Rare Charm decays at LHCb

Dominik Mitzel TU Dortmund

Jahrestreffen der LHCb Gruppen [ex FSP-meeting]

07/10/2021

• Rates (branching fractions)

$$\sim \mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right)$$

- CP Asymmetries ~ $|\mathscr{A}_{SM}||\mathscr{A}_{NP}|\sin\Delta\phi_{NP}$
- Angular distributions

B-physics: $b \to s\ell^+\ell^-$, $b \to d\ell^+\ell^-$

Angular distributions

B-physics:
$$b \to s\ell^+\ell^-$$
, $b \to d\ell^+\ell^-$

Flavour anomalies in $b \rightarrow s\ell^+\ell^-$ transitions!

• Angular distributions

• Rates (branching fractions)

$$\sim \mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right)$$

• CP Asymmetries ~ $|\mathscr{A}_{SM}||\mathscr{A}_{NP}|\sin\Delta\phi_{NP}$

B-physics:
$$b \to s\ell^+\ell^-, b \to d\ell^+\ell^-$$

Kaon-physics: $s \to d\ell^+ \ell^-$

Angular distributions

• Rates (branching fractions)

$$\sim \mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right)$$

• CP Asymmetries ~ $|\mathscr{A}_{SM}||\mathscr{A}_{NP}|\sin\Delta\phi_{NP}$

B-physics:
$$b \to s\ell^+\ell^-$$
, $b \to d\ell^+\ell^-$

Kaon-physics: $s \rightarrow d\ell^+ \ell^-$

Charm-physics: $c \rightarrow u\ell^+\ell^-$

Angular distributions

• Rates (branching fractions)

typically $D \rightarrow X\mu^+\mu^- \sim O(10^{-12})$ (**extremely suppressed**)

• CP Asymmetries

Im(V*_{cb}V_{ub}/V*_{cd}V_{ud}) ~10⁻³ Acp~0

Angular distributions

no lepton axial vector coupling **Parity conservation**

- Rates (branching fractions)
 - $D \rightarrow X|+|-up \text{ to } O(10^{-7})^*$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

• Rates (branching fractions)

 $D \rightarrow X|+|-up \text{ to } O(10^{-7})^*$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

Charm-physics: $c \rightarrow u\ell^+\ell^-$

- Rates (branching fractions)
 - $D \rightarrow XI^{+}I^{-}$ up to $O(10^{-7})^{*}$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

LQ, Z' prominent explanations for flavour anomalies

Charm-physics: $c \rightarrow u\ell^+\ell^-$

- Rates (branching fractions)
- $D \rightarrow X|+|-$ up to $O(10^{-7})^*$

- CP Asymmetries
 - CPV effects up to few %*
- Angular distributions

Modified*

Long-distance QCD effects

• $m_c \sim \Lambda_{QCD} \rightarrow$ large uncertainties coming from QCD effects

Long-distance QCD effects

- $m_c \sim \Lambda_{QCD} \rightarrow$ large uncertainties coming from QCD effects
- Often, non-perturbative long distance (resonance) dynamics dominate!

For long, rare charm has been considered as less promising! (Disclaimer: It's not)

We need to find ways to overcome (even profit from) LD contributions

$D^0 \rightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D^+_{(3)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D_{(x)}^+ \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	Σ , (φ, p, ω) ,
(s) <i>F</i>	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi V(\rightarrow ll)$	$D_{s}^{+} \rightarrow \pi^{+} \phi(\rightarrow ll)$

LFV, LNV,	BNV			FC	NC				VMD]	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi^0$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$K^{+}\pi^{-}V(-$	→ll) D	$\phi^+ \to \pi^+ \phi$	(→ II)
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \rightarrow \rho$	<i>l⁺l⁻</i>	$D^0 \rightarrow D^0 \rightarrow$	$K V(\rightarrow$	ll) D D	$K^0 \to K^- \pi$ $K^0 \to K^{*0} V$	$^{+}V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D^0 \to K^+$ $D^0 \to \phi$	κι' l ⁺ l ⁻	<i>v ¬</i>	11	D		(, ")

