark pions eventually decay to a variety of SM final states, as

seen in Figs. 1 and 2. For mπ̂ . 2mc, the FCNC meson decays discussed in Section 5.1 set

a lower bound fa & O(PeV), implying in turn a lower bound on the dark pion lifetimes.

Concretely, in scenario 1 with mπ̂ ∼ 1 GeV we obtain from Eq. (5.12) a constraint τπ̂1 >

O(1 -10) cm, which sets the target for dark shower searches in this mass range. Differently

from scenarios with t-channel mediation such as emerging jets [16, 81], here the signal is

not automatically accompanied by hard SM jet activity, hence the trigger strategy is a

central issue. For this reason in the first exploration we focus on π̂ → µ+µ− decays, which
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result in striking displaced vertices (DVs) at the LHC and a narrow resonance peak that

can be exploited to suppress the combinatorial and misidentification backgrounds [82].18

The sensitivity of LHCb to dark shower signals is well established [14, 82] (see also a

recent overview [83]) and the most recent search for dimuon resonances [84] has already

provided a HV interpretation. Building on these results, in Section 6.1 we perform a

detailed recast to set current bounds and estimate the future reach of LHCb on our Z-

initiated, muon-rich dark shower signals. By contrast, for ATLAS and CMS we limit

ourselves to some qualitative comments in Section 6.2, whereas a detailed study is deferred

to a separate publication due to its more complex nature [85] (see also Refs. [9, 86–89] for

discussions of other dark shower signals).

6.1 LHCb sensitivity

We base our reinterpretation on the latest LHCb search for displaced dimuons [84]. We

generate pp → Z → ψ′ψ
′

at 13 TeV using the HV module of Pythia8 [90–92], with the

production cross section in Eq. (6.1) as normalization. To set the dark pion parameters we

focus on benchmark scenario 1 (Section 4.1), where all three dark pions decay through the

Z portal, considering two mass points with the following characteristics:

mπ̂ = 650 MeV , BR(π̂ → µµ) ≈ 0.96 , 〈Nπ̂〉 = 7 ,

mπ̂ = 1 GeV , BR(π̂ → µµ) ≈ 0.18 , 〈Nπ̂〉 = 5 . (6.2)

Here 〈Nπ̂〉 is the average number of dark pions per dark jet. As three different lifetimes

cannot be accommodated by the HV module, we neglect the longest-lived π̂2 (which is also

subject to larger uncertainties) and fix the ratio τπ̂3/τπ̂1 ≈ 37 as expected from Eq. (4.9).

This leaves τπ̂1 and BR(Z → ψ′ψ
′
) as free parameters of our analysis.

To derive the current constraint, we apply at truth level the displaced search cuts

listed in Table 1 of Ref. [84] and compare to the cross section limits for promptly-produced

X → µ+µ− [84] (this is the appropriate choice, as dark parton shower and hadronization

are prompt in our model, and we require the reconstructed X to come from the primary

vertex). We find the pXT ∈ [5, 10] GeV bin dominates the sensitivity, resulting in the solid

black exclusion curves in Fig. 7. The right minimum of the exclusion contours corresponds

to optimal sensitivity to the π̂1 signal with τπ̂1 ∼ few mm, whereas the left minimum

corresponds to optimal sensitivity to decays of π̂3, with τπ̂3 ≈ 37τπ̂1 ∼ few mm.

To estimate the future reach, we follow a slightly different strategy: we calculate

the signal rate after cuts and parametrize remaining detector effects through a DV ef-

ficiency εµµ that is varied in the range [0.4, 0.8]. This is compared to the background

rate extracted from Fig. 2 in Ref. [84], which is found to be ≈ 1.6 (≈ 0.7) events per

5.1 fb−1 for the mπ̂ = 650 MeV (1 GeV) hypothesis, by averaging over the mµ+µ− ∈
[600, 700] MeV ([0.9, 1.1] GeV) window and considering a bump-search interval |mµ+µ− −
650 MeV (1 GeV)| < 2σ with σ being the experimental resolution. When applied to the

18Hadronic π̂ decays are alternative opportunities, especially when the final states are fully charged: for

example, π̂ → K∗0K
∗0 → (K+π−)(K−π+) through the Z portal, or π̂ → K+K− through the h portal.

The phenomenology of these hadronic final states within dark showers deserves future study.
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Figure 7: Projection of the 90% CL LHCb sensitivity [84] to Z-initiated, muon-rich

dark showers for mπ̂ = 650 MeV (top) and mπ̂ = 1 GeV (bottom). The two minima of the

exclusion contours correspond to optimal sensitivity to decays of two dark pion species with

different lifetimes, π̂1 and π̂3, while decays of the longest-lived π̂2 are neglected. The current

exclusion is shown by the black curve, while the widths of all other bands are obtained by

varying the single-DV efficiency εµµ ∈ [0.4, 0.8]. Brown lines indicate the relation between

BR(Z → ψ′ψ
′
) and τπ̂1 obtained from benchmark scenario 1, for representative choices of

fπ̂.

current luminosity, this procedure gives the dashed gray bands in Fig. 7. The reasonable

agreement with the actual LHCb constraint gives us confidence in the method, which is

then applied to Run 3 (23 fb−1) and High-Luminosity LHC (HL-LHC, 300 fb−1) scenarios

to obtain the red and blue bands. For mπ̂ = 650 MeV, LHCb will probe Z branching ratios

down to ∼ 10−7 in the high-luminosity phase, with further improvements possible either

through optimization to the dark shower signal or future detector upgrades. The reach

for mπ̂ = 1 GeV is somewhat weaker, due to the lower dark pion multiplicity and smaller

dimuon branching ratio.

The brown lines in Fig. 7 show the relation between BR(Z → ψ′ψ
′
) and τπ̂1 that is

realized in benchmark scenario 1, as a function of fπ̂. The dependence on the underlying
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parameters should be contrasted with complementary bounds from other processes, namely

Z → invisible, which probes y/M , and B decays, sensitive to fa ∝ M2/(y2fπ̂). We learn

that for 1 . fπ̂/GeV . 20 the LHCb dark shower search has already probed new parameter

space, highlighting the strongly complementary role of this type of analysis with current

and upcoming data.

In addition to the single-DV analysis we consider requiring 2 DVs per event, assuming

zero background in this case. The corresponding exclusions, shown by the orange and

green bands in Fig. 7, turn out to be weaker than the single-DV ones. This is explained

by the fact that the background is already very suppressed for 1 DV, hence removing it

completely results in a limited gain, and by the additional efficiency cost.

The potential sensitivity of LHCb to heavier pseudoscalars, with masses above a few

GeV, has also been discussed in several final states [93].

6.2 ATLAS and CMS prospects

In the light of the results shown in Fig. 7, and in particular the correlation observed in our

framework between BR(Z → ψ′ψ
′
) and the dark pion lifetimes, a priori ATLAS and CMS

may lead to dramatic improvements in the region τπ̂ ∼ 0.1 - 1 m, thanks to their larger

volumes (and integrated luminosities). However, owing to the soft nature of the signals

considered here, progress requires targeted experimental strategies that enable efficient

triggering on low-pT displaced muons.

A major step in this direction has recently been achieved by CMS with the search for

dimuon DVs [68] in data collected with scouting triggers, which permit the unprecedented

exploration of very low muon transverse momenta and thus DV masses, down to the mµµ ∼
2mµ threshold. This approach is well suited to test the π̂ → µµ signals discussed here, as

demonstrated by the new constraints on the parameter space we have derived in Section 5

from the CMS B → Xs(χ → µµ) results [68]. Thus a recast to the dark shower signal is

warranted, which will be presented elsewhere [85]. We note that the CMS analysis imposes

a cut lxy < 11 cm on the transverse displacement of the dimuon DVs, due to the definition

of the scouting trigger stream which requires hits in at least two pixel layers. Looking

ahead to future upgrades, CMS-specific triggers targeting LLP dimuon signals have also

been proposed [94].

