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Tests of lepton universality in B0 → K0
Sl

þl− and Bþ → K�þlþl− decays where l is either an electron
or a muon are presented. The differential branching fractions of B0 → K0

Se
þe− and Bþ → K�þeþe− decays

are measured in intervals of the dilepton invariant mass squared. The measurements are performed using
proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity
of 9 fb−1 . The results are consistent with the standard model and previous tests of lepton universality in
related decay modes. The first observation of B0 → K0

Se
þe− and Bþ → K�þeþe− decays is reported.
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The B0 → K0
Sl

þl− and Bþ → K�þlþl− decays, where
l refers to either an electron or a muon, are flavor-changing
neutral current (FCNC) transitions involving the trans-
formation of a beauty quark into a strange quark [1]. These
decays proceed via higher order electroweak processes in
the standard model (SM) due to the absence of first order
FCNC transitions, making them highly suppressed.
Therefore, these decays may receive significant contribu-
tions from new quantum fields that lie beyond the standard
model (BSM) and, hence, are promising laboratories for
new physics (NP) searches.
In recent years, studies of similar b → slþl− transitions,

most prominently Bþ → Kþlþl− and B0 → K�0lþl−

decays, have revealed tensions with the SM predictions.
Deviations have been seen in ratios of branching fractions

RH ≡
R q2max

q2min

dBðB→Hμþμ−Þ
dq2 dq2R q2max

q2min

dBðB→Heþe−Þ
dq2 dq2

; ð1Þ

where B denotes a Bþ or a B0 meson, H is either a K or a
K� meson, and q2 is the dilepton invariant mass squared. In
the SM, the charged leptons have identical interaction
strengths, which is referred to as lepton universality. The
only exception is their interaction with the Higgs field,
which determines their differing masses. Therefore, these
ratios are predicted to be very close to unity [2], with
corrections from QED up to Oð10−2Þ [3,4] and further

small corrections due to the muon-electron mass difference.
Furthermore, these ratios benefit from precise cancellation
of the hadronic uncertainties that affect predictions of the
branching fractions and angular observables, which affect
the ratios at Oð10−4Þ [5]. Therefore, significant deviation
from unity in such ratios would constitute unambiguous
evidence of BSM physics.
The ratio RK�0 , measured by the LHCb collaboration

using the data collected in the q2 regions 0.045 < q2 <
1.1 GeV2=c4 and 1.1 < q2 < 6.0 GeV2=c4 [6], is in ten-
sion with the SM predictions at 2.2–2.4 and 2.4–2.5
standard deviations (σ), respectively, where the ranges
are due to the use of different standard model predictions.
A measurement of RKþ performed in the region 1.1 < q2 <
6.0 GeV2=c4 deviates from the SM by 3.1 standard
deviations [7]. The analogous ratio measured using Λ0

b →
pK−lþl− decays, RpK , is consistent with the SM within 1
standard deviation [8]. All four measurements show a
deficit of b → sμþμ− decays with respect to b → seþe−
decays.
In addition, angular observables [9–20] and branching

fractions [21–24] of b → sμþμ− decays have been mea-
sured, with several in tension with the SM. However, the
extent to which they may be affected by residual quantum
chromodynamics contributions remains uncertain [25–35].
Intriguingly, it is possible to account for all these

anomalies simultaneously through the modification of
the b → s coupling in a model-independent way [36–
47]. Such a modification can be generated by the presence
of a heavy neutral boson [48–64] or a leptoquark [65–91],
as well as in models with supersymmetry [92–94], extra
dimensions [95], and extended Higgs sectors [96–100].
The B0 → K0

Sl
þl− and Bþ → K�þlþl− decays are the

isospin partners of Bþ → Kþlþl− and B0 → K�0lþl−

decays and are expected to be affected by the same NP
contributions. Therefore, testing lepton universality by
measuring the ratios RK0

S
and RK�þ can provide important

*Full author list given at the end of the article. This paper is
dedicated to the memory of our friend and colleague Sheldon
Stone.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 128, 191802 (2022)
Editors' Suggestion