$D^0 \rightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D^{(3)}_{(s)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^+ \rightarrow \pi^+ \phi(\rightarrow ll)$
	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi \ V(\rightarrow ll)$	$D_s \to \pi \ \varphi(\to \pi)$

LFV, LNV,	BNV			FC	NC				VMD]	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$K^{+}\pi^{-}V(-$	→ll) D	$^+ \rightarrow \pi^+ \phi$	(→ <i>ll</i>)
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \rightarrow \rho$	<i>l</i> + <i>l</i> -	$D^0 \rightarrow D^0$	$K V \to$	ll) D ת	$K^0 \to K^- \pi$ $K^0 \to K^{*0} V$	$V^+V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D^{\circ} \rightarrow K^{\circ}$ $D^{0} \rightarrow \phi$	'K I'I I+I-	<i>D</i> →	**	D	-7 K V	(-> ")

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

$D^0 \rightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D^+_{(s)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^+ \rightarrow -^+ \mathcal{A} (\rightarrow II)$
(3)	$D^0 \rightarrow K^{*0} l^+ l^-$	$D^0 \rightarrow \phi V(\rightarrow ll)$	$D_{\rm s} \to \pi \ \varphi(\to ll)$
	$D \rightarrow K I I$		

LFV, LNV,	BNV			FC	NC				VMD]	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$				D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi^{-1}$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow$	$K^{+}\pi^{-}V(-$	→ll) D	$^+ \rightarrow \pi^+ \phi$	(→ II)
$D^0 \to X^0 \mu^+ e^-$			D^0	$\rightarrow ee$		$D^0 \to \rho$ $D^0 \to K^+$	l^+l^-	$D^0 \rightarrow D^0 \rightarrow$	$K V (\rightarrow \gamma \gamma)$	ll) D D	${}^{0} \rightarrow K^{-}\pi$ ${}^{0} \rightarrow K^{*0}V$	$f^+V(\rightarrow ll)$ $V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D \rightarrow K$ $D^0 \rightarrow \phi$	κιι l ⁺ l ⁻	2 /	//	_		

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

Very rare decays

- purely leptonic
- local regions in decay phase space of multibody decays
 reduced hadronic incertainties

$D^0 \rightarrow \mu^+ e^-$
$D^0 \rightarrow pe^-$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$

$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	
$D^+_{(s)} \rightarrow K^+ l^+ l^-$	
$D^0 \rightarrow K^- \pi^+ l^+ l^-$	
$D^0 \to K^{*0} l^+ l^-$	

$$D^{0} \rightarrow \pi^{-}\pi^{+}V(\rightarrow ll) \qquad D^{0} \rightarrow K^{*0}\gamma$$

$$D^{0} \rightarrow \rho \quad V(\rightarrow ll) \qquad D^{0} \rightarrow (\phi, \rho, \omega) \quad \gamma$$

$$D^{0} \rightarrow K^{+}K^{-}V(\rightarrow ll) \qquad D^{s} \rightarrow \pi^{+}\phi(\rightarrow ll)$$

$$D^{0} \rightarrow \phi \quad V(\rightarrow ll) \qquad D^{s}_{s} \rightarrow \pi^{+}\phi(\rightarrow ll)$$

LFV, LNV,	BNV			FC	NC				VMD	F	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$			D^0	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi^{-1}$ $D^{0} \to \rho^{-1}$ $D^{0} \to K^{+1}$	$\pi^{+}l^{+}l^{-}$ $l^{+}l^{-}$ $\kappa^{-}l^{+}l^{-}$	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$\frac{K^{+}\pi^{-}V(-)}{\overline{K}^{*0}}V(-)$	$\rightarrow II) D^{T}$ $II) D^{0}$ D^{0}	$f^{+} \to \pi^{+} \phi(0)$ $f^{0} \to K^{-} \pi$ $f^{0} \to K^{*0} V$	$(\rightarrow ll)$ $f^{+}V(\rightarrow ll)$ $V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D^0 \rightarrow \phi$	I ⁺ I ⁻					

'SM-Forbidden' decays

- lepton-flavour violation
- lepton-number violation
- baryon-number violation

no SM background

Very rare decays

- purely leptonic
- local regions in decay phase space of multibody decays reduced hadronic uncertainties

Rare resonance dominated & radiative decays

• test of lepton-universality

test

- CP asymmetries
- angular distributions 'clean' SM null-

Why rare charm at LHCb?