At ATLAS, a search for two “dark photon jets” [95] targeted final states related to

those of interest here: Higgs decays to two jet-like structures, each composed of an invisible

particle and two GeV-mass LLPs decaying to µ+µ−. Events were selected by means of a

trigger requiring ≥ 3 L1 muons with pT > 6 GeV, then confirmed at HLT using only muon

spectrometer information. It results in optimal sensitivity for O(cm) lifetimes. Compared

to the signal model used by ATLAS, our Z-initiated dark shower has larger multiplicity,

lower transverse momenta, and for mπ̂ . 1 GeV larger branching fraction to muons.

Heavier LLPs have been searched for in a number of analyses by ATLAS and CMS,

mainly focusing on rare Higgs decays to the hidden sector, see e.g., Refs. [96, 97] for very

recent results.
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7 Probing the ultraviolet completion

Finally, we take another step up in energy and discuss the expected LHC signals from direct

production of the heavy fermions Q. Since these carry SM EW charges, they undergo Drell-

Yan (DY) pair production such as, for instance, ud̄→W+∗ → QuQd. The decay patterns

can be read from the Yukawa interactions by means of the Goldstone equivalence theorem:

Qu →W+ψ, whereas Qd decays to Zψ and hψ with ≈ 1/2 branching ratios for M � mZ,h .

Flavor indices have been suppressed for simplicity. The ψψ pair in the final state give rise

to two dark jets, which characterize the signal.

Assuming the dark pions are sufficiently long-lived to escape the detector we obtain

WZ/Wh+ MET, a typical signature of EWinos in supersymmetry. Similar considera-

tions apply to the production of the electrically neutral pairs QuQu, QdQd . Consequently,

bounds on M can be directly set by applying the results of searches for Higgsinos, which are

assumed to decay directly to the lightest supersymmetric particle (LSP), taken to be the

bino-like neutralino. Our signal matches this topology in the limit of very light neutralino

LSP. The strongest sensitivity has been achieved, remarkably, in the all-hadronic + MET

search by ATLAS [98], which outperforms analogous searches for 3`+ MET and `bb̄+ MET.

For degenerate Higgsinos χ̃ and massless bino LSP, a bound mχ̃ > 900 GeV (95% CL) was

obtained. Our signal cross section reads at partonic level

σ̂(ud̄→ QuQd) =
Nd

Nc

πα2
W

6ŝ

ŝ2

(ŝ−m2
W )2

(
1− 4M2

ŝ

)1/2(
1 +

2M2

ŝ

)
, (7.1)

which is Nd times larger than for the Higgsinos, if SM QCD and dark QCD corrections

are neglected. After convoluting with the parton luminosities and summing over all charge

combinations, the 13 TeV cross section is σ(pp → QQ,M = 900 GeV) ≈ Nd 1.6 fb, where

we used MSTW2008 NLO parton distribution functions [99] and the factorization scale

was set to
√
ŝ/2. To obtain an approximate but reliable exclusion on the Q’s, we solve

σ(pp→ QQ,M) = σ(pp→ χ̃χ̃,mχ̃ = 900 GeV) , (7.2)

for the mass M of the lightest Qi, obtaining for Nd = 3

M & 1.1 TeV . (direct searches) (7.3)

We have assumed the Qi are not mass-degenerate, which applies to all benchmark models

considered in Section 4 (for two degenerate Qi, the constraint strengthens to 1.2 TeV).

Given the current Higgsino expected bound [98], we rescale the cross section by
√
L/L′

with L,L′ = 139, 3000 fb−1 and derive M & 1.3 TeV as our estimate of the (13 TeV)

HL-LHC sensitivity.

If the dark pions are heavy enough to decay inside the detector, the phenomenology

becomes similar to the emerging jets scenario [16, 100], albeit with EW rather than QCD

production of the mediators. Evaluating the impact of the existing CMS search [81] on

our signals is beyond the scope of this work, and left as an interesting avenue for future

studies.
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Beside DY production we consider single Q production mediated by off-shell Higgs,

gg → h∗ → Qdψ. This yields Z/h+ ψψ final states, leading to mono-Z/h signatures if the

dark pions escape undetected. The partonic cross section is found to be, neglecting the ψ

mass,

σ̂(gg → Qdψ) =
Ndα

2
s

1024π3(N2
c − 1)

|Y |2 + |Ỹ |2

v2

∣∣∣x[1 + (1− x)f(x)2
]∣∣∣2(1−M2/ŝ

1−m2
h/ŝ

)2

, (7.4)

where x(ŝ) = 4m2
t /ŝ, f(x) is defined in Eq. (A.4), and again we have neglected flavor

indices. By folding in the gg parton luminosity we obtain the 13 TeV cross sections

σ
(
pp→ Qdψ +Qdψ,M = {0.5, 1} TeV

)
≈ Nd

(
|Y |2 + |Ỹ |2

)
{0.70 fb, 9.7 ab} , (7.5)

where the renormalization and factorization scales were set to M . These results show that

single production cannot compete in rate with DY, though the sensitivity to the Yukawa

couplings makes it a complementary probe of the UV completion.

8 Conclusions

In this paper we have formulated a theory and initiated the study of dark pions, coupled

to the SM via irrelevant Z and Higgs portals. The corresponding operators are obtained

by integrating out TeV-scale EW-doublet fermion mediators. This setup has strong UV

motivations, appearing in various modern approaches to the hierarchy problem, such as

neutral naturalness models and the relaxion scenario. It provides a concrete framework

where the GeV-scale phenomenology of the dark pions, the EW-scale decays of Z and h

bosons to the hidden sector, and the TeV-scale signals of the mediators are all coherently

linked.

The decays of CP -odd and CP -even dark pions proceed via tree-level mixing with the

Z and h, respectively, providing explicit realizations of light composite ALPs and scalars

coupled feebly to the SM. For CP -odd dark pions, we have provided a new comprehensive

calculation of the decay widths to exclusive hadronic SM final states, obtained by applying

data-driven methods. The results are valid for any ALP with arbitrary flavor-diagonal

couplings to SM fermions, and can therefore be widely used to study other models.

The dark pion phenomenology depends on the symmetries possessed by the model,

including CP , dark isospin, and chiral symmetries. To illustrate the range of possibilities we

have analyzed in detail three benchmark scenarios. We find that for masses and couplings of

the mediators that can be related to the hierarchy problem while satisfying experimental

constraints, and for dark pion decay constants around the GeV scale, dark pions with

2mµ . mπ̂ . 2mb have lifetimes varying from a millimeter to 10 meters. Intriguingly,

this is the most interesting range for LLP searches at the LHC (and beyond), making the

dark pions a natural target. We have begun the exploration of the signatures with two

applications, meson FCNC decays and Z-initiated dark shower searches, focusing primarily

on the mass region 2mµ . mπ̂ . 2mc where the striking dark pion decay to dimuons has

a significant branching ratio.
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Searches for flavor-changing b→ sa decays, with long-lived a→ µ+µ−, set important

bounds on the effective decay constant of the CP -odd dark pions, fa & PeV. In addition to

well-known constraints from CHARM and LHCb, we have derived new ones from a recent

CMS search leveraging the data scouting technique. Each of these experiments turns out

to have the strongest sensitivity in a different mπ̂ window. Proposed LLP detectors at

the LHC interaction points, including FASER 2, CODEX-b, and MATHUSLA, have the

potential to extend the sensitivity on fa by 1 - 2 orders of magnitude. For mπ̂ < 2mµ, there

are lower bounds fa & PeV from K → π+ invisible searches at E949 and NA62. On the

other hand, the CP -even dark pions remain out of reach due to their very small mixing

with the Higgs.

Dark shower searches at the LHC access the additional structure that partially com-

pletes the theory at the EW scale. They probe decays of on-shell Z and h bosons to dark

jets composed mainly of long-lived dark pions. Z decays to the dark sector, in particular,

have been largely overlooked so far, but here we have shown that they probe new direc-

tions in the parameter space, supplying orthogonal information to meson FCNC decays. We

have performed a thorough recast of the most recent LHCb search for displaced dimuons.