0031-9007=22=128(19)=191802(15) 191802-1 © 2022 CERN, for the LHCb Collaboration

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.191802&domain=pdf&date_stamp=2022-05-11
https://doi.org/10.1103/PhysRevLett.128.191802
https://doi.org/10.1103/PhysRevLett.128.191802
https://doi.org/10.1103/PhysRevLett.128.191802
https://doi.org/10.1103/PhysRevLett.128.191802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


additional evidence for or against NP. However, while these
decays have similar branching fractions to their isospin
partners, Oð10−6Þ to Oð10−7Þ, they suffer from a reduced
experimental efficiency at LHCb due to the presence of a
long-lived K0

S meson in the final state. These ratios have
previously been measured by the BABAR [101] and
Belle [102,103] collaborations. The differential branch-
ing fractions of the muon modes, B0 → K0

Sμ
þμ− and

Bþ → K�þμþμ−, were found to be lower although still
consistent with predictions at low q2 in a measurement
performed by the LHCb collaboration [23]. No single
experiment has unambiguously observed the electron decay
modes to date.
In this Letter, measurements of the ratios RK0

S
and RK�þ

and the differential branching fractions of B0 → K0
Se

þe−

and Bþ → K�þeþe− decays are presented. The measure-
ments are performed using proton-proton (pp) collision
data corresponding to an integrated luminosity of 9 fb−1

recorded by the LHCb experiment in 2011, 2012 (run 1),
and 2016–2018 (run 2) at center-of-mass energies of 7, 8,
and 13 TeV, respectively. The K0

S and K�þ mesons are
reconstructed in the πþ π− and K0

S πþ final states,
respectively. The ratio RK0

S
and the branching fraction

BðB0 → K0
Se

þe−Þ are measured in the region 1.1 < q2 <
6.0 GeV2=c4, while RK�þ and BðBþ → K�þeþe−Þ are
determined in the range 0.045 < q2 < 6.0 GeV2=c4. A
wider range is used in the case of the Bþ decay, the
differential branching fraction of which is enhanced at low
q2 by the photon pole, since the K�þ is a vector meson.
Splitting the q2 range into two bins at 1.1 GeV2=c4, as was
done in the RK�0 measurement, is not possible due to the
limited data sample.
The analysis is designed to minimize systematic uncer-

tainties, particularly those associated with differences in the
detector response between electrons and muons. The ratios
and differential branching fractions are normalized to the
control modes, B0 → J=ψðeþe−ÞK0

S, B
0 → J=ψðμþμ−ÞK0

S,
Bþ → J=ψðeþe−ÞK�þ, and Bþ → J=ψðμþμ−ÞK�þ, the
branching fractions of which are known to respect lepton
universality to an excellent approximation [104] and are
taken to be equal for the muon and the electron decays of a
given Bmeson. The parameters R−1

K0
S
and R−1

K�þ are measured

as double ratios
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Kð�Þ ¼ BðB → Kð�Þeþe−Þ
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¼
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Nee
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�
=
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Nμμ
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�
; ð2Þ

where Kð�Þ is either a K0
S or K

�þ meson, N is the measured
yield, and ϵ is the total efficiency for signal (sig) and control
(con) decays. The inverse ratio R−1

Kð�Þ is measured as its

uncertainty better represents a Gaussian distribution due to
the low yield of the electron decay mode. Many sources of
systematic bias cancel in the ratio between the signal and
control modes. The differential branching fractions of the
signal electron modes are measured as

dBðB → Kð�Þeþe−Þ
dq2

¼ Nee
sig

ϵeesig

ϵeecon
Nee

con

B½B → J=ψðeþe−ÞKð�Þ�
q2max − q2min

:

ð3Þ

The LHCb detector is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, described
in detail in Refs. [105,106]. The simulated events used in
this analysis are produced with the software described
in Refs. [107–111]. In particular, final-state radiation is
simulated using PHOTOS [112].
The candidates used in the analysis must first pass a

hardware trigger, which requires the presence of at least one
muon with high transverse momentum, pT , in the case of
B → Kð�Þμþμ− candidates, or in the case of B → Kð�Þeþe−
candidates, at least one electron or hadron with large energy
deposits in the electromagnetic calorimeter (ECAL) or
hadronic calorimeter, respectively. Further B → Kð�Þeþe−
candidates are selected where the hardware trigger require-
ments are satisfied by objects from the underlying pp
collision that do not form part of the reconstructed
candidate. Candidates are then required to pass a software
trigger, the first stage of which requires the presence of at
least one track with high pT that is well separated from the
primary pp interaction vertex (PV), followed by a second
stage that imposes topological requirements on the final-
state tracks to determine whether they are consistent with
the decay of a b hadron.
Muons are initially identified from tracks that penetrate

the calorimeters and the iron absorber plates of the muon
system and are further separated from hadrons (primarily
pions and kaons) by a multivariate classifier that combines
information from the other subdetectors. Electrons are
identified from tracks with an associated deposit of energy
in the ECAL, and separated from hadrons using a similar
multivariate classifier.
Because of their small mass, electrons lose energy via

bremsstrahlung radiation as they traverse the detector
material, leading to a degradation in their energy and
momentum resolution. A bremsstrahlung recovery pro-
cedure is used to identify energy deposits in the ECAL that
are consistent with photons radiated from electron candi-
date tracks upstream of the magnet. This is done by
extrapolating the direction of the electron track before
the magnet to a position in the ECAL and then searching
for energy deposits without associated tracks at that
location. When such a deposit is identified, its energy is
used to correct the electron’s energy and momentum. This
leads to an improvement in the B candidate invariant mass
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resolution, although the resolution for electronic modes
remains larger than for the equivalent muonic channels.
Candidate K0

S mesons are reconstructed from two oppo-
sitely charged tracks identified as pions, using either a pair
of tracks that originate in the vertex locator (long tracks) or
two tracks that originate downstream of the vertex locator
in the first silicon-strip detector (downstream tracks).
Around a third of reconstructed K0

S mesons are formed
from long tracks. Candidate B0 → K0

Sl
þl− decays are

formed from two oppositely charged tracks identified as
either muons or electrons combined with a candidate K0

S
meson. In the case of Bþ → K�þlþl− candidates, the
additional charged pion is required to result in aK0

Sπ
þ mass

within 300 MeV=c2 of the K�þ mass [104]. An estimated
S-wave contribution in this K�þ mass window of approx-
imately 22% based on previous studies of B0 →
Kþπ−μþμ− decays by the LHCb collaboration [21] is
included in the analysis. When measuring the Bþ →
K�þeþe− differential branching fraction, the Bþ →
J=ψðeþe−ÞK�þ control mode is selected with a K0

Sπ
þ

mass in the range 792–992 MeV=c2 in order to be con-
sistent with the selection used in previous measurements of
BðBþ → J=ψK�þÞ [113,114], the world average of which
is taken as external input [104]. Background is further
suppressed by requirements on the quality of the B decay
vertex, the flight distance significance of the B candidate,
how consistent the B candidate is with having originated at
the PV, the invariant masses of the K0

S, K�þ, and B
candidates, and the pT and separation from the PV of
the final-state tracks. In an additional step, the invariant
masses of B candidates are recalculated with the K0

S meson
mass constrained to its measured value [104], leading to an
improvement in the B mass resolution.
Various requirements on decay kinematics, decay time,

and particle identification (PID) information are used to
reject potential background originating from misidentified
b-hadron (Hb) decays. Background to B0 → K0

Sl
þl−

decays includes Hb → hh0lþl− decays (where h refers
to a hadron), Λ0

b → Λlþl− and B0 → D−ðK0
SXÞY decays,

where both X and Y represent either an electron-neutrino
pair or a pion. Background to Bþ → K�þlþl− decays
includes B0 → K0

Sl
þl− decays combined with a random

additional pion, Bþ → J=ψðlþl−ÞK�þ and Bþ →
ψð2SÞðlþl−ÞK�þ decays where the companion pion from
the K�þ is swapped with a lepton from the J=ψ or ψð2SÞ
meson, Hb → hh0πlþl− decays, decays with Λ baryons in
the final state, and Bþ → D̄0ðK0

Sπ
þXÞY decays. These

selection requirements reduce all these background sources
to levels that have a negligible (subpercent) effect on the
measured signal yields. The B0 → K0

Sπ
þπ− and Bþ →

K�þπþπ− decays, where the pions are misidentified as
electrons, are significantly reduced by the electron particle
identification requirements and included as components in
the mass fits.