• Large production cross section at LHC ($\sigma(c\bar{c}) \sim 20 \times \sigma(b\bar{b})$)

Туре	Exp	\sqrt{s}	L _{int}	$\sigma(\mathbf{c}\mathbf{\bar{c}})$	N(cīc)				
			prompt o	εē					
Hadron colliders	LHCb CDF	7, 8 TeV 13 TeV 2 TeV	3/fb 6/fb 10/fb	1.4 mb 2.6 mb 0.1 mb	$\begin{array}{c} 3.6 \times 10^{12} \\ 13.2 \times 10^{12} \\ 2.3 \times 10^{11} \end{array}$				
	$c\bar{c}$ from continuum								
e^+e^- collider	Belle BaBar	10.6 GeV 10.6 GeV	1/ab 550/fb	1.3 nb 1.3 nb	$\begin{vmatrix} 1.3\times 10^9 \\ 0.7\times 10^9 \end{vmatrix}$				
		Charm fac	tories at <i>l</i>	DD thresh	blc				
	BESIII Cleo-c	3.7 GeV 3.7 GeV	3/fb 0.8/fb	3 nb 3 nb	$egin{array}{c} 20 imes 10^6 \ 5 imes 10^6 \end{array}$				

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

Why rare charm at LHCb?

• Large production cross section at LHC ($\sigma(c\bar{c}) \sim 20 \times \sigma(b\bar{b})$)

Туре	Exp	\sqrt{s}	L _{int}	$\sigma(\mathbf{c}\mathbf{\bar{c}})$	N(cīc)
			prompt a	cē	
Hadron colliders	LHCb	7, 8 TeV 13 TeV	3/fb 6/fb	1.4 mb 2.6 mb	$\begin{array}{c} 3.6 \times 10^{12} \\ 13.2 \times 10^{12} \end{array}$
	CDF	2 TeV	10/fb	0.1 mb	$2.3 imes10^{11}$
		сī	from cont	inuum	
e^+e^- collider	Belle BaBar	10.6 GeV 10.6 GeV	1/ab 550/fb	1.3 nb 1.3 nb	$\begin{array}{c} 1.3\times10^9\\ 0.7\times10^9\end{array}$
		Charm fac	tories at <i>l</i>	DD thresh	blc
	BESIII Cleo-c	3.7 GeV 3.7 GeV	3/fb 0.8/fb	3 nb 3 nb	$egin{array}{c} 20 imes 10^6 \ 5 imes 10^6 \end{array}$

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

• Full charm zoo available at LHCb

. . .

 $|D^{0}\rangle = |c\bar{u}\rangle \quad |D^{+}\rangle = |c\bar{u}\rangle$ $|D^{+}_{s}\rangle = |c\bar{s}\rangle \quad |\Lambda^{+}_{c}\rangle = |cud\rangle$

LHCb is ideal place!

Searches in decay rates

7

Search for rare and forbidden semi-leptonic decays Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons JHEP 06 (2021) 44

FCNC

 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6}

LFV, LNV, BNV

10-15

8

Radiative

10-4

10⁻⁵

VMD

Search for rare and forbidden semi-leptonic decays

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

Search for rare and forbidden semi-leptonic decays

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

Search for rare and forbidden semi-leptonic decays

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

Search for the rare decays $D \rightarrow hI^{\pm}I^{(+)\mp}$

• For forbidden modes any signal = NP

9

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances

 $q^2 = m^2(\mu^+\mu^-) [GeV^2/c^4]$

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible
- Remove η , ρ/ω regions, use $D^+_{(s)} \rightarrow \pi \phi[\mu^+\mu^-]$ as normalisation