The resulting constraints demonstrate that the sensitivity to Z-initiated dark showers has

already reached new parameter space, surpassing competing bounds from meson FCNC

and Z → invisible decays. ATLAS and CMS have strong potential to extend the reach

to longer dark pion lifetimes, which are well motivated in our framework, by exploiting

larger decay volumes and luminosities. Dedicated experimental strategies are increasingly

being implemented, such as data scouting/trigger-level analysis, and a detailed assessment

of their impact on our framework will appear elsewhere.

As for the direct LHC reach on the EW-charged mediators, a straightforward rein-

terpretation of Higgsino searches in all hadronic + MET final states gives the constraint

M & 1.1 TeV. The improvement expected in the high-luminosity phase is mild, leaving

open the possibility that a dark pion discovery may take place at the LHC, while the direct

production of the mediators would need to wait for a future collider.

Looking ahead, many paths deserve further exploration. Hadronic decays of GeV-

scale dark pions are shown to be important by our results, warranting new studies both for

FCNC meson decays and dark shower searches at the LHC. Notable modes include: π̂ →
π+π−π0, which we find to dominate the width of light CP -odd dark pions, π̂ → K∗0K

∗0 →
(K+π−)(K−π+) and π̂ → K+K−, which can be fully reconstructed and have sizable

branching ratios in some parameter regions, and several others discussed in Sections 3 and 4.

The sensitivity of Belle II to such modes requires detailed studies, as well. In addition,

we have not touched upon the heavier mass range mπ̂ & 2mc, where hadronic decays

dominate and lifetimes become significantly shorter. In particular, it would be interesting

to understand if in this region there are any constraints on the EW pair-production of the

heavy dark quark mediators from the existing CMS search for emerging jets.

The dark pion phenomenology at fixed-target experiments also remains to be inves-

tigated. We note that dark hadrons heavier than the dark pions may be relevant there,

due to different production mechanisms which could be exploited to test specific regions

of parameter space. For instance, bremsstrahlung production of dark vector mesons can
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be strongly enhanced if their mass is around 1 GeV, due to mixing with SM vector meson

resonances.

Finally, the sensitivity of future colliders to the scenario presented here warrants further

studies. In particular, an e+e− machine like FCC-ee would offer extraordinary possibilities

to probe decays to the hidden sector at a Tera-Z phase, as it has already been demonstrated

for one-flavor dark QCD models. We believe the present work sets a solid foundation to

tackle all the above aspects, while providing several new results of general applicability in

the study of light, feebly coupled hidden sectors.
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A Decays of a light ALP coupled to Standard Model fermions

The starting point is the Lagrangian

La =
1

2
(∂µa)2 − 1

2
m2
aa

2 − ∂µa

fa

∑
f

cf f̄γ
µγ5f , (A.1)

with f ∈ {q, `, ν} for quarks, charged leptons and neutrinos. The width for decay to a pair

of charged leptons is

Γ(a→ `+`−) =
c2
`

2πf2
a

mam
2
`

(
1−

4m2
`

m2
a

)1/2
. (A.2)

If the ALP is much heavier than the SM QCD scale, ΛSM � ma, its hadronic decays can

be analyzed perturbatively. The width for decay to two gluons is [101, 102]

Γ(a→ gg) =
128πα2

s(ma)

f2
a

m3
a

∣∣∣∣ ∑
q=u,d,s,c,b,t

cqB1(4m2
q/m

2
a)

32π2

∣∣∣∣2[1 +
(97

4
− 7nq

6

)αs(ma)

π

]
,

(A.3)
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where nq counts the quarks lighter than ma, while the loop function is19

B1(x) = 1− xf(x)2 , f(x) =

arcsin 1√
x

x ≥ 1 ,

π
2 + i

2 log 1+
√

1−x
1−
√

1−x x < 1 .
(A.4)

We have B1(x) ≈ 1 (− 1
3x) for x � 1 (� 1), implying that light quarks contribute ≈

cq/(32π2) to the sum in Eq. (A.3) whereas heavy quarks rapidly decouple. For decay to

heavy quarks Q = c, b,

Γ(a→ QQ) =
Ncc

2
Q

2πf2
a

mam
2
Q(ma)

(
1−

4m2
Q

m2
a

)1/2
, (A.5)

where mQ is the running quark mass in the MS scheme. We use two-loop running for both

αs and mc,b , and set mc = 1.67 GeV, mb = 4.78 GeV.

For ma . ΛSM we must consider decays to exclusive hadronic final states instead. To

do so we match Eq. (A.1) to the low-energy effective Lagrangian [24, 103, 104],

Leff =
f2
π

4
Tr[(DµΣ)†(DµΣ)] +

B0f
2
π

2
Tr[M †Σ + Σ†M ] +

1

2
(∂µa)2 − 1

2
m2
aa

2 − 1

2
m2

0η
2
0 + LV ,

(A.6)

where Σ → LΣR† under SU(3)L × SU(3)R and the covariant derivative is DµΣ = ∂µΣ −
ieAµ[Q,Σ] − i∂µa{cq,Σ}/fa, with Q = diag (2,−1,−1)/3 and cq = diag (cu, cd, cs). The

pseudoscalar matrix is written as

Σ = exp(2iP /fπ), P =
1√
2


π0√

2
+ η√

3
+ η′√

6
π+ K+

π− − π0√
2

+ η√
3

+ η′√
6

K0

K− K
0 − η√

3
+ 2η′√

6

 , (A.7)

where fπ ≈ 93 MeV. The hard U(1)A breaking due to the anomaly is parametrized by m2
0

and the physical η, η′ are related to the octet and singlet fields byη
η′

 =

cos θηη′ − sin θηη′

sin θηη′ cos θηη′

η8

η0

 , sin θηη′ = −1

3
, cos θηη′ =

2
√

2

3
. (A.8)

This approximate value of the mixing angle is sufficiently accurate for our purpose, while

simplifying analytical expressions [24]. The relevant pieces of the Lagrangian describing

the vector resonances are [105]

LV = gV V PTr
(
PVµνṼ

µν
)

+
iNce

6π2f3
π

εµνρσAµTr
(
Q∂νP ∂ρP ∂σP

)
+ 2f2

πTr

∣∣∣∣gVµ − eAµQ− i

2f2
π

[P , ∂µP ]

∣∣∣∣2 + . . . , (A.9)

19The structure ofB1 can be understood upon integrating by parts the interaction with quarks in Eq. (A.1)

and using the expression of the divergence of the axial current,

∂µ(q̄γµγ5q) = 2imq q̄γ5q −
g2
s

16π2
GaµνG̃

µν a → a

fa

∑
q

cq
(
2imq q̄γ5q −

g2
s

16π2
GaµνG̃

µν a).
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where Ṽ µν = 1
2ε
µνρσVρσ (with ε0123 = 1) and gV V P = −Ncg

2/(8π2fπ) is determined by the

anomaly. The coupling g is fixed by the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin

(KSRF) relation [106, 107] to g = gV ππ = mV /(
√

2fπ) ≈ 6.0, where for mV we have taken

the ρ mass.20 The vector meson matrix reads

V =
1√
2


ρ0+ω√

2
ρ+ K∗+

ρ− −ρ0+ω√
2

K∗0

K∗− K
∗0

φ

 . (A.10)

It is important to note that Eq. (A.9) realizes vector meson dominance (VMD) for π0 → γγ

but retains an (anomalous) γP 3 contact interaction, with coefficient equal to −1/2 of the

one given by the WZW action. This choice was shown to provide a better fit to data

compared to “complete VMD” [105], and will impact the calculation of a→ π+π−γ.

Equation (A.6) contains a piece i f
2
π

2fa
∂µaTr[cq(Σ†DµΣ− Σ(DµΣ)†)] that mixes kineti-

cally the ALP and pseudoscalar mesons, Leff ⊃ −fπ
fa
∂µa

∑
P=π0,η,η′

KaP∂
µP with

Kaπ0 = cu − cd , Kaη =

√
2

3
(cu + cd − cs) , Kaη′ =

1√
3

(cu + cd + 2cs). (A.11)

This is diagonalized at O(fπ/fa) by the transformations [24]

a→ a− fπ
fa

∑
P=π0,η,η′

m2
P

m2
a

〈aP 〉P , P → P +
fπ
fa
〈aP 〉 a , 〈aP 〉 =

m2
aKaP

m2
a −m2

P

, (A.12)

where isospin breaking due to mu 6= md was neglected and we defined 〈. . .〉 ≡ 2 Tr(. . .).

