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Abstract

First measurements of balance functions (BFs) of all combinations of identified charged hadron
(π,K,p) pairs in Pb–Pb collisions at √sNN = 2.76 TeV recorded by the ALICE detector are pre-
sented. The BF measurements are carried out as two-dimensional differential correlators versus the
relative rapidity (∆y) and azimuthal angle (∆ϕ) of hadron pairs, and studied as a function of colli-
sion centrality. The ∆ϕ dependence of BFs is expected to be sensitive to the light quark diffusivity
in the quark–gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from
peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of ππ and
cross-species pairs narrow significantly in more central collisions, whereas those of KK and pp are
found to be independent of collision centrality. This dichotomy is qualitatively consistent with the
presence of strong radial flow effects and the existence of two stages of quark production in relativis-
tic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF
integrals are presented, with the observation that charge balancing fractions are nearly independent
of collision centrality in Pb–Pb collisions. Overall, the results presented provide new and challeng-
ing constraints for theoretical models of hadron production and transport in relativistic heavy-ion
collisions.

*See Appendix A for the list of collaboration members
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Convincing evidence for the production of strongly interacting quark–gluon plasma (QGP) in heavy-
ion (AA) collisions has been reported from a variety of measurements at the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC) [1–4], including observations of strong elliptic
flow [5–7], suppression of high transverse momentum (pT) hadron production [8–13], suppression of
quarkonium states[14–19], as well as dihadron correlation functions [20, 21]. Many of these findings are
quantitatively explained by hydrodynamic calculations in which the QGP matter undergoes radial and
azimuthally anisotropic collective motion. The existence of the latter is well established based on mea-
surements of flow coefficients with finite pseudorapidity (η) gap and multi-particle cumulants, whereas
the presence of the former is inferred in part from the increase of average transverse momenta with the
mass of hadrons [22], the centrality dependence of event-by-event pT fluctuations [23, 24], as well as
the observed narrowing of the near-side peak of balance functions (BFs) in central collisions relative to
that observed in peripheral collisions [25–30]. Balance functions essentially amount to differences of
correlation functions of like-sign and unlike-sign charges. They are measured, typically, as functions of
particle pair separation in azimuth angle and rapidity. They indicate the degree to which the production
of a positive charge is accompanied by the production of a negative charge somewhere in phase space. As
such, BFs probe the balancing of charge distributions in momentum space and theoretical studies show
they are sensitive to the details of the time (i.e., whether particles are produced early or late), production
mechanisms, and transport of balancing charges.

Measurements of BFs were originally proposed as a tool to investigate the delayed hadronization and
two stages of quark production in the QGP formed in AA collisions [31]. These terms refer to the notion
that quark production occurs in two distinct stages, the first at the onset, and the second at the very end
(just before hadronization and freeze-out) of AA collisions. The two stages are posited to be separated
by a period of isentropic expansion whose duration depends on the multiplicity of produced quarks and
gluons and thus the collision impact parameter. Hadron pairs produced at the onset of collisions feature
large longitudinal separation (i.e., rapidity differences ∆y) whereas pairs produced after the expansion
have smaller ∆y separations determined by the smaller temperature of the system at that time. AA col-
lisions with smaller impact parameters are expected to produce larger systems with a longer isentropic
stage in which late particle production dominates. The longitudinal and azimuthal widths of BFs are thus
expected to progressively decrease from peripheral to central collisions as the fraction of late particle pro-
duction increases. BFs could also provide a precise probe of balancing particle production [32–35], the
hadrochemistry of particle production [34, 36], as well as the collision dynamics [37, 38]. Recent studies
also indicate that the BF dependence on pair separation in azimuth is sensitive to the diffusivity of light
quarks, a measure of the diffusion and scattering of quarks within the QGP, which has thus far received
only limited attention [36, 39]. Finally, BFs also provide a tool to calibrate measurements of the Chiral
Magnetic Effect [40, 41] and net charge/baryon fluctuations deemed essential for the determination of
QGP susceptibilities [42, 43].