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible
- Remove η , ρ/ω regions, use $D^+_{(s)} \rightarrow \pi \phi[\mu^+ \mu^-]$ as normalisation

 $q^2=m^2(\mu^+\mu^-)$ [GeV²/c⁴]

EPJC 80 (2020) 65

- For forbidden modes any signal = NP
- Non-forbidden modes dominated by intermediate resonances
- BSM enhancement in regions away from resonances possible
- Remove η , ρ/ω regions, use $D^+_{(s)} \rightarrow \pi \phi[\mu^+ \mu^-]$ as normalisation
- Analysis presented uses 1.6/fb data collected in 2016
 JHEP 06 (2021) 44

 $q^2=m^2(\mu^+\mu^-)$ [GeV²/c⁴]

Search for the rare decays $D \rightarrow hI^{\pm}I^{(+)}$

JHEP 06 (2021) 044

10

10

All mass spectra well described by background only hypothesis

- No significant signal found [1.6/fb (2016)]
- Improved limits by several orders of magnitude
- See JHEP 06 (2021) 044 for limit on D_s^+ modes

update with full Run2 data Set in preparation

11

More with rates: Lepton Universality

• Measure ratio of BF muon vs electron decay modes [smoking gun in B-physics!]

$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2e^+e^-)}$$

* in equal q² range

hadronic uncertainties cancel, clean null test!
More with rates: Lepton Universality

• Measure ratio of BF muon vs electron decay modes [smoking gun in B-physics!]

$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2e^+e^-)}$$

* in equal q² range

hadronic uncertainties cancel, clean null test!

- Also in charm significant deviation from unity possible
 - mainly in non-resonant regions (far future)
 - ~O(15%) q² integrated (near future!)

Muonic modes observed, we are working on the electron modes PRL 119 (2017) 181805

full q^2 hi q^2 SM lo q^2 SM SM BSM LQ LQs BSM $R^D_{\pi\pi}$ $1.00 \pm O(\%)$ $1.00 \pm O(\%)$ 0.85 ...0.99 SM-like 0.7 ...4.4 R^D_{KK} $1.00 \pm O(\%)$ SM-like SM-like NA NA $0.83 \pm O(\%)$ 0.60..0.87

PRD98 (2018) 035041 EPJC 80 (2020) 65

G. Hiller, Angular distributions of rare D decays, Implications LHCb, CERN, October 17, 2018

Searches for CP asymmetries

- Observation of CPV [$\Delta A_{CP} = (15.4 \pm 2.9) \times 10^{-4}$] in charm leaves room for NP PRL 122 (2019) 211803
- NP interpretations \rightarrow measurable CP asymmetries in rare charm (e.g Z' models) PRD 101 (2020) 115006

- A_{CP} driven by interference of NP and LD contributions
- Local enhancement in vicinity of resonances, we profit from them

"resonance enhanced"

- A_{CP} driven by interference of NP and LD contributions
- Local enhancement in vicinity of resonances, we profit from them *"resonance enhanced"*
- Many opportunities at LHCb
 - $D^+ \to \pi^+ \ell^+ \ell^-$
 - $D_s^+ \to K^+ \ell^+ \ell^-$
 - $\Lambda_c \to p\ell^+\ell^-$
 - $D^0 \to \pi^+ \pi^- \ell^+ \ell^-$
 - $D^0 \rightarrow K^+ K^- \ell^+ \ell^-$ •

- A_{CP} driven by interference of NP and LD contributions
- Local enhancement in vicinity of resonances, we profit from them *"resonance enhanced"*
- Many opportunities at LHCb
 - $D^+ \to \pi^+ \ell^+ \ell^-$
 - $D_s^+ \to K^+ \ell^+ \ell^-$
 - $\Lambda_c \to p\ell^+\ell^-$
 - $D^0 \to \pi^+ \pi^- \ell^+ \ell^-$
 - $D^0 \rightarrow K^+ K^- \ell^+ \ell^-$ •

- A_{CP} driven by interference of NP and LD contributions
- Local enhancement in vicinity of resonances, we profit from them *"resonance enhanced"*
- Many opportunities at LHCb
 - $D^+ \rightarrow \pi^+ \ell^+ \ell^-$ • $D_s^+ \rightarrow K^+ \ell^+ \ell^-$ • $\Lambda_c \rightarrow p \ell^+ \ell^-$ • $D^0 \rightarrow \pi^+ \pi^- \ell^+ \ell^-$ • $D^0 \rightarrow K^+ K^- \ell^+ \ell^-$ PRL 121 (2018) 091801 • all ON OUR list!