We then assign to the ALP the U(3) representation a = 1√
6

diag (Cu, Cd, Cs), with

Cu =
√

3
2〈aπ0〉+〈aη〉+ 1√

2
〈aη′〉 , Cd = −

√
3
2〈aπ0〉+〈aη〉+ 1√

2
〈aη′〉 , Cs = −〈aη〉+

√
2〈aη′〉 ,

(A.13)

which are taken to be valid up to ma ≈ 3 GeV. Above this mass we switch to the

perturbative description. The model studied in this paper has cf = T 3
Lf i.e. cu = −cd =

−cs = 1/2, giving Kaπ0 = 1, Kaη = 1/
√

6 and Kaη′ = −1/
√

3. However, we stress that our

results are general and also apply to other models with different patterns of ALP-fermion

couplings, for example those in Refs. [19, 108]. We are now in the position to calculate the

decays of low-mass ALPs to exclusive final states.

A.1 a→ γγ

We begin with the decay to two photons [24, 101],

Γ(a→ γγ) =
α2m3

a

(4π)3f2
a

∣∣∣CVMD
γ + CpQCD,uds

γ + CpQCD,cbt
γ + C leptons

γ

∣∣∣2 , (A.14)

20This g should not be confused with the SU(2)L gauge coupling, which never appears in this appendix.
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where Cγ is defined by the effective operator
Cγα
8πfa

a εµνρσFµνFρσ. The individual contribu-

tions are

CVMD
γ = −Nc

[
〈aρ0ρ0〉+ 1

9〈aωω〉+ 2
9〈aφφ〉+ 2

3〈aρ0ω〉
]
Θ(m∗a −ma)F(ma), (A.15)

CpQCD,uds
γ = −

∑
q=u,d,s

2NcQ
2
qcqΘ(ma −m∗a), (A.16)

CpQCD,cbt
γ = −

∑
q=c,b,t

2NcQ
2
qcqB1(4m2

q/m
2
a)Θ(ma −m∗a), (A.17)

C leptons
γ = −

∑
`=e,µ,τ

2Q2
`c`B1(4m2

`/m
2
a), (A.18)

where the ρ0,ω,φ matrices are implicitly defined by Eq. (A.10) and m∗a is the scale where

the VMD and pQCD terms are matched, which equals ≈ 2.9 GeV for our benchmark

model. The form factor F ≡ F4 accounts for the suppression of the V V P interaction at

high mass, extracted in Ref. [24] by comparison to e+e− data,

Fn(ma) =


1 ma < 1.4 GeV,

1 + [(1.4
2 )n − 1] (ma−1.4 GeV)

(2−1.4) GeV 1.4 GeV ≤ ma ≤ 2 GeV,(
1.4 GeV
ma

)n
ma > 2 GeV.

(A.19)

A basic cross-check of Eq. (A.14) is that, setting a → π0 and fa → fπ, it reproduces the

classic result for Γ(π0 → γγ), which in the VMD picture is mediated by 〈π0ρ0ω〉 = 1/2. In

addition, the predicted widths for η, η′ → γγ match the experimental values within 20%.

A.2 a→ π+π−γ

The amplitude is described by 5 diagrams: two with ρ0 exchange, two with ρ± exchange,

and one contact interaction. For the spin-summed squared matrix element we find

|M|2 =
1

4
[m2

12(m2
13 −m2

π)(m2
23 −m2

π)−m2
π(m2

a −m2
12)2]

∣∣∣∣∣{− gV V P 2e

3

fπ
fa

×
[(√

6〈aη〉+
√

3〈aη′〉+ 〈aπ0〉
)
BWρ0(m2

12)− 〈aπ0〉
(
BWρ±(m2

13) + BWρ±(m2
23)
)]

− Nce

6π2f2
πfa

(
1

2
√

6
〈aη〉+ 1

4
√

3
〈aη′〉+ 1

4〈aπ0〉
)}
F(ma)

∣∣∣∣∣
2

, (A.20)

where

BWx(m2
ij) ≡ (m2

x −m2
ij − imxΓx)−1 (A.21)

and, adopting a convention we follow consistently, the final-state particles were ordered

according to how we define the decay (i.e. in a→ π+π−γ, 1 denotes the π+ and so on). In

addition, the four-momenta satisfy pa =
∑

i∈ final pi. The width is

Γ(a→ π+π−γ) =
1

2Sma

∫
|M|2dΦ3 =

1

32m3
a(2π)3

∫ m2
a

4m2
π

dm2
12

∫ m2
+

m2
−

dm2
23 |M|2 (A.22)
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with 2m2
± = ±(m2

a−m2
12)(1− 4m2

π

m2
12

)1/2 +m2
a + 2m2

π −m2
12 and the symmetry factor S = 1.

We cross-check this result by applying it to the η′: setting a → η′, 〈η′P 〉 = δη′P and

fa → fπ gives Γ(η′ → π+π−γ) ≈ 56 keV, in excellent agreement with the PDG value

of 55 keV. The same procedure applied to the η yields Γ(η → π+π−γ) ≈ 90 eV, to be

compared with the experimental value of 55 eV. Our η prediction would get significantly

closer to the observed rate if we used a more precise value of θηη′ and accounted for the

SU(3)-breaking differences among the pseudoscalar decay constants [109], which however

go beyond the scope of this work. Nonetheless, we remark that the γP 3 contact term in

the vector meson Lagrangian (A.9) is important to improve agreement with data: omitting

this term (as done, e.g., in Ref. [24]) we obtain 154 eV (63 keV) for η(′) → π+π−γ, so the

η partial width is off by a factor ≈ 3 relative to the observed value.21

A.3 a→ π+π−π0

We include 5 contributions to the amplitude,M =MChPT +MVMD +Mσ +Mf0 +Mf2 .

The chiral Lagrangian gives

MChPT =

√
k

3fafπ

[
〈aπ0〉(3m2

12 −m2
a − 2m2

π)
]
Θ(mη′ −ma). (A.23)

In the numerics we actually replace the quantity in square parentheses with its expression

including isospin breaking up to O(δI), where δI ≡ (md −mu)/(md +mu), as provided in

Eq. (S32) of Ref. [24]. A k factor equal to 2.7 is included, derived from comparison with

η(′) → 3π data [24]. The vector meson Lagrangian gives

MVMD =
〈aπ0〉
fa

{
g2fπ

[
(2m2

12 +m2
23 −m2

a − 3m2
π)BWρ(m

2
23) (A.24)

+ (2m2
12 +m2

13 −m2
a − 3m2

π)BWρ(m
2
13)
]
FV (ma)−

1

2fπ
(3m2

12 −m2
a − 3m2

π)Θ(mη′ −ma)
}
,

where FV ≡ F3. The first two pieces arise from ρ± exchange diagrams, while the third

one originates from the ∂2P 4/f2
π interactions in Eq. (A.9) and is essential to ensure that

MVMD vanishes at low energy, as can be explicitly verified by taking BWρ ' m−2
ρ and

applying the KSRF relation. Exchange of the σ scalar meson yields

Mσ = −2γ2
σππ

fπ
fa
〈aπ0〉pa · p3 p1 · p2 BWσ(m2

12)Θ(4m2
K −m2

12)F(ma) , (A.25)

where γσππ = 7.27 GeV−1, as well as all the couplings of the scalar nonet mesons that

appear in the following, are taken from the fit to data performed in Ref. [110] without

assuming U(3) symmetry (we use the second set of couplings given in Ref. [110]). To

21In Ref. [24] only the diagram containing an aρ0ρ0 vertex was included, which corresponds to retaining

only the piece proportional to(√
6〈aη〉+

√
3〈aη′〉

)
BWρ0(m2

12) = 6〈aρ0ρ0〉BWρ0(m2
12)

in the second line of Eq. (A.20). Upon integrating this partial amplitude over dm2
23 we find agreement with

Ref. [24].
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avoid issues with unitarity we turn off the σ contribution at the di-kaon threshold [24].