Multivariate classifiers based on boosted decision tree
(BDT) algorithms [115] are used to suppress background
from coincidental track combinations (combinatorial back-
ground). Separate classifiers are trained for each signal
decay mode, the two data-taking periods (run 1, run 2) and
whether the K0

S meson was reconstructed from long or
downstream tracks. Each classifier is trained on a signal
sample of simulated B → Kð�Þlþl− decays, and a back-
ground sample taken from data with a reconstructed
invariant Bmass greater than 5500 MeV=c2 and q2 regions
consistent with either a J=ψ or ψð2SÞ meson removed. The
classifiers combine information on the B candidate’s fit
quality, distance of closest approach to the PV, flight
distance, pT and decay time, the decay time of the dilepton
pair, the pT and decay time of the K0

S candidate, how
isolated the B, dilepton, and K0

S candidates are from other
tracks in the event, and the distance of closest approach
to the PV of long tracks forming the K0

S candidate.
Requirements on the classifier outputs are optimized to
provide the maximum signal significance, defined as
S=

ffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S is the expected signal calculated from

the control mode yield in data, the signal-to-control mode
efficiency ratio from simulation and the signal-to-control
mode branching fraction ratio [104], and B is the back-
ground yield in the signal region, extrapolated from a fit to
the data mass sidebands.
The muon and electron control modes are selected in the

ranges of 8.98 < q2 < 10.21 GeV2=c4 and 6.0 < q2 <
11.0 GeV2=c4, respectively, and the spectra of their invari-
ant masses mðJ=ψK0

SÞ and mðJ=ψK0
Sπ

þÞ are shown in
Fig. 1. Their yields are determined using fits to the B
candidate mass, calculated with the masses of the K0

S and
J=ψ mesons constrained to their measured values [104],
improving the resolution. The mass distribution of each
control mode is modeled with a sum of two Crystal Ball
functions [116] with common mean and opposite-side
power law tails (referred to as a double Crystal Ball or
DCB), with parameters fixed to values obtained from fits to
simulated events. The muon control modes are modeled
using a single DCB function, while the electron control
modes are modeled using a sum of three DCB functions,
where the shape of each component and their relative
fractions are determined from fits to simulation in three
different categories according to the number of brems-
strahlung photons added to the candidate’s electrons: 0, 1,
or ≥ 2. In the fit to data, shifts in the DCB means and
widths are allowed to vary freely with respect to those
obtained from simulation in order to accommodate data-
simulation differences in the mass scale and resolution.
Combinatorial background is modeled with an exponential
function. In the case of the B0 control modes, B0

s →
J=ψðlþl−ÞK0

S decays are modeled with the B0 DCB
function with its mean offset by the measured mB0

s
−

mB0 mass difference [104] and with its yield allowed to
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vary freely. The lower limit of the mass range excludes
partially reconstructed background from higher K� reso-
nances, which are not modeled. The structures visible in the
range 5400 MeV=c2 < mðJ=ψK0

SÞ < 5500 MeV=c2 are
due to small amounts of residual contamination from Λ0

b
decays, which have a negligible effect on the measured
yields of B0 → J=ψðμþμ−ÞK0

S and B0 → J=ψðeþe−ÞK0
S

decays. The results of the fit are shown in Fig. 1 and the
yields of B0 → J=ψðμþμ−ÞK0

S, B0 → J=ψðeþe−ÞK0
S,

Bþ → J=ψðμþμ−ÞK�þ, and Bþ → J=ψðeþe−ÞK�þ de-
cays are found to be 118 750� 360, 21 080� 170,
75 420� 290, and 14 330� 170, respectively.
The spectra of the invariant masses mðK0

Sμ
þμ−Þ,

mðK0
Se

þe−Þ, mðK0
Sπ

þμþμ−Þ, and mðK0
Sπ

þeþe−Þ of the
muon and electron signal modes are shown in Fig. 2. The
yields of B0 → K0

Sμ
þμ− and Bþ → K�þμþμ− decays are

determined using fits to the K0
Sμ

þμ− and K0
Sπ

þμþμ− mass
distributions. The B0 → K0

Sμ
þμ− and Bþ → K�þμþμ−

signal decays are modeled using DCB functions where
the shape parameters are determined from fits to simula-
tion, with shifts in their means and widths taken from the
corresponding control mode fits to data. Combinatorial
background is modeled using an exponential function,
while partially reconstructed background is excluded by
the lower mass limit.