Few measurements of BFs of identified hadrons have been reported to date. At RHIC, these include
BF measurements of charged hadrons, pion pairs, kaon pairs, as well as proton/antiproton pairs [25–
27], whereas at the LHC, only charged hadron BFs have been reported [28, 29]. Of these, only the
results published by ALICE were fully corrected for detector acceptance and particle losses (efficiency).
Integrals of measured BFs have not been considered and no cross-species BFs have been published.
Theoretical analyses of measured BFs have consequently focused mainly on the interpretation of the
narrowing with collision centrality of charged hadron BFs. The full potential of BFs as a probe of the
evolution dynamics and chemistry of the QGP has thus so far been underexploited. In this paper, general
balance functions of identified charged hadron species (π,K,p) are reported for the first time. These
general BFs are corrected for efficiency and non uniform acceptance effects and it becomes possible to
study the effects of two-stage quark production, light quark diffusivity, and relative balancing fractions
using BFs of nine distinct identified pairs of charged hadron species.
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The BF of a species of interest, α , and an associated species, β , was originally defined in terms of
conditional densities [31] but it is convenient to compute BFs in terms of normalized cumulants R2
according to

Bαβ (~pα ,~pβ ) =
1
2

{
ρ

β−

1 (~pβ−)
[
Rα+β−

2 (~pα+ ,~pβ−)−Rα−β−

2 (~pα− ,~pβ−)
]
+

ρ
β+

1 (~pβ+)
[
Rα−β+

2 (~pα− ,~pβ+)−Rα+β+

2 (~pα+ ,~pβ+)
]} , (1)

with

Rαβ

2 (~pα ,~pβ )≡
ρ

αβ

2 (~pα ,~pβ )

ρα
1 (~pα)ρ

β

1 (~pβ )
−1 (2)

where ρα
1 (~pα) ≡ dN/d~pα and ρ

αβ

2 (~pα ,~pβ ) ≡ dNpair/d~pαd~pβ are single- and particle-pair densities of
species α and β measured at momenta ~pα and ~pβ , respectively, while labels + and − stand for positive
and negative charges. Normalized cumulants R2 are robust observables, i.e., independent to first order
of measurement efficiencies. They are sensitive to the strength of correlation between species α and
β . Their properties were described in several publications [44–47]. The combination of R2 correlation
functions, normalized by single particle densities, as per Eq. (1), is strictly equivalent to the balance
function introduced in Ref. [31, 32] and measures the correlation between positive and negative particles
of species α and β constrained by charge conservation. Integrals of inclusive charge balance functions,
I+−B (Ω) ≡

∫
Ω

B+−d∆η , are expected to lie within the range 0 < I+−B (Ω) ≤ 1 for limited acceptances Ω.
However, they converge to unity for full acceptance coverage. Furthermore, fractions Iαβ

B (Ω)/Iα
B (Ω)

are determined by the hadrochemistry of the QGP and transport properties of the medium. In the full
acceptance coverage limit, the denominator of this fraction must satisfy Iα

B (Ω)≡ ∑β Iαβ

B (Ω)→ 1 [43].

In this paper, the identified particle BFs of nine pairs of charged hadrons (π±, K± and p/p) ⊗ (π±,
K±, and p/p) are reported as joint functions of the relative rapidity (∆y) and azimuthal angle (∆ϕ) and
studied as a function of collision centrality. Measurements of Rαβ

2 (~pα ,~pβ ) are carried out in terms of
the rapidity and azimuthal angle yα , ϕα , yβ , and ϕβ for fixed pT ranges, and averaged across the pair

acceptance to yield correlation functions Rαβ

2 (∆y,∆ϕ) with ∆y = yα − yβ and ∆ϕ = ϕα −ϕβ following

the procedure used in Ref. [44]. The densities of associated particles, ρ
β

1 , used in Eq. (1), are integrated
from pT-dependent densities reported in prior ALICE measurements [22] to match the pT ranges used
in measurements of the normalized cumulants R2. The correlators Rαβ

2 and densities ρ
β

1 are corrected
for pT-dependent particle losses and non uniform acceptance. Densities ρ

β

1 were additionally corrected
for minor contamination effects as per the procedure described in [22]. The measured BFs thus feature
absolute normalization which enables meaningful determination of their integrals and collision centrality
dependence.