Searches for CP asymmetries

"Angular and CP asymmetries in $D^0 \rightarrow \pi^- \pi^+ \mu^+ \mu^-$ and $D^0 \rightarrow K^- K^+ \mu^+ \mu^-$ decays" PRL 121 (2018) 091801

$D^0 \rightarrow h^{\pm}h^{\mp} V(\mu^{\pm}\mu^{\mp})$

LFV, LNV,	BNV			FC	NC				VMD	1	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴

CP Asymmetries in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

$$\begin{split} \mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) &= (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7} \\ \mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) &= (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7} \\ \text{uncertainties are statistical, systematic and due to the BF of normalisation mode} \end{split}$$

PRL 119 (2017) 181805

PRD 98 (2018) 035041 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

17

CP Asymmetries in $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

$$\begin{split} \mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) &= (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7} \\ \mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) &= (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7} \\ \text{uncertainties are statistical, systematic and due to the BF of normalisation mode} \end{split}$$

PRL 119 (2017) 181805

- Data: 5/fb from 2011-2016 PRL 121 (2018) 091801
- D⁰ from D^{*+} \rightarrow D⁰ π ⁺ decays N(D⁰ $\rightarrow \pi \pi \mu \mu$) ~ 1000 N(D⁰ $\rightarrow KK\mu\mu$) ~ 100

$$A_{CP} = \frac{N(D^0 \to h^+ h^- \mu^+ \mu^-) - N(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{N(D^0 \to h^+ h^- \mu^+ \mu^-) + N(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

17

• Measurement binned in regions of dimuon mass

18

bin	low mass	η	ρ/ω	ϕ	high mass
$m(\mu^+\mu^-)[MeV/c^2]$	< 525	525 - 565	565 - 950	950 - 1100	> 1100
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$D^0 \to K^+ K^- \mu^+ \mu^-$	\checkmark	\checkmark	\checkmark		

Searches in angular distributions

μ^+ $\vec{e}_{\mu\mu}$ $\vec{e}_{\mu\mu}$ D^0	• π ⁺
π^-	

• No axial vector couplings (pure vector current) in lepton system \rightarrow parity conservation

20

- No axial vector couplings (pure vector current) in lepton system \rightarrow parity conservation
- New particles may lead to modifications and allow for SM clean null tests

- No axial vector couplings (pure vector current) in lepton system \rightarrow parity conservation
- New particles may lead to modifications and allow for SM clean null tests
- Again many opportunities, more particles in the final state \rightarrow more observables!
 - $D^+ \to \pi^+ \ell^+ \ell^-$
 - $D_s^+ \to K^+ \ell^+ \ell^-$
 - $\Lambda_c \to p \mu^+ \mu^-$
 - $D^0 \to \pi^+ \pi^- \ell^+ \ell^-$
 - $D^0 \to K^+ K^- \ell^+ \ell^-$

DO-TH 21 13 Null tests from angular distributions in $D \rightarrow P_1 P_2 l^+ l^-$, $l = e, \mu$ decays on and off Probing for New Physics with Bare Charm Baryon (Ac. Ec. Dc) Decays Stefan de Boer at and Gudrun Hiller a Institut für Theoretische Teilchenphysik, ≪ar Technologie, D-76128 Karlsruhe, Germany Otto-Hahn-Str.4, D-44221 Dortmund, Germa Karlsruher Instity b Fakultät Physik, TU The New Physics Reach of Null Tests with $D \rightarrow \pi \ell \ell$ and $D_s \rightarrow K \ell \ell$ Decays