The ratios and branching fractions are determined using
fits to K0

Se
þe− and K0

Sπ
þeþe− mass spectra, with the K0

S
candidate’s mass constrained to its measured value. The
B0 → K0

Se
þe− and Bþ → K�þeþe− signal decays are

modeled using the sum of three DCB functions, each
corresponding to different numbers of recovered brems-
strahlung photons. The DCB parameters are taken from
simulation with shifts in the means and widths taken from
the control mode fits to data without a J=ψ mass constraint.
Partially reconstructed background from higher K� reso-
nances is modeled using a DCB function with shape
parameters constrained from simulation in the B0 →
K0

Se
þe− fit, and Gaussian kernel density estimations

(KDEs) determined from simulation in the Bþ →
K�þeþe− fit, with their yields allowed to vary freely.
Leakage from the J=ψ control modes into the signal region
is modeled using KDE functions, with their yields con-
strained based on the control mode fits and the efficiency in
simulation. Residual contamination from B0 → K0

Sπ
þπ−

and Bþ → K�þπþπ− decays is modeled in each fit by a
DCB function determined from simulated events, with its
yield constrained using the control mode yields, the control
mode and background branching fractions, and the effi-
ciencies taken from simulation. Combinatorial background
is modeled with an exponential function.
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FIG. 1. Distributions of (top left) J=ψðμþμ−ÞK0
S mass, (top right) J=ψðeþe−ÞK0

S mass, (bottom left) J=ψðμþμ−ÞK0
Sπ

þ mass and
(bottom right) J=ψðeþe−ÞK0

Sπ
þ mass with the fit models used to determine the control mode yields.
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The efficiencies used in the measurements of the ratios
and differential branching fractions are calculated using
simulation, to which various corrections are applied to
improve the agreement with data. The PID efficiencies for
each channel are calculated from calibration data samples
of electrons, muons, and pions and are applied as per-
candidate weights to the simulation. Similarly, the electron
tracking efficiency is corrected using calibration samples.
The pT and pseudorapidity of the B mesons generated by
PYTHIA8 [107] and the occupancy of the underlying events
are corrected by comparing their distributions between data
and simulation using the muon control modes to calculate
per-candidate weights, which are applied to both electron
and muon samples. Similarly, the trigger efficiency is
corrected by comparing the efficiency as a function of
the pT of the muons, the transverse energy of the electrons
and pions, and the pT of the Bmeson between control mode
data and simulation. Further weights are applied to correct
any residual mismodeling of the BDT classifier response.
Finally, the simulated q2 distribution is corrected using
control mode data to account for the larger observed
resolution in data.
Multiple sources of systematic uncertainty are evaluated,

the largest of which comes from the statistical uncertainties
of the efficiencies due to the sizes of the available samples
of simulated events. These affect the R−1

Kð�Þ ratios and the
differential branching fractions at 2%–3%. The next largest
are associated with the mass fit models, in particular, the
limited size of the simulation samples used to determine the
shape parameters and the choices of models used for the
partially reconstructed and J=ψ leakage background, which
affect the observables by 1%–2%. The remaining sources
of systematic uncertainty are found to be close to or below
the 1% level. These include: the limited amount of data and
simulation used to calculate correction weights, the choices
of binning schemes used to evaluate the PID efficiency
weights and potential biases in this procedure due to
correlations in the PID response between the two electrons,
the choice of methods used to calculate the trigger
efficiency, imperfect modeling of the muon track
reconstruction efficiency, residual mismodeling of the
BDT classifier response in simulation, residual bias in
the fitting procedure evaluated using pseudoexperiments,
and residual contamination from B0 → D−ðK0