As already mentioned, the shape of the BFs vs. ∆y and ∆ϕ is sensitive to the timescales at which parti-
cles are produced during the system evolution. Early emission occurs at large effective collisional energy√

s and is thus expected to yield broad BFs in ∆y and ∆ϕ , whereas late emission, at collisional energy
commensurate with the system temperature, is expected to produce much narrower near side peak corre-
lations vs. ∆y and ∆ϕ [31]. Additionally, the integral of the BFs shall also provide increased sensitivity
to the hadrochemistry of the collisions. Indeed whereas contributions to single-particle spectra from
hadronic resonance decays must be inferred from models, integrals of the BFs are directly sensitive to
the magnitude of (hadronic) feeddown contributions. For instance, by comparing the integrals of π+π−

and π±K∓ BFs, sensitivity to the relative strengths of processes that lead to such correlated pairs of par-
ticles is acquired. It becomes possible to better probe the role of hadronic resonance decay contributions
and increased sensitivity to the hadrochemistry of the QGP and its susceptibilities is gained [36].
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The BFs presented are based on 1× 107 minimum bias (MB) Pb–Pb collisions at
√

sNN = 2.76 TeV
collected in 2010 by the ALICE collaboration. Descriptions of the ALICE detector and its performance
have been reported elsewhere [48, 49]. The minimum bias trigger required a combination of hits in
the V0 detectors and layers of the SPD detector. The V0 detectors, which cover the full azimuth and
the pseudorapidity ranges −3.7 < η < −1.7 and 2.8 < η < 5.1, also provided a measurement of the
charged particle multiplicity used to classify collisions into centrality classes corresponding to 0–5%
(most central) to 80–90% (most peripheral) of the Pb–Pb hadronic cross section [50]. Some centrality
classes have been combined to optimize the statistical accuracy of the BFs reported. Particle momenta
were determined based on Kalman fits of charged particle tracks reconstructed in the Time Projection
Chamber (TPC). The particle identification (PID) of charged hadrons was performed based on specific
energy loss (dE/dx) measured in the TPC and particle velocities measured in the Time-of-Flight detector
(TOF). Track quality criteria based on the number of space points, the distance of closest approach to the
collision primary vertex, and the χ2 of the Kalman fits were used to restrict the measurements to primary
particles produced by the Pb–Pb collisions and suppress contamination from tracks resulting from weak
decays and interactions of particles with the apparatus. Additionally, PID selection criteria based on
deviations of dE/dx and TOF from their respective expectation values, at a given momentum, and for
each species of interest, were used to optimize the species purity. These and other selection criteria
are reported in detail below in the context of a discussion of systematic uncertainties. The analysis
focused on the low pT range, commonly known as the “bulk" physics regime. Slightly different pT
ranges were used for each species to optimize yields and species purity. Charged pions and kaons were
selected in the range 0.2 ≤ pT ≤ 2.0 GeV/c, whereas (anti-)protons are within 0.5 ≤ pT ≤ 2.5 GeV/c.
The selected rapidity range, largely determined by the TOF coverage, was set to |yπ | ≤ 0.8 and |yp| ≤ 0.6
for measurements of Bππ and Bpp, respectively, and set to |y| ≤ 0.7 for all other BFs reported.

Track reconstruction efficiencies and PID purity were studied with Monte Carlo simulations of Pb–Pb
collisions produced with the HIJING generator [51] and propagated through a model of the ALICE
detector with GEANT3 [52]. Selected track quality and PID criteria yield purities of 97%, 95%, and
94% for π±, K±, and p/p, respectively, thereby minimizing species contamination and its impact on
correlation functions. Corrections for track losses were carried out using a weighting technique [46].
Weights are calculated independently for positive and negative tracks of each species considered, for
each centrality range, both magnetic field polarities used in the measurements, versus y, ϕ , pT, as well
as the longitudinal position of the primary vertex (PV) of each event, zvtx. Various selection criteria were
applied to minimize residual instrumental effects while optimizing particle yields. The PV is required to
be in the range |zvtx| ≤ 6 cm of the nominal interaction point. Tracks are required to have a minimum
of 70 reconstructed TPC space points (hits), out of a maximum of 159, and a track fit with χ2 value per
degree of freedom smaller than 2.0 to ensure good track quality. Contamination of BFs by secondary
particles (i.e., weak decays or particles scattered within the detector) is suppressed by requiring distances
of closest approach (DCA) to PV chosen as DCAz ≤ 2.0 cm in the longitudinal direction and DCAxy ≤
0.04,0.04,2.0 cm in the transverse plane for π±, p/p, and K±, respectively. Contamination by e+e− pairs
from photon conversion is suppressed by removing tracks closer than 1σdE/dx to the TPC Bethe-Bloch
median, at a given momentum, for electrons.