The amplitude for f0 exchange is given by Eq. (A.25) with σ → f0 everywhere, γf0ππ =

1.47 GeV−1, and removing the cutoff at m2
12 = 4m2

K .

The tensor meson f2, denoted by φµν , is assumed to couple to the energy-momentum

tensor as [111–113]

Lf2 = −gf2ππ
f2
π

4
〈(∂µΣ†∂νΣ− 1

2g
µν∂αΣ†∂αΣ)f2〉φµν . (A.26)

Choosing the U(3) representation f2 = diag (1, 1, 0)/2 allows to reproduce approximately

the branching ratios into ππ, ηη,KK,22 and the overall coupling strength is fixed via

Γ(f2 → π+π−) =
g2
f2ππ

m3
f2

960π

(
1− 4m2

π

m2
f2

)5/2
=

2

3
Γexp
f2

BR(f2 → π+π− + π0π0)exp (A.27)

to gf2ππ = 13.1 GeV−1, using the PDG values [70] for the f2 total width and ππ branching

ratio. Then we obtain the amplitude for a→ π+π−π0

Mf2 = − g2
f2ππ

fπ
fa
〈aπ0〉BWf2(m2

12)M̂f2Θ
[
m2

12 − (mf2 − Γf2)2
]
F(ma) (A.28)

with

M̂f2 = (pµap
ν
3 − 1

2g
µνpa · p3)(pρ1p

σ
2 − 1

2g
ρσp1 · p2)Bµν, ρσ(p1 + p2) , (A.29)

where the definition of Bµν, ρσ(k) is [112]

Bµν, ρσ(k) =
(
gµρ− kµkρ

m2
f2

)(
gνσ− kνkσ

m2
f2

)
+
(
gµσ− kµkσ

m2
f2

)(
gνρ− kνkρ

m2
f2

)
− 2

3

(
gµν− kµkν

m2
f2

)(
gρσ− kρkσ

m2
f2

)
.

(A.30)

The low-energy expansion of this amplitude is

M̂f2 =
1

12

[
m2

12m
2
13 +m2

12m
2
23 + 6m2

13m
2
23 − 8(m2

a +m2
π)m2

π

]
+O(1/m2

f2
). (A.31)

However, it is well known that the O(p4) low-energy constants in ChPT do not include

any sizable contributions from tensor mesons; in fact, it was shown [114] that imposing

QCD short-distance constraints removes, or suppresses strongly, terms such as Eq. (A.31).

For this reason we turn on the f2 exchange amplitudes like Eq. (A.28) only for m2
ij >

(mf2 − Γf2)2, thus retaining most of the resonance peak but discarding unphysical low-

energy pieces. Combining all terms, the width for a→ π+π−π0 is

Γ(a→ π+π−π0) =
1

2Sma

∫
|M|2dΦ3 (A.32)

with S = 1.

22The agreement can be mildly improved by taking f2 = diag (
√

1− s2,
√

1− s2,
√

2 s)/2 with s ∼ 0.1,

but for simplicity we stick to s = 0.
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A.4 a→ 3π0

This amplitude is not mediated by vector mesons, owing to the absence of a ρ0π0π0 coupling

in LV , hence M =MChPT +Mσ +Mf0 +Mf2 . The chiral Lagrangian contributes only

through the pNGB mass term,

MChPT =
√
k
m2
π

fafπ

[
〈aπ0〉

]
Θ(mη′ −ma). (A.33)

In the numerical evaluation the quantity in square parentheses is replaced with its expres-

sion up to O(δI), found in Eq. (S31) of Ref. [24]. For σ exchange,

Mσ = −2γ2
σππ

fπ
fa
〈aπ0〉

[
pa ·p3 p1 ·p2 BWσ(m2

12)Θ(4m2
K−m2

12)+{1↔ 3}+{2↔ 3}
]
F(ma).

(A.34)

The amplitude for f0 exchange is obtained from Eq. (A.34) by replacing σ → f0 everywhere

and removing the cutoffs on the σ propagators. The tensor meson f2 contributes

Mf2 = −g2
f2ππ

fπ
fa
〈aπ0〉

{
BWf2(m2

12)M̂f2Θ
[
m2

12−(mf2−Γf2)2
]
+{1↔ 3}+{2↔ 3}

}
F(ma).

(A.35)

The width is given by Eq. (A.32) with S = 3!. The f2 amplitude is responsible for the

increase of the width above ma = 2 GeV seen in Fig. 1.

A.5 a→ π0π0η, π+π−η

For a→ π0π0η we consider five contributions, M =MChPT +Mσ +Mf0 +Ma0 +Mf2 .

The chiral Lagrangian contributes via the pNGB mass term,

MChPT =
2m2

π

3fπfa

(
〈aη〉+ 1√

2
〈aη′〉

)
Θ(mη′ −ma), (A.36)

while the σ contribution is

Mσ = −
√

2
fπ
fa
γσππ

(
2γσηη〈aη〉+ γσηη′〈aη′〉

)
pa · p3 p1 · p2BWσ(m2

12)Θ(4m2
K −m2

12)F(ma) ,

(A.37)

and Mf0 is obtained from Eq. (A.37) by replacing σ → f0 and removing the cutoff at the

di-kaon mass. Exchange of the a0 scalar triplet gives

Ma0 = −γa0πη
fπ
fa

(γa0πη〈aη〉+ γa0πη′〈aη′〉)pa · p2 p1 · p3 BWa0(m2
13)F(ma) + {1↔ 2} ,

(A.38)

and finally,

Mf2 = −2

3
g2
f2ππ

fπ
fa

(
〈aη〉+ 1√

2
〈aη′〉

)
BWf2(m2

12)M̂f2Θ
[
m2

12−(mf2−Γf2)2
]
F(ma). (A.39)

The width is obtained from Eq. (A.32) with S = 2!. For the analogous final state involving

charged pions we find Γ(a → π+π−η) = 2 Γ(a → π0π0η). As a check of these results, we

apply them to η′ → ππη by setting a → η′ and fa → fπ. The f2 contribution is not

included since mη′ < mf2 −Γf2 , and we obtain Γ(η′ → π0π0η+ π+π−η) ≈ 129 keV in very

good agreement with the PDG value of 122 keV, as it should be since the remaining four

amplitudes were fit to data including η′ → ηππ in Ref. [110].
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A.6 a→ π0π0η′, π+π−η′

This channel is similar to the previous one, with a few notable differences. In accordance

with our choice to cut off ChPT terms at ma = mη′ , this contribution is not included,

hence for a→ π0π0η′ we haveM =Mσ +Mf0 +Ma0 +Mf2 . The σ, f0 and a0 terms are

simply obtained from Eqs. (A.37) and (A.38) by exchanging everywhere η ↔ η′, whereas

the f2 amplitude reads

Mf2 = −1

3
g2
f2ππ

fπ
fa

(
〈aη′〉+

√
2〈aη〉

)
BWf2(m2

12)M̂f2Θ
[
m2

12−(mf2−Γf2)2
]
F(ma). (A.40)

Again we find Γ(a→ π+π−η′) = 2 Γ(a→ π0π0η′).

A.7 a→ ηηπ0

Here M =Mf0 +Ma0 +Mf2 , with

Mf0 = − 2
√

2γf0ππγf0ηη
fπ
fa
〈aπ0〉pa · p3 p1 · p2 BWf0(m2

12)F(ma), (A.41)

Ma0 = − γ2
a0πη

fπ
fa
〈aπ0〉pa · p1 p2 · p3 BWa0(m2

23)F(ma) + {1↔ 2}, (A.42)

Mf2 = − 2

3
g2
f2ππ

fπ
fa
〈aπ0〉BWf2(m2

12)M̂f2F(ma). (A.43)

We do not include a σ contribution analogous to Mf0 , consistently with the prescription

of cutting off the σ propagator at 4m2
K , and the usual Θ function in Mf2 is trivial since

2mη > mf2 − Γf2 . The symmetry factor to be used in Eq. (A.32) is S = 2!.