20

- No axial vector couplings (pure vector current) in lepton system \rightarrow parity conservation
- New particles may lead to modifications and allow for SM clean null tests
- Again many opportunities, more particles in the final state \rightarrow more observables!
 - $D^+ \to \pi^+ \ell^+ \ell^-$
 - $D_s^+ \to K^+ \ell^+ \ell^-$
 - $\Lambda_c \to p \mu^+ \mu^-$
 - $D^0 \to \pi^+ \pi^- \ell^+ \ell^-$
 - $D^0 \to K^+ K^- \ell^+ \ell^-$

PRL 121 (2018) 091801

DO-TH 21 13 Null tests from angular distributions in $D \rightarrow P_1 P_2 l^+ l^-$, $l = e, \mu$ decays on and off Probing for New Physics with Bare Charm Baryon (Ac. Ec. Dc) Decays Stefan de Boer at and Gudrun Hiller ° Institut für Theoretische Teilchenphysik, ≪ir Technologie, D-76128 Karlsruhe, Germany Otto-Hahn-Str.4, D-44221 Dortmund, Germa Karlsruher Institu b Fakultät Physik, TU The New Physics Reach of Null Tests with $D \rightarrow \pi \ell \ell$ and $D_s \rightarrow K \ell \ell$ Decays

Searches in angular distributions

"Angular analysis of $D^0 \rightarrow \pi^- \pi^+ \mu^+ \mu^-$ and $D^0 \rightarrow K^- K^+ \mu^+ \mu^-$ and search for CPV"

LHCb-PAPER-2021-035 in preparation

$D^0 \rightarrow h^{\pm}h^{\mp} V(\mu^{\pm}\mu^{\mp})$

 LFV, LNV, BNV
 FCNC
 VMD
 Radiative

 0
 10⁻¹⁵
 10⁻¹⁴
 10⁻¹³
 10⁻¹²
 10⁻¹¹
 10⁻¹⁰
 10⁻⁹
 10⁻⁸
 10⁻⁷
 10⁻⁶
 10⁻⁵
 10⁻⁴

22

• Measure $q^2, p^2, \cos \theta_h$ integrated observables $\langle I_i \rangle$ for D^0, D^0

• Full 9/fb from 2011-2018

 $N(D^{0} \rightarrow \pi \pi \mu \mu) \sim 3000$ $N(D^{0} \rightarrow K K \mu \mu) \sim 300$

$$\frac{d\Gamma}{d\cos\theta_{\mu}d\cos\theta_{h}d\phi} = I_{1} + I_{2} \cdot \cos 2\theta_{\mu} + I_{3} \cdot \sin^{2} 2\theta_{\mu} \cos 2\phi + I_{4} \cdot \sin 2\theta_{\mu} \cos \phi + I_{5} \cdot \sin \theta_{\mu} \cos \phi + I_{5} \cdot \sin \theta_{\mu} \cos \phi + I_{6} \cdot \cos \theta_{\mu} + I_{7} \cdot \sin \theta_{\mu} \sin \phi + I_{8} \cdot \sin 2\theta_{\mu} \sin \phi + I_{8} \cdot \sin 2\theta_{\mu} \sin \phi + I_{9} \cdot \sin^{2} \theta_{\mu} \sin 2\phi$$

$$[I = I(q^{2}, p^{2}, \cos \theta_{h})]$$

$$I = I(q^{2}, p^{2}, \cos \theta_{h})$$

$$I = I(q^{2}, p^{2}, \cos \theta_{h})]$$

$$I = I(q^{2}, p^{2}, \cos \theta_{h})$$

- Measure $q^2, p^2, \cos \theta_h$ integrated observables $\langle I_i \rangle$ for D^0, D^0
- Full 9/fb from 2011-2018