Systematic uncertainties on the amplitudes of Bα,β and their integrals were calculated as quadratic sums
of systematic uncertainties of the correlation function Rα,β

2 and the systematic uncertainties on the pub-
lished single particle densities [22] used in the computation of the BFs. Uncertainties on Rα,β

2 were
assessed based on variations of conditions and selection parameters employed in the analysis. A statis-
tical test [53] was used to identify potential biases introduced by those variations and determine their
statistical significance. Systematic uncertainties, corresponding to a relative deviation at the maximum
of Bα,β associated with operation with two solenoidal magnetic field polarities, are smaller than 4%. Po-
tential biases associated with track selection criteria are up to 3%, whereas the presence of misidentified
and secondary particles contribute up to 4%, while kinematic dependencies of the detection efficiency
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are estimated to be 1%. Systematic uncertainties on the single particle densities [22] are species and
collision centrality dependent and typically range from 5 to 10%.

In order to obtain BF for all nine combinations of π±, K±, and p/p species pairs, Rαβ

2 (∆y,∆ϕ) correlators
were first measured, in each centrality class, for all 36 αβ permutations of positive and negative π , K,
and p. These correlators were then combined according to Eq. (1) and multiplied by the single particle
densities ρ

β

1 in the |y| ≤ 0.5 rapidity range [22]. Figure 1 shows the Bαβ (∆y,∆ϕ) of ππ , KK, and pp
pairs in semicentral collisions for illustrative purposes. The nine measured BFs exhibit common features,
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Figure 1: Balance functions Bαβ (∆y,∆ϕ) of pairs αβ = ππ (left), KK (center), and pp (right) measured in semi-
central Pb–Pb collisions at

√
sNN = 2.76 TeV.

including prominent near-side peaks centered at (∆y,∆ϕ)= (0,0) and relatively flat and featureless away-
sides. The flat away-side arises from the fact that positive and negative particles of a given species feature
essentially equal azimuthal anisotropy relative to the collision symmetry plane. It is also an indicator of
the fast radial flow profile of the emitting sources, which manifests as strong focusing on the near-side
peak [37], although the various species pairs demonstrate different centrality-dependent near-side peak
shapes, widths, and magnitudes that indicate that they are subject to different charge balancing pair
production and transport mechanisms, as well as final state effects. For instance, Bππ exhibits a deep
and narrow dip at (∆y,∆ϕ) = (0,0), within the near-side correlation peak, resulting in part from the
Hanbury Brown–Twiss (HBT) effect, with a depth and width that vary with the source size and thus the
centrality [32]. BKK exhibits much weaker HBT effects, whereas Bpp also features a narrow dip centered
at (∆y,∆ϕ) = (0,0) within a somewhat elongated near-side peak that may reflect the annihilation of pp
pairs. Pairs of protons and antiprotons emitted at small relative ∆η and ∆ϕ (as well as small relative pT)
are more likely to interact, and thus annihilate, than pairs produced at large separation, thereby leading
to a depletion of pairs near ∆y = 0 and ∆ϕ = 0.

The evolution with collision centrality of Bαβ , for all nine combinations α,β = π,K,p, is examined by
considering their projections onto the ∆y and ∆ϕ axes in Figs. 2 and 3, respectively. The shape and
amplitude of Bππ projections onto ∆y exhibit the strongest centrality dependence, whereas those of BπK,
Bπp, BKπ and Bpπ display significantly smaller dependence on centrality. Uncertainties on the rest of the
∆y projections do not make it possible to claim any centrality dependence albeit some hints are visible
in the cases of BKK and Bpp. The evolution with collision centrality of the measured BFs is further
characterized in terms of their longitudinal and azimuthal standard deviation (σ ) widths, noted σ∆y and
σ∆ϕ , respectively, as well as their integral, Iαβ

B , as shown in Fig. 4. In the longitudinal direction, the
widths σ∆y of all species pairs, except those of KK and pp pairs, exhibit a significant narrowing from
peripheral to central collisions. In contrast, BKK is essentially independent in both shape and width σ∆y
with changing collision centrality, whereas the width σ∆y of Bpp features little centrality dependence even
though this balance function exhibits some shape dependence on centrality.