A.8 a→ K0K
0
π0

The amplitude reads M = MVMD +Ma0 +MS(Kπ) +Mf2 . Exchange of the K∗ vector

gives

MVMD = − g2

2

fπ
fa

(
2√
6
〈aη〉 − 1

2
√

3
〈aη′〉 − 1

2〈aπ0〉
)

(A.44)

×
[
m2

12 −m2
13 −

(m2
a −m2

K)(m2
K −m2

π)

m2
K∗

]
BWK∗(m

2
23)FV (ma) + {1↔ 2},

whereas for a0 we find

Ma0 =
γa0KK√

2

fπ
fa

(γa0πη〈aη〉+ γa0πη′〈aη′〉) pa · p3 p1 · p2 BWa0(m2
12)F(ma). (A.45)

In addition, we include the S-wave Kπ amplitude measured by BaBar in ηc decays [115]

as

MS(Kπ) =
γκKπ√

2

fπ
fa

(
− γκKπ√

2
〈aπ0〉+ γκKη〈aη〉+ γκKη′〈aη′〉

)
(A.46)

× pa · p1 p2 · p3
|ABaBar|eiφBaBar

(√
m2

23

)
mK∗0 (1430)ΓK∗0 (1430)

F(ma) + {1↔ 2}.
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This expression is obtained through the following logic: the measured S(Kπ) amplitude

is dominated by the I = 1/2 scalar K∗0 (1430) [115], whose mass and width are found to

be mK∗0 (1430) = 1.438 GeV and ΓK∗0 (1430) = 0.210 GeV [116], while also displaying other

important effects, in particular a high-mass structure attributed to K∗0 (1950). We then

approximate the couplings of the K∗0 (1430) with those of the κ(900) obtained in Ref. [110],23

write the amplitude as the sum of two diagrams with K∗0 (1430) exchange, and finally

arrive at Eq. (A.46) by replacing the BW of K∗0 (1430) with the phenomenological BaBar

amplitude (we use the amplitude that was extracted from ηc → K+K−π0, given in the last

two columns of Table V in Ref. [115]) times the normalization factor (mK∗0 (1430)ΓK∗0 (1430))
−1.

A similar, although likely not identical, procedure was adopted in Ref. [24]. Notice that

the K∗ amplitude in Eq. (A.44) includes the exchange of the longitudinal mode, which in

general contributes also to S(Kπ), leading in principle to a double counting. However, the

empirical fact that S(Kπ) is dominated by the scalar K∗0 (1430) supports our simplified

prescription to just sum the VMD and S(Kπ) amplitudes.

Finally, the tensor meson exchange amplitude reads

Mf2 = −1

2
g2
f2ππ

fπ
fa
〈aπ0〉BWf2(m2

12)M̂f2Θ
[
m2

12 − (mf2 − Γf2)2
]
F(ma). (A.47)

The appropriate symmetry factor for Eq. (A.32) is S = 1.

A.9 a→ K+K−π0

The four components of M =MVMD +Ma0 +MS(Kπ) +Mf2 read

MVMD =
g2

2

fπ
fa

(
2√
6
〈aη〉 − 1

2
√

3
〈aη′〉+ 1

2〈aπ0〉
)

(A.48)

×
[
m2

12 −m2
13 −

(m2
a −m2

K)(m2
K −m2

π)

m2
K∗

]
BWK∗(m

2
23)FV (ma) + {1↔ 2},

Ma0 = − γa0KK√
2

fπ
fa

(γa0πη〈aη〉+ γa0πη′〈aη′〉) pa · p3 p1 · p2 BWa0(m2
12)F(ma), (A.49)

MS(Kπ) = − γκKπ√
2

fπ
fa

(γκKπ√
2
〈aπ0〉+ γκKη〈aη〉+ γκKη′〈aη′〉

)
(A.50)

× pa · p1 p2 · p3
|ABaBar|eiφBaBar

(√
m2

23

)
mK∗0 (1430)ΓK∗0 (1430)

F(ma) + {1↔ 2},

Mf2 = − 1

2
g2
f2ππ

fπ
fa
〈aπ0〉BWf2(m2

12)M̂f2Θ
[
m2

12 − (mf2 − Γf2)2
]
F(ma). (A.51)

The above amplitudes differ from those for K0K
0
π0 only in some (important) signs. The

symmetry factor is S = 1.

23Using the PDG values of the K∗0 (1430) mass, total width and branching ratios [70] we may extract

|γK∗0 (1430)Kπ| = 4.2 GeV−1 and |γK∗0 (1430)Kη| = 2.1 GeV−1, to be compared with γκKπ = −5.02 GeV−1 and

γκKη = −0.94 GeV−1 [110], but we cannot estimate γK∗0 (1430)Kη′ which is large for κ, γκKη′ = −9.68 GeV−1.

Therefore we use the κ couplings.
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A.10 a→ K+K
0
π−,K−K0π+

In this channel we haveM =MVMD+Ma0 +MS(Kπ), where the vector meson contribution

includes ρ± exchange in addition to diagrams with K∗. Focusing on K+K
0
π− we find

MVMD =
{
− g2

√
2

fπ
fa
〈aπ0〉(m2

13 −m2
23)BWρ(m

2
12) (A.52)

+
g2

√
2

fπ
fa

(
2√
6
〈aη〉 − 1

2
√

3
〈aη′〉+ 1

2〈aπ0〉
)[
m2

12 −m2
13 −

(m2
a −m2

K)(m2
K −m2

π)

m2
K∗

]
BWK∗(m

2
23)

+
g2

√
2

fπ
fa

(
2√
6
〈aη〉 − 1

2
√

3
〈aη′〉 − 1

2〈aπ0〉
)[
m2

12 −m2
23 −

(m2
a −m2

K)(m2
K −m2

π)

m2
K∗

]
BWK∗(m

2
13)
}
FV (ma),

and

Ma0 = − γa0KK
fπ
fa

(
γa0πη〈aη〉+ γa0πη′〈aη′〉

)
pa · p3 p1 · p2 BWa0(m2

12)F(ma), (A.53)

MS(Kπ) = −
{
γκKπ

fπ
fa

(γκKπ√
2
〈aπ0〉+ γκKη〈aη〉+ γκKη′〈aη′〉

)
pa · p1 p2 · p3

|ABaBar|eiφBaBar
(√

m2
23

)
mK∗0 (1430)ΓK∗0 (1430)

+ γκKπ
fπ
fa

(
− γκKπ√

2
〈aπ0〉+ γκKη〈aη〉+ γκKη′〈aη′〉

)
pa · p2 p1 · p3

|ABaBar|eiφBaBar
(√

m2
13

)
mK∗0 (1430)ΓK∗0 (1430)

}
F(ma).

(A.54)

The symmetry factor is S = 1, and for the conjugate channel we have Γ(a→ K−K0π+) =

Γ(a→ K+K
0
π−).

A.11 a→ ωω, φφ,K∗+K∗−,K∗0K
∗0

Since these vector resonances are narrow we take the two-body approximation, finding

Γ(a→ V V ) =
N2
c

1024π5

m3
a

f2
a

∣∣g2〈aV V 〉F(ma)
∣∣2 (1−

4m2
V

m2
a

)3/2
, (V = ω, φ) (A.55)

Γ(a→ K∗+K∗−) =
N2
c

2048π5

m3
a

f2
a

∣∣g2〈a{K∗+,K∗−}〉F(ma)
∣∣2 (1−

4m2
K∗

m2
a

)3/2
, (A.56)

whereas for a→ K∗0K
∗0

the trace in Eq. (A.56) is replaced with 〈a{K∗0,K∗0}〉.