 $N(D^{0} \rightarrow \pi \pi \mu \mu) \sim 3000$ $N(D^{0} \rightarrow K K \mu \mu) \sim 300$

$$\begin{split} \langle S_i \rangle &= \frac{1}{2} \begin{bmatrix} \langle I_i \rangle + (-) \langle \overline{I_i} \rangle \end{bmatrix} & \langle S_{5,6,7} \rangle \stackrel{\text{SM}}{=} 0 \\ \langle A_i \rangle &= \frac{1}{2} \begin{bmatrix} \langle I_i \rangle - (+) \langle \overline{I_i} \rangle \end{bmatrix} & \langle A_i \rangle \stackrel{\text{SM}}{=} 0 \\ \end{split} \end{split}$$
for CP even (CP odd) coefficients i=2,...9

$$\frac{d\Gamma}{d\cos\theta_{\mu}d\cos\theta_{h}d\phi} = I_{1} + I_{2} \cdot \cos 2\theta_{\mu} + I_{3} \cdot \sin^{2} 2\theta_{\mu} \cos 2\phi + I_{4} \cdot \sin 2\theta_{\mu} \cos \phi + I_{5} \cdot \sin\theta_{\mu} \cos \phi + I_{5} \cdot \sin\theta_{\mu} \cos \phi + I_{6} \cdot \cos\theta_{\mu} + I_{7} \cdot \sin\theta_{\mu} \sin\phi + I_{8} \cdot \sin 2\theta_{\mu} \sin\phi + I_{8} \cdot \sin 2\theta_{\mu} \sin\phi + I_{9} \cdot \sin^{2}\theta_{\mu} \sin 2\phi$$

$$[I = I(q^{2}, p^{2}, \cos\theta_{h})]$$

$$I = I(q^{2}, p^{2}, \cos\theta_{h})]$$

$$I = I(q^{2}, p^{2}, \cos\theta_{h})$$

- Measure $q^2, p^2, \cos \theta_h$ integrated observables $\langle I_i \rangle$ for D^0, D^0
- Full 9/fb from 2011-2018

 $N(D^{0} \rightarrow \pi \pi \mu \mu) \sim 3000$ $N(D^{0} \rightarrow K K \mu \mu) \sim 300$

$$\langle S_i \rangle = \frac{1}{2} \begin{bmatrix} \langle I_i \rangle + (-) \langle \overline{I_i} \rangle \end{bmatrix} \qquad \begin{cases} \text{SM} \\ \langle S_{5,6,7} \rangle = 0 \end{cases} \\ \langle A_i \rangle = \frac{1}{2} \begin{bmatrix} \langle I_i \rangle - (+) \langle \overline{I_i} \rangle \end{bmatrix} \qquad \langle A_i \rangle = 0 \end{cases}$$
for CP even (CP odd) coefficients i=2,...,9

- First full angular analysis of rare charm decay ever!
- Can we make a systematic interpretation of the results?

... in the (not so) near future?

... in the (not so) near future?

- Upgrade trigger design is NOW, so if there are ideas/priorities speak up!
 - $D^0 \to ee, D^0 \to e\tau$?
 - $D^0 \rightarrow h^+ h^+ \mu^- \mu^-$ with displaced $(h^+ \mu^-)$ vertices?
 - $D_s^+ \to h^0 h^+ \mu^- \mu^-$?

Summary

- Low SM rates and unique phenomenology make the a field perfect place to look for NP
 - Complementary sensitivity wrt K and B physics, often (re)use of B physics methodology
 - Don't be afraid of LD effects! Clear SM null test allow for stringent NP searches

Summary

- dmitzel@cern.ch
- Low SM rates and unique phenomenology make the a field perfect place to look for NP
 - Complementary sensitivity wrt K and B physics, often (re)use of B physics methodology
 - Don't be afraid of LD effects! Clear SM null test allow for stringent NP searches

- Great theoretical and experimental improvements over the last years
 - Still rather unexplored and promising
 - We are looking forward to pioneering the field together with Dortmund theory group
 - "Charm is the new beauty... but beauty never goes out of style"

[G. Hiller@ LHCb implication workshop 2020]

Thank you

Search for forbidden and rare leptonic decays

"Search for the lepton-flavour violating decay $D^0 \rightarrow e\mu$ " PLB 754 (2016) 167 "Search for the rare decay $D^0 \rightarrow \mu^+ \mu^-$ " PLB 725 (2013) 15-24

c μ LQ e

 10^{-2} HFLAV 90% C.L Summer 16 10^{-3} LF CLEO (1988) 10^{-4} CLEO II(1996) 10^{-5} 10^{-6} ▶BaBar 2004 10^{-7} lle legacy LHCb Run1 (2013) 10^{-8} 10^{-9}