Differences in the evolution of the longitudinal σ of pions and kaons BFs were already observed in Au–
Au collisions at RHIC [26] and were then interpreted as resulting in part from strong radial flow profiles
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Figure 2: Balance function of species pairs (π,K,p)⊗ (π,K,p) projected onto the ∆y axis for particle pairs within
the full range |∆ϕ| ≤ π . Vertical bars and open boxes represent statistical and systematic uncertainties, respectively.

and two-stage emission [31, 32]. The independence of the width σ∆y of the BKK relative to the narrowing
BFs of all other pairs observed in this work suggests two-stage quark production might also be at play
at the TeV collision scale. Indeed, pions might be predominantly formed from the light u, ū, d, and d̄
quarks most abundantly produced in the second quark production stage, whereas kaon production would
largely result from ss̄ pairs predominantly created during the early stages of collisions [31, 32].

Several distinct models have had success in describing the yield of produced hadrons, and more specif-
ically baryons. Such models invoke a range of production mechanisms including parton fragmentation,
effective mostly at high-pT, as well as parton coalescence and recombination, playing a predominant role
at low and intermediate pT [54–56]. Statistical thermal models and production models involving color
transparency [57] and baryon junctions [58] have also had a good measure of success. Single particle
spectra of baryons thus do not provide sufficiently discriminating constraints to fully identify baryon
production mechanisms. The added information provided by cross-species BFs shall thus contribute by
adding new constraints for models of particle production and transport. In particular, given that neutrons,
protons, and their excited states are composed of light u and d quarks, believed to be copiously produced
in late stage emission (within the context of the two-stage quark production model), it is conceivable
that these baryons are predominantly produced by coalescence (recombination) of light quarks in the
late stage of the collisions. However, baryons (B) and antibaryons (B) have a relatively large mass and
carry a conserved baryonic charge. The question then arises as to whether BB correlated pairs might
originate before the formation of thermalized QGP, during the early stages of AA collisions. Late BB
production is expected to be characterized by narrow longitudinal BFs while early stage emissions would
produce pairs with a much wider ∆y range [31, 32]. It is clear from Fig. 2 that Bpp must extend beyond
the acceptance of the measurement reported in this paper. This suggests that pp pairs have rather wide
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Figure 3: Balance function projections of species pairs (π,K,p)⊗ (π,K,p) onto the ∆ϕ axis for the different
particle pairs. Vertical bars and open boxes represent statistical and systematic uncertainties, respectively.
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Figure 4: Longitudinal (∆y) σ widths (left), azimuthal (∆ϕ) σ widths (center), and integrals (right) of balance
functions of the full species matrix of π±, K±, and p/p with centrality. For ∆y and ∆ϕ widths, Kπ , pπ , and pK
have the same values with πK, πp, and Kp, respectively. For the longitudinal widths, the relative azimuthal angle
range for all the species pairs is the full azimuth range |∆ϕ| ≤ π . For the azimuthal widths, the relative rapidity
range used for all species pairs is |∆y| ≤ 1.2, with the exception of |∆y| ≤ 1.4 for ππ and |∆y| ≤ 1.0 for pp. Vertical
bars represent statistical uncertainties while systematic uncertainties are displayed as dash line bands.

balance functions that might result from early BB pair separation. Detailed models of BB production and
transport that account for (strong) decays from resonant states are required, evidently, to firmly establish
this conclusion.
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Figure 4 shows that the σ∆ϕ widths of the nine BFs exhibit narrowing trends from peripheral to central
collisions. The widths σ∆ϕ feature a wide spread of values at a given collision centrality, with those of
KK pairs being the largest and those of πK the smallest. The widths also exhibit similar reductions with
increasing collision centrality. These observations are in agreement with azimuthal BFs already reported
from observations at RHIC for unidentified charged particle and identified ππ , KK pairs [25, 26], as well
as unidentified charged particle BFs in collisions at the LHC [28, 29]. This narrowing can be qualitatively
understood as resulting from the larger estimated transverse expansion velocity present in more central
AA collisions [59]. It competes with an opposing trend associated with light quark diffusivity, expected
to broaden and smear out the long range tails of the ∆ϕ BFs for systems featuring increasingly large
lifespans [39]. Given the radial boost profile and contributions from resonance decays can be largely
calibrated based on the shape of single particle pT spectra, the BF projections presented in Fig. 2, 3
and the evolution of their widths σ∆y and σ∆ϕ , shown in Fig. 4, then provide the first comprehensive set
of azimuthal BFs to estimate the diffusivity of light quarks at the LHC [36, 39]. The above discussion
neglects possible contributions from the fragmentation of jets but these are anticipated to be small in the
pT range of this measurement. Quantitative estimates of such contributions would need to be accounted
for in theoretical modeling of balance functions reported in this work for the purpose of determining the
diffusivity of light quarks.