A.12 a→ π+π−ω

This mode proceeds through a → (ρ0 → π+π−)ω. The spin-summed squared matrix

element is

|M|2 =
(

2gV V P
fπ
fa
gρππ

)2 ∣∣〈aρ0ω〉BWρ(m
2
12)F(ma)

∣∣2 (A.57)

×
{
m2

12

[
(m2

13 −m2
π −m2

ω)(m2
23 −m2

π −m2
ω)−m2

12m
2
ω + 4m2

πm
2
ω

]
−m2

π(m2
a −m2

12 −m2
ω)2
}
,

yielding the decay width

Γ(a→ π+π−ω) =
1

2Sma

∫
|M|2dΦ3 (A.58)

with S = 1. The four-body decay a→ ρρ→ 4π is neglected.
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A.13 Comparison with previous studies

The main predecessor in the study of light ALP hadronic decays is Ref. [24], with which our

analysis shares several important aspects. In particular, we adopt their choice of vertex

form factors in Eq. (A.19) to suppress the resonance exchange amplitudes at large ma.

There are, however, some major differences that we wish to summarize here:

• The key distinction is that, as we consider scenarios where the couplings to SM

fermions dominate, in general the ALP has a non-trivial U(3) representation for all

masses up to ≈ 3 GeV (where we match to perturbative QCD). By contrast, Ref. [24]

focused on the case where the coupling to gluons dominates, therefore Cu = Cd = Cs
was assumed for ma & 1 GeV. The nontrivial U(3) representation of ALPs with

mass above 1 GeV implies that here the a → P (V → PP ) decays are in general

unsuppressed and play a crucial role. This is clearly demonstrated by our benchmark

model cf = T 3
Lf , where a → π±(ρ∓ → π∓π0) dominates not only the a → π+π−π0

amplitude, but also the total ALP width for ma & 1 GeV, as shown in Fig. 1. This is

a consequence of the sizable ALP mixing with π0 and the strong coupling gV ππ ≈ 6.

Other effects of the nontrivial U(3) charges include strong relative suppressions for

certain channels, such as e.g., Γ3π0 � Γπ+π−π0 and ΓK∗+K∗− � Γ
K∗0K

∗0 (see Fig. 1).

• We do not assume U(3) invariance to determine the scalar nonet contributions to a→
3P decays, as the results of Ref. [110] show this to be a rather poor approximation.

Instead, we make use of all the couplings fitted to data in Ref. [110], taking into

account all relevant a -P mixings. As a result, our amplitudes for scalar mediation

agree in kinematic structure with Ref. [24], but differ in the values of the couplings.

• For the tensor meson f2 we assume U(3) invariance with f2 = diag (1, 1, 0)/2 and

determine the gf2ππ coupling from data, as in Ref. [24]. However, we differ from that

reference in that we use the unitary gauge propagator for the massive spin-2 field,

leading to corrections to the f2 contribution to a→ 3P amplitudes. In addition, we

fix the coefficient of the gµν piece in the ∂Σ†∂Σf2 interaction (this piece does not

enter the calculation of on-shell f2 → ππ, so its coefficient has to be fixed from other

considerations) to the value corresponding to f2 coupled to the energy-momentum

tensor [113], see Eq. (A.26). Finally, we turn off the f2 exchange amplitudes for

m2
ij < (mf2−Γf2)2, to avoid unphysical contributions to the O(p4) terms in the chiral

Lagrangian. The impact of different prescriptions for the f2 couplings and propagator

is shown in the left panel of Fig. 8, considering for illustration the a→ π+π−π0 decay.

• Other differences compared to Ref. [24] are described above for each process. These

include a different treatment – with several new contributions – for a→ π+π−γ and

the addition of further decay channels such as a→ ηηπ0 and a→ (ρ0 → π+π−)ω.

The ALP lifetime for the scenario with universal couplings to fermions, derived from the

methods of Ref. [24], has also appeared before in the literature [71]. In the right panel of

Fig. 8 we compare it to our determination for cf = T 3
Lf . While the results are qualitatively

compatible, important quantitative differences appear for ma ∼ mπ and in the region

mη . ma . 2mc.
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Figure 8: (Left) comparison of different treatments of the f2 exchange. For all curves the

amplitude is given only by Eq. (A.28) with cf = T 3
Lf , but different prescriptions for the f2

couplings and propagator lead to different expressions for M̂f2 . In solid orange, the choice

made in this work: f2 couples to the energy-momentum tensor and has a unitary gauge

propagator, leading to Eq. (A.29). In dotted blue (dashed purple), alternative versions

where the coefficient of the gµν piece in Eq. (A.26) is set to −1/4 (0), still with unitary

gauge propagator. In dot-dashed green, the version used in Ref. [24] where the propagator

has the Landau gauge expression, i.e. in Eq. (A.30) one replaces m2
f2
→ k2. For this

choice, which does not seem justified, the result is independent of the coefficient of the

gµν piece in the coupling. (Right) total lifetime obtained from our calculation with ALP-

fermion couplings proportional to weak isospin, compared to the lifetime for universal

couplings [71].

B Chiral perturbation theory for dark pions

At energies below the scale of resonances, the dark pions are described using ChPT. To

lowest order for N = 2,

L(2)
π̂ ⊃

f2
π̂

4
Tr[(DµU)†DµU ] +

B̂0f
2
π̂

2
Tr[Um̂†ψ′ + m̂ψ′U

†] , (B.1)

where U is the pion matrix transforming as U → LUR† under SU(2)L × SU(2)R, m̂ψ′ is

the generalized quark mass matrix containing also the interactions with the Higgs, and B̂0

is a non-perturbative constant that determines the dark pion masses,

U = exp

(
i
σaπ̂

a

fπ̂

)
, m̂ψ′ = mψ′ −Bh , m2

π̂ = B̂0Tr(mψ′), (B.2)

where the form of m̂ψ′ follows from Eq. (3.13). According to Eq. (3.3), the covariant

derivative of U takes the form

DµU = ∂µU − i
gZ
2

(AU − UÃ)Zµ . (B.3)

The above equations allow us to derive, in particular, the linear mixing between the dark

pions and the Z, L(2)
π̂ ⊃ −gZfπ̂Tr[σa(A − Ã)]∂µπ̂aZµ/4, and the linear mixing between
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the dark pions and the h, L(2)
π̂ ⊃ B̂0fπ̂Tr[iσa(B −B†)]π̂ah/2, both of which are of course

consistent with the current algebra results given in Section 3. If SU(2)V is exact and

therefore A, Ã,B ∝ 12, all interactions of the dark pions with the Z in Eq. (B.1) vanish.

For the single -Z terms this is a consequence of Tr(U †∂µU) = 0, valid for any N (see e.g.,

Ref. [117]).
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[92] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An introduction

to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [1410.3012].

[93] D. Buarque Franzosi, G. Cacciapaglia, X. Cid Vidal, G. Ferretti, T. Flacke and

C. Vázquez Sierra, Exploring new possibilities to discover a light pseudo-scalar at LHCb,

2106.12615.

[94] Y. Gershtein and S. Knapen, Trigger strategy for displaced muon pairs following the CMS

phase II upgrades, Phys. Rev. D 101 (2020) 032003 [1907.00007].

[95] ATLAS collaboration, Search for light long-lived neutral particles produced in pp collisions

at
√
s = 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS

detector, Eur. Phys. J. C 80 (2020) 450 [1909.01246].