SXÞY and
Bþ → D̄0ðK0

Sπ
þXÞY decays. Other sources of residual

background contamination were found to have a negligible
effect on the measurements. All systematic uncertainties, as
well as the statistical precision of the efficiencies and
various parameters used in the maximum likelihood fits, are
included as Gaussian constraints in the fit. Finally, the
statistical precision on each observable is scaled by factors
determined from pseudoexperiments (with values in the
range 1.01–1.02), in order to guarantee proper coverage.
A number of checks are performed to ensure

that efficiencies are accurately estimated. The ratios

R−1
ψð2SÞKð�Þ , where the signal modes in Eq. (2) are substituted

for B → ψð2SÞðμþμ−ÞKð�Þ and B → ψð2SÞðeþe−ÞKð�Þ

decays, selected in the q2 ranges ½12.86; 14.33� GeV2=c4

and ½11.0; 15.0� GeV2=c4, respectively, are found
to be R−1

ψð2SÞK0
S
¼ 1.014� 0.030ðstatÞ � 0.020ðsystÞ and

R−1
ψð2SÞK�þ ¼ 1.017� 0.045ðstatÞ � 0.023ðsystÞ, consistent

with unity as expected due to lepton universality in J=ψ
and ψð2SÞ decays [7]. Additionally, the single ratios

r−1
J=ψKð�Þ ≡ B½B → J=ψðeþe−ÞKð�Þ�

B½B → J=ψðμþμ−ÞKð�Þ� ¼
Nee

con

Nμμ
con

ϵμμcon
ϵeecon

; ð4Þ

which do not benefit from cancellation of systematic biases
between signal and control modes and, therefore, are a
stringent check of the efficiencies, are found to be r−1J=ψK0

S
¼

0.977� 0.008ðstatÞ � 0.027ðsystÞ and r−1J=ψK�þ ¼ 0.965�
0.011ðstatÞ � 0.032ðsystÞ, again consistent with unity in
both cases. Furthermore, differential measurements of
rJ=ψKð�Þ as functions of a range of variables that are
differently distributed in the signal and control decays
are performed. The most powerful of these tests measures
rJ=ψKð�Þ as a function of the response of a BDT classifier
trained on simulated candidates to distinguish signal and
control decays. All these differential distributions are found
to be flat within the statistical precision, providing further
confidence that the yields and efficiencies are well esti-
mated [117].
In order to avoid experimenters bias, the results of the

analysis and the electron signal mode mass spectra were not
examined until the full procedure had been finalized and
checks had been performed to ensure that the muon signal
mode branching fractions were in agreement between the
different data-taking years and, also, with the results of the
previous measurements made by LHCb [23]. The fits to the
B0 → K0

Se
þe−, B0 → K0

Sμ
þμ−, Bþ → K�þeþe− and Bþ →

K�þμþμ− invariant-mass spectra are shown in Fig. 2.
The fitted yields of B0 → K0

Se
þe−, B0 → K0

Sμ
þμ−, Bþ →

K�þeþe−, and Bþ → K�þμþμ− decays are 45� 10,
155� 15, 67� 13, and 221� 17, respectively. The ratios
R−1
K0

S
and R−1

K�þ are measured to be

R−1
K0

S
¼ 1.51þ0.40

−0.35ðstatÞþ0.09
−0.04ðsystÞ;

R−1
K�þ ¼ 1.44þ0.32

−0.29ðstatÞþ0.09
−0.06ðsystÞ;

in the q2 ranges ½1.1; 6.0� GeV2=c4 and ½0.045;
6.0� GeV2=c4, respectively. These ratios are consistent
with the SM at 1.5 and 1.4 standard deviations, respec-
tively, evaluated using Wilks’ theorem [118]. To aid
comparison with other lepton-universality ratios, RK0

S
and

RK�þ are calculated by inverting the results above, yielding
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RK0
S
¼ 0.66þ0.20

−0.14ðstatÞþ0.02
−0.04ðsystÞ;

RK�þ ¼ 0.70þ0.18
−0.13ðstatÞþ0.03

−0.04ðsystÞ:

The differential branching fractions of the signal electron
decays are found to be

dBðB0 → K0eþe−Þ
dq2

¼ ½2.6� 0.6ðstatÞ � 0.1ðsystÞ� × 10−8 GeV−2c4;

dBðBþ → K�þeþe−Þ
dq2

¼ ½9.2þ1.9
−1.8ðstatÞþ0.8

−0.6ðsystÞ� × 10−8 GeV−2c4;

in the q2 ranges ½1.1; 6.0� GeV2=c4 and ½0.045;
6.0� GeV2=c4, and where the significances of the B0 →
K0

Se
þe− and Bþ → K�þeþe− decays evaluated using

Wilks’ theorem [118] are 5.3σ and 6.0σ, respectively.
Since the control mode branching fraction of B0 →
J=ψK0 decays ð8.91� 0.21Þ × 10−4 [104] is used, the
differential branching fraction of B0 → K0eþe−, instead of
B0 → K0

Se
þe−, decays is reported. A combination of the

R−1
K0

S
and R−1

K�þ measurements is performed using the FLAVIO

software package [119] to fit for a single muon-specific
Wilson coefficient CNP

9 ¼ −CNP
10 , while fixing all other

Wilson coefficients to their SM values. This scenario is
used in several existing fits to b → slþl− data, and is
specifically chosen as the ratios RKð�Þ have poor sensitivity
in discriminating between the Wilson coefficients C9 and
C10. The fit results in CNP

9 ¼ −CNP
10 ¼ −0.8þ0.4

−0.3 and a
significance of 2.0 standard deviations with respect to
the SM under this specific scenario. It should be noted
that this fit is model dependent, and the result could change
if data-driven estimates of the hadronic uncertainties
were used.
These measurements constitute the most precise tests of

lepton universality in B0 → K0
Sl

þl− and Bþ → K�þlþl−

decays to date, the most precise measurements of their
differential branching fractions at low q2, and the first
observations of B0 → K0

Se
þe− and Bþ → K�þeþe−

decays. While these measurements are individually con-
sistent with the SM, the central values exhibit the same
deficit of muonic decays relative to electronic decays as
seen in the other lepton universality tests performed by the
LHCb collaboration [6–8].

We express our gratitude to our colleagues in the CERN
accelerator departments for the excellent performance of
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FIG. 2. Distributions of (top left) K0
Sμ

þμ− and (top right) K0
Se

þe− mass with the fit models used to determine the B0 → K0
Sμ

þμ− yield
and R−1

K0
S
, and (bottom left) K0
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þμþμ− and (bottom right) K0

Sπ
þeþe− mass with the fit models used to determine the Bþ → K�þμþμ−

yield and R−1
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L. Ferreira Lopes,49 F. Ferreira Rodrigues,2 S. Ferreres Sole,32 M. Ferrillo,50 M. Ferro-Luzzi,48 S. Filippov,39 R. A. Fini,19

M. Fiorini,21,d M. Firlej,34 K. M. Fischer,63 D. S. Fitzgerald,87 C. Fitzpatrick,62 T. Fiutowski,34 A. Fkiaras,48 F. Fleuret,12

M. Fontana,13 F. Fontanelli,24,h R. Forty,48 D. Foulds-Holt,55 V. Franco Lima,60 M. Franco Sevilla,66 M. Frank,48

E. Franzoso,21 G. Frau,17 C. Frei,48 D. A. Friday,59 J. Fu,6 Q. Fuehring,15 E. Gabriel,32 G. Galati,19,i A. Gallas Torreira,46

D. Galli,20,f S. Gambetta,58,48 Y. Gan,3 M. Gandelman,2 P. Gandini,25 Y. Gao,5 M. Garau,27 L. M. Garcia Martin,56

P. Garcia Moreno,45 J. García Pardiñas,26,e B. Garcia Plana,46 F. A. Garcia Rosales,12 L. Garrido,45 C. Gaspar,48

R. E. Geertsema,32 D. Gerick,17 L. L. Gerken,15 E. Gersabeck,62 M. Gersabeck,62 T. Gershon,56 D. Gerstel,10

L. Giambastiani,28 V. Gibson,55 H. K. Giemza,36 A. L. Gilman,63 M. Giovannetti,23,g A. Gioventù,46 P. Gironella Gironell,45