D⁰→ e±µ∓

- strictly forbidden in the SM test!
 - any signal clear indication of NP
 - SM extensions: BF in [10⁻¹⁴-10⁻⁶]

$$\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$$
 (LHCb 3/fb Run1)

clean null

PLB 754 (2016) 167

D⁰→ e±µ∓

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

90% C.I

HFLAV

Summer 16

CLEO (1988)

BaBar 2004

LHCb Run1

(2013)

LF

CLEO II(1996)

- strictly forbidden in the SM test!
 - any signal clear indication of NP
 - SM extensions: BF in [10⁻¹⁴-10⁻⁶]

$D^0 \rightarrow \mu^{\pm} \mu^{\mp}$

- SM BF extremely low, dominated by two-photon
 - intermediate state ~O(10⁻¹³) PRD 66 (2002) 014009 PRD 82 (2010) 094006 PRD 79 (2009) 114030 PRD 93 (2016) 074001

clean null

• in NP scenarios $BF_{NP} \lesssim BF_{EXP}_{PLB 725 (2013) 15-24}$

 $D^0 \rightarrow e^{\pm}\mu^{\mp}$

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

90% C.I

HFLAV

Summer 16

CLEO

(1988)

BaBar 2004

LHCb Run1

 \bigcirc

(2013)

LF

CLEO II(1996) 👿

- clean null strictly forbidden in the SM test!
 - any signal clear indication of NP
 - SM extensions: BF in [10-14-10-6] ۲

$$\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$$
(LHCb 3/fb Run1

$D^0 \rightarrow \mu^{\pm}\mu^{\mp}$

SM BF extremely low, dominated by two-photon

intermediate state $\sim O(10^{-13})$ PRD 66 (2002) 014009 PRD 82 (2010) 094006 PRD 79 (2009) 114030 PRD 93 (2016) 074001 Update in the pipeline with full LHCb data set

in NP scenarios $BF_{NP} \lesssim BF_{EXP}_{PLB 725 (2013) 15-24}$ •

```
\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9} \text{ at } 90\% \text{ CL}
                                                           (LHCb 1/fb Run1)
```

Search for the rare decays $D \rightarrow hl \pm l^{(+)} \mp$

- analysis uses 1.6/fb data collected 2016
- normalisation modes $D^+_{(s)} \to \pi \phi[\ell^+ \ell^-]$

Search for the rare decays $D \rightarrow hI^{\pm}I^{(+)\mp}$

- We are coming close to possible NP contributions...
- ... but also close to the resonance tails

Implications of the measurements

Use measurement to set limits on effective NP couplings

Implications of the measurements

Use measurement to set limits on effective NP couplings

$$H_{eff} \sim \sum C_i \cdot \mathcal{O}_i \qquad C_{10,S,P,T,T5} =$$

right handed quark currents

 $C_i \rightarrow C'_i$ negligible in SM

• LFV possible

 $C_i \rightarrow K_i^{\ell\ell'}$ absent in SM

 We need many decays to constrain all couplings!

 $\mathscr{B}(D \to \ell \ell) \sim C_P, C_S$

 $\mathcal{B}(D \to h\ell\ell) \sim C_i + C_i'$

$$\mathcal{B}(D \to hhe\mu') \sim K_i^{e\mu} - K_i^{'e\mu}$$

example:

$$|C_{9,10}^{\mu\mu\,(\prime)}| \lesssim 1$$
, $|C_{9,10}^{ee\,(\prime)}| \lesssim 3$,

comparable to B physics at least 10 years ago

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^0 ightarrow \mu^+ \mu^-$	$4.2 imes 10^{-10}$	$1.3 imes10^{-10}$
$D^+ \to \pi^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\Lambda ightarrow p \mu \mu$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$D^0 ightarrow e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019