– 50 –

https://doi.org/10.1007/JHEP03(2021)058
https://arxiv.org/abs/2011.11329
https://doi.org/10.1103/PhysRevLett.122.021802
https://arxiv.org/abs/1810.09655
https://doi.org/10.1016/S0370-2693(97)00210-4
https://doi.org/10.1016/S0370-2693(97)00210-4
https://arxiv.org/abs/hep-ph/9701313
https://doi.org/10.1016/j.physletb.2017.03.029
https://arxiv.org/abs/1612.04723
https://doi.org/10.1103/PhysRevD.79.092004
https://arxiv.org/abs/0903.0030
https://doi.org/10.1007/JHEP02(2019)179
https://doi.org/10.1007/JHEP02(2019)179
https://arxiv.org/abs/1810.10069
https://doi.org/10.1103/PhysRevD.97.095033
https://arxiv.org/abs/1708.05389
https://arxiv.org/abs/2105.12668
https://doi.org/10.1007/JHEP10(2020)156
https://arxiv.org/abs/2007.03923
https://doi.org/10.1103/PhysRevLett.115.171804
https://arxiv.org/abs/1503.00009
https://doi.org/10.1007/JHEP11(2017)196
https://arxiv.org/abs/1707.05326
https://doi.org/10.1007/JHEP09(2020)118
https://doi.org/10.1007/JHEP09(2020)118
https://arxiv.org/abs/2004.00631
https://doi.org/10.1103/PhysRevD.104.035019
https://doi.org/10.1103/PhysRevD.104.035019
https://arxiv.org/abs/2103.08620
https://doi.org/10.1007/JHEP09(2010)105
https://doi.org/10.1007/JHEP09(2010)105
https://arxiv.org/abs/1006.2911
https://doi.org/10.1007/JHEP04(2011)091
https://arxiv.org/abs/1102.3795
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://arxiv.org/abs/2106.12615
https://doi.org/10.1103/PhysRevD.101.032003
https://arxiv.org/abs/1907.00007
https://doi.org/10.1140/epjc/s10052-020-7997-4
https://arxiv.org/abs/1909.01246


[96] ATLAS collaboration, Search for events with a pair of displaced vertices from long-lived

neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp

collisions at
√
s = 13 TeV, ATLAS-CONF-2021-032.

[97] CMS collaboration, Search for long-lived particles decaying in the CMS endcap muon

detectors in proton-proton collisions at
√
s = 13 TeV, 2107.04838.

[98] ATLAS collaboration, Search for charginos and neutralinos in final states with two boosted

hadronically decaying bosons and missing transverse momentum in pp collisions at
√
s = 13

TeV with the ATLAS detector, 2108.07586.

[99] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Parton distributions for the LHC,

Eur. Phys. J. C 63 (2009) 189 [0901.0002].

[100] H. Mies, C. Scherb and P. Schwaller, Collider constraints on dark mediators, JHEP 04

(2021) 049 [2011.13990].

[101] M. Bauer, M. Neubert and A. Thamm, Collider Probes of Axion-Like Particles, JHEP 12

(2017) 044 [1708.00443].

[102] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, The Low-Energy Effective

Theory of Axions and ALPs, JHEP 04 (2021) 063 [2012.12272].

[103] H. Georgi, D. B. Kaplan and L. Randall, Manifesting the invisible axion at low energies,

Phys. Lett. B 169 (1986) 73.

[104] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Consistent Treatment of

Axions in the Weak Chiral Lagrangian, Phys. Rev. Lett. 127 (2021) 081803 [2102.13112].

[105] T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawaki, Nonabelian Anomaly and

Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries, Prog. Theor.

Phys. 73 (1985) 926.

[106] K. Kawarabayashi and M. Suzuki, Partially conserved axial vector current and the decays of

vector mesons, Phys. Rev. Lett. 16 (1966) 255.

[107] Riazuddin and Fayyazuddin, Algebra of current components and decay widths of ρ and K∗

mesons, Phys. Rev. 147 (1966) 1071.

[108] A. Carmona, C. Scherb and P. Schwaller, Charming ALPs, JHEP 08 (2021) 121

[2101.07803].

[109] C. Picciotto, Analysis of η,KL → π+π−γ using chiral models, Phys. Rev. D 45 (1992) 1569.

[110] A. H. Fariborz and J. Schechter, η′ → ηππ decay as a probe of a possible lowest lying scalar

nonet, Phys. Rev. D 60 (1999) 034002 [hep-ph/9902238].

[111] M. Suzuki, Tensor meson dominance: phenomenology of the f2 meson, Phys. Rev. D 47

(1993) 1043.

[112] T. Han, J. D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra

dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350].

[113] E. Katz, A. Lewandowski and M. D. Schwartz, Tensor mesons in AdS/QCD, Phys. Rev. D

74 (2006) 086004 [hep-ph/0510388].

[114] G. Ecker and C. Zauner, Tensor meson exchange at low energies, Eur. Phys. J. C 52

(2007) 315 [0705.0624].

– 51 –

https://cds.cern.ch/record/2777238
https://arxiv.org/abs/2107.04838
https://arxiv.org/abs/2108.07586
https://doi.org/10.1140/epjc/s10052-009-1072-5
https://arxiv.org/abs/0901.0002
https://doi.org/10.1007/JHEP04(2021)049
https://doi.org/10.1007/JHEP04(2021)049
https://arxiv.org/abs/2011.13990
https://doi.org/10.1007/JHEP12(2017)044
https://doi.org/10.1007/JHEP12(2017)044
https://arxiv.org/abs/1708.00443
https://doi.org/10.1007/JHEP04(2021)063
https://arxiv.org/abs/2012.12272
https://doi.org/10.1016/0370-2693(86)90688-X
https://doi.org/10.1103/PhysRevLett.127.081803
https://arxiv.org/abs/2102.13112
https://doi.org/10.1143/PTP.73.926
https://doi.org/10.1143/PTP.73.926
https://doi.org/10.1103/PhysRevLett.16.255
https://doi.org/10.1103/PhysRev.147.1071
https://doi.org/10.1007/JHEP08(2021)121
https://arxiv.org/abs/2101.07803
https://doi.org/10.1103/PhysRevD.45.1569
https://doi.org/10.1103/PhysRevD.60.034002
https://arxiv.org/abs/hep-ph/9902238
https://doi.org/10.1103/PhysRevD.47.1043
https://doi.org/10.1103/PhysRevD.47.1043
https://doi.org/10.1103/PhysRevD.59.105006
https://arxiv.org/abs/hep-ph/9811350
https://doi.org/10.1103/PhysRevD.74.086004
https://doi.org/10.1103/PhysRevD.74.086004
https://arxiv.org/abs/hep-ph/0510388
https://doi.org/10.1140/epjc/s10052-007-0372-x
https://doi.org/10.1140/epjc/s10052-007-0372-x
https://arxiv.org/abs/0705.0624


[115] BaBar collaboration, Measurement of the I=1/2 Kπ S-wave amplitude from Dalitz plot

analyses of ηc → KKπ in two-photon interactions, Phys. Rev. D 93 (2016) 012005

[1511.02310].

[116] BaBar collaboration, Dalitz plot analysis of ηc → K+K−η and ηc → K+K−π0 in

two-photon interactions, Phys. Rev. D 89 (2014) 112004 [1403.7051].

[117] S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003) 277

[hep-ph/0210398].

– 52 –

https://doi.org/10.1103/PhysRevD.93.012005
https://arxiv.org/abs/1511.02310
https://doi.org/10.1103/PhysRevD.89.112004
https://arxiv.org/abs/1403.7051
https://arxiv.org/abs/hep-ph/0210398

	1 Introduction and the model
	2 Effective theory for dark quarks
	2.1 Constraints from Z and Higgs invisible decays
	2.2 Indirect constraints

	3 Effective theory for dark hadrons
	4 Benchmark scenarios for dark pions
	4.1 Scenario 1: p
	4.2 Scenario 2: exact U(1) 
	4.3 Scenario 3: exact CP

	5 FCNC meson decays
	5.1 Constraints and projected sensitivity

	6 Z-initiated, muon-rich dark showers at the LHC
	6.1 LHCb sensitivity
	6.2 ATLAS and CMS prospects

	7 Probing the ultraviolet completion
	8 Conclusions
	A Decays of a light ALP coupled to Standard Model fermions
	A.1 a
	A.2 a+ - 
	A.3 a+ - 0
	A.4 a30
	A.5 a 0 0 , + - 
	A.6 a 0 0 ', + - '
	A.7 a0
	A.8 aK0 K0 0
	A.9 aK+ K- 0
	A.10 aK+ K0 -, K- K0 +
	A.11 a, , K+ K-, K0 K0
	A.12 a+ - 
	A.13 Comparison with previous studies

	B Chiral perturbation theory for dark pions