Contributions of φ → K++K− decays to BKK were studied using simulated events from the HIJING
generator [51]. The amplitude of the near-side peak of BKK is reduced by about 30% when contributions
from φ -meson decays are explicitly excluded, while the correlator ∆y and ∆ϕ widths increase by about
7–8%. Effects associated with radial flow, not present in HIJING, could reduce this broadening effect
and possibly induce a narrowing of the ∆y width of BKK in more central collisions. However, no such
narrowing is observed thereby signaling a more intricate production and transport evolution with com-
peting contributions from φ produced at hadronization of the QGP and by coalescence of kaons within a
hadron phase.

The evolution with the collision centrality of the integrals Iαβ

B of the nine species-pairs Bαβ (∆y,∆ϕ)
shown in the right panel of Fig. 4 is also of considerable interest. By definition, a balance function
Bαβ (∆y,∆ϕ,∆pT) measures the “likelihood" of finding a charge balancing particle of a type β , e.g., π+,
with a pair separation ∆y, ∆ϕ , ∆pT away from a reference particle of type α , e.g., π−. But charge balanc-
ing can be accomplished, on average, by distinct species, e.g., p, K+, and more rarely produced heavier
particles, in additions to π+. The integral, Iαβ

B (4π), of Bαβ (∆y,∆ϕ,∆pT) over the full phase space is thus
proportional to the average fraction (and probability in the full phase space limit) of balancing partners
of species β . Indeed, neglecting contributions from species other than pions, kaons, and protons, one
expects the sum, Iα

B (4π) ≡ Iαπ
B (4π)+ IαK

B (4π)+ Iαp
B (4π) to converge to unity, Iα

B (4π) ≈ 1, in the full
acceptance limit [43]. Integrals Iαβ

B (4π) thus amount to probabilities Iαβ

B (4π)/Iα
B (4π) of having charge

balancing of a species α by a species of type β and are indicators of the hadronization chemistry of the
QGP, that is, what fraction of species α are accompanied (balanced), on average, by a species β [43].
However, when measured in a limited acceptance, integrals Iαβ

B (Ω < 4π) cannot, strictly speaking, be
considered charge balancing probabilities. They nonetheless provide useful indicators of the hadrochem-
istry as well as the flavor and baryon number transport in AA collisions. As such, integrals Iαβ

B shown
in Fig. 4 as a function of collision centrality are surprising on two accounts. First, they show that the
balance fractions are all, but one, approximately independent of collision centrality. The notable excep-
tion is the ππ integral which increases by about 20% from peripheral to central collisions. Second, close
examination of these pairing fractions shows they are rather different than inclusive probabilities of ob-
serving π , K, and p/p in Pb–Pb collisions. For instance, IKπ

B is not larger than IKK
B by the π/K∼ 6.7 ratio

of inclusive single particle yields and Ipp
B is larger than IpK

B also in contrast to observed K/p ∼ 3 yield
ratios [22]. Hadron species charge balancing pairing fractions are thus indeed very different than the rel-
ative probabilities of single hadrons, and as such, provide new and useful information to further probe the
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hadronization of the QGP. This difference arises because the set of processes P2 that lead to a specific
balancing pair αβ (e.g., P2 :→ α±+β∓+X) is, by construction, far smaller than the set of processes
P1 leading to a given particle species α or β (e.g., P1 :→ α±+X or P1 :→ β∓+Y ). It is remarkable,
nonetheless, that the pairing fractions Iαβ