C. Giugliano,21,d K. Gizdov,58 E. L. Gkougkousis,48 V. V. Gligorov,13 C. Göbel,70 E. Golobardes,85 D. Golubkov,41

A. Golutvin,61,83 A. Gomes,1,l S. Gomez Fernandez,45 F. Goncalves Abrantes,63 M. Goncerz,35 G. Gong,3 P. Gorbounov,41

I. V. Gorelov,40 C. Gotti,26 E. Govorkova,48 J. P. Grabowski,17 T. Grammatico,13 L. A. Granado Cardoso,48 E. Graugés,45

E. Graverini,49 G. Graziani,22 A. Grecu,37 L. M. Greeven,32 N. A. Grieser,4 L. Grillo,62 S. Gromov,83 B. R. Gruberg Cazon,63

C. Gu,3 M. Guarise,21 M. Guittiere,11 P. A. Günther,17 E. Gushchin,39 A. Guth,14 Y. Guz,44 T. Gys,48 T. Hadavizadeh,69

G. Haefeli,49 C. Haen,48 J. Haimberger,48 T. Halewood-leagas,60 P. M. Hamilton,66 J. P. Hammerich,60 Q. Han,7 X. Han,17

T. H. Hancock,63 E. B. Hansen,62 S. Hansmann-Menzemer,17 N. Harnew,63 T. Harrison,60 C. Hasse,48 M. Hatch,48 J. He,6,m

M. Hecker,61 K. Heijhoff,32 K. Heinicke,15 R. D. L. Henderson,69,56 A. M. Hennequin,48 K. Hennessy,60 L. Henry,48

J. Heuel,14 A. Hicheur,2 D. Hill,49 M. Hilton,62 S. E. Hollitt,15 R. Hou,7 Y. Hou,8 J. Hu,17 J. Hu,72 W. Hu,7 X. Hu,3

W. Huang,6 X. Huang,73 W. Hulsbergen,32 R. J. Hunter,56 M. Hushchyn,82 D. Hutchcroft,60 D. Hynds,32 P. Ibis,15 M. Idzik,34

D. Ilin,38 P. Ilten,65 A. Inglessi,38 A. Ishteev,83 K. Ivshin,38 R. Jacobsson,48 H. Jage,14 S. Jakobsen,48 E. Jans,32 B. K. Jashal,47

A. Jawahery,66 V. Jevtic,15 X. Jiang,4 M. John,63 D. Johnson,64 C. R. Jones,55 T. P. Jones,56 B. Jost,48 N. Jurik,48

S. H. Kalavan Kadavath,34 S. Kandybei,51 Y. Kang,3 M. Karacson,48 M. Karpov,82 J. W. Kautz,65 F. Keizer,48 D. M. Keller,68

M. Kenzie,56 T. Ketel,33 B. Khanji,15 A. Kharisova,84 S. Kholodenko,44 T. Kirn,14 V. S. Kirsebom,49 O. Kitouni,64

S. Klaver,32 N. Kleijne,29 K. Klimaszewski,36 M. R. Kmiec,36 S. Koliiev,52 A. Kondybayeva,83 A. Konoplyannikov,41

P. Kopciewicz,34 R. Kopecna,17 P. Koppenburg,32 M. Korolev,40 I. Kostiuk,32,52 O. Kot,52 S. Kotriakhova,21,38

P. Kravchenko,38 L. Kravchuk,39 R. D. Krawczyk,48 M. Kreps,56 F. Kress,61 S. Kretzschmar,14 P. Krokovny,43,k W. Krupa,34

W. Krzemien,36 J. Kubat,17 M. Kucharczyk,35 V. Kudryavtsev,43,k H. S. Kuindersma,32,33 G. J. Kunde,67 T. Kvaratskheliya,41

D. Lacarrere,48 G. Lafferty,62 A. Lai,27 A. Lampis,27 D. Lancierini,50 J. J. Lane,62 R. Lane,54 G. Lanfranchi,23

C. Langenbruch,14 J. Langer,15 O. Lantwin,83 T. Latham,56 F. Lazzari,29,n R. Le Gac,10 S. H. Lee,87 R. Lefèvre,9 A. Leflat,40
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vAlso at Università di Urbino, Urbino, Italy.

PHYSICAL REVIEW LETTERS 128, 191802 (2022)

191802-15