B exhibit essentially no collision centrality dependence while
single particle yield ratios are known to exhibit a weak dependence on collision centrality [9, 60]. Note
that the observed rise of Iππ

B in more central collisions may artificially result from increased kinematic
focusing of pions with centrality in the pT and ∆y acceptance of this measurement. The higher veloc-
ity flow fields encountered in more central Pb–Pb collisions could indeed shift and focus the yield of
associated pions. Why such a shift is not as important for other charge balancing pairs remains to be
elucidated with a comprehensive model accounting for the flow velocity profile and appropriate sets of
charge conserving processes yielding balancing charges in the final state of collisions. Recent deploy-
ments of hydrodynamic models feature the former but lack the latter [61–63]. Further theoretical work
is thus required to interpret the observed collision centrality dependence of the pairing probabilities dis-
played in Fig. 4. As such calculations become available, the data reported in this work, and specifically
the integral Iαβ

B shown in Fig. 4, shall provide increased sensitivity to the hadrochemistry of the QGP
and its susceptibilities.

In summary, this paper presents the first measurements of the collision centrality evolution of same and
cross-species balance functions of identified π±, K± and p/p at the LHC. Measured as functions of
particle pair separation in rapidity (∆y) and azimuth (∆ϕ), the BFs exhibit prominent near-side peaks
centered at (∆y,∆ϕ) = (0,0) which feature different shapes, amplitudes, and widths, and varied depen-
dencies on collision centrality. The BFs of species-pairs measured in this work feature narrowing ∆ϕ

widths in more central collisions, owing to the strong radial flow field present in central Pb–Pb colli-
sions. Theoretical studies beyond the scope of this work shall use this data to put upper limits on the
diffusivity coefficients of light quarks. In the longitudinal direction, the σ widths of BFs of all species
pairs decrease with centrality except for those of KK and pp pairs. The shape and width of KK BFs are
independent of collision centrality, while the pp BFs peak shapes depend only minimally on centrality.
The observed centrality independence of the KK and narrowing σ of other species in the longitudinal
direction are qualitatively consistent with effects associated with radial flow and the two-stage quark
production scenario, which posits that quark production occurs predominantly in early and late stages
separated by a period of isentropic expansion. Integrals Iαβ

B constitute an important finding of this study
as they indicate that pairing fractions Iαβ

B are nearly independent of collision centrality, and provide a
valuable quantitative characterization of the hadronization of the QGP.
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M.G. Poghosyan98, B. Polichtchouk93, S. Politano30, N. Poljak101, A. Pop48, S. Porteboeuf-Houssais136,
J. Porter81, V. Pozdniakov76, S.K. Prasad4, R. Preghenella54, F. Prino60, C.A. Pruneau144, I. Pshenichnov64,
M. Puccio34, S. Qiu92, L. Quaglia24, R.E. Quishpe126, S. Ragoni112, A. Rakotozafindrabe139, L. Ramello31,
F. Rami138, S.A.R. Ramirez45, A.G.T. Ramos33, T.A. Rancien80, R. Raniwala104, S. Raniwala104, S.S. Räsänen44,
R. Rath50, I. Ravasenga92, K.F. Read98,132, A.R. Redelbach39, K. RedlichVI,87, A. Rehman21, P. Reichelt69,
F. Reidt34, H.A. Reme-ness36, Z. Rescakova38, K. Reygers106, A. Riabov100, V. Riabov100, T. Richert82,
M. Richter20, W. Riegler34, F. Riggi26, C. Ristea68, M. Rodríguez Cahuantzi45, K. Røed20, R. Rogalev93,
E. Rogochaya76, T.S. Rogoschinski69, D. Rohr34, D. Röhrich21, P.F. Rojas45, S. Rojas Torres37, P.S. Rokita143,
F. Ronchetti52, A. Rosano32,56, E.D. Rosas70, A. Rossi57, A. Roy50, P. Roy111, S. Roy49, N. Rubini25,
O.V. Rueda82, D. Ruggiano143, R. Rui23, B. Rumyantsev76, P.G. Russek2, R. Russo92, A. Rustamov89,
E. Ryabinkin90, Y. Ryabov100, A. Rybicki119, H. Rytkonen127, W. Rzesa143, O.A.M. Saarimaki44, R. Sadek116,
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