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1 Introduction

The questions surrounding the Higgs boson mass have driven most of the research in particle
physics in the last decades. Experiments at LEP and at the LHC have neither discovered
the symmetries that we expected [1–11] nor those that initially we did not expect [12, 13],
leaving the value of the Higgs mass as puzzling as ever.

This situation has led some to question the problem rather than its proposed solutions.
However, the problem is more concrete and interesting today than it ever was. It is more
concrete because we have discovered the Higgs boson, measured its mass and established
that it is a fundamental scalar.1 The results from LEP were already pointing to a natu-
ralness problem, but before the LHC we did not know what caused electroweak symmetry
breaking in the Standard Model.

The problem is now more interesting because its most elegant solutions can not be
realized in their simplest form and it is unclear whether we should abandon them entirely
and radically change our outlook on the weak scale or accept some amount of tuning as a
fundamental aspect of physics. Either way we will learn something new about Nature.

1At least up to a factor of ten in energy above its mass.
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Possibly the most fascinating aspect of this question is that even ignoring it amounts
to making important assumptions about physics at high energies. The Higgs boson mass
is not calculable in the Standard Model, it is a measured parameter of the effective theory,
so we could say that in our current description of Nature there is no problem and forget
the whole issue. However this leaves open only two possibilities: 1) The Higgs mass is not
calculable at any energy 2) There is no mass scale beyond the Standard Model sufficiently
strongly coupled to the Higgs to generate a fine-tuning problem. The first option, even
if seemingly harmless, strongly constrains fundamental physics at high energies, to the
point that we do not know a theory of quantum gravity that realizes it. The second one
has interesting implications for model building and the description of other aspects of
fundamental physics (dark matter, gauge coupling unification, . . . ) [14–16], and it forces
us to think about theories of gravity with no new scales [17–21] whose consistency is still
unclear [22–25].

At the moment the (theoretically) most conservative attitude is to assume that super-
symmetry (or anything else that makes the Higgs mass calculable) exists below the scale
of quantum gravity. For concreteness we can imagine that string theory describes gravity
at high energies and supersymmetry is broken somewhere below the string scale. In this
case, at the theory level the naturalness problem of the Higgs mass squared can be stated
sharply, already at tree-level and without any ambiguity. The Higgs mass is a calculable
function of supersymmetric parameters that in principle we can measure independently. If
two or more measured contributions to the Higgs mass are much larger in absolute value
than its central value we want to understand why. It is not guaranteed that the explanation
will manifest itself at low energy, it might be related to the distribution of supersymme-
try breaking parameters in a Multiverse or to the constraints imposed on their values by
quantum gravity. However, even in these cases, thinking about the problem can shed light
on fundamental aspects of physics.

We have been looking for symmetric (or dynamical) explanations for the Higgs mass
for more than 40 years and we have not yet found any obvious sign that they are realized
in Nature. This has generated a “little” hierarchy problem [26, 27]. We have established
a hierarchy between the Higgs mass mh and the scale at which new sources of flavor and
CP violation can appear in Nature. This considerably complicates extending the SM to
accommodate a symmetry or new dynamics that can protect the Higgs mass. The problem
is further complicated by the null direct searches at LEP and the LHC.

Faced with these results we can take a different perspective and consider seriously the
existence of a landscape for m2

h. If we accept the existence of a vast landscape of vacua
(for instance because of the cosmological constant or just because of string theory), it
is likely that m2

h varies from vacuum to vacuum. Note that even if we extrapolate to the
extreme the explanatory power of current swampland conjectures [28] and imagine that the
measured Cosmological Constant (CC) can be understood from the internal consistency of
string theory, we still expect the existence of a vast landscape of vacua.

Historically the existence of a landscape for m2
h coincides with anthropic solutions to

the electroweak hierarchy problem [29]. Recently a new class of ideas emerged that makes
a very different use of the landscape [30–35], with much better prospects for detection and
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little or no recourse to anthropic arguments. In these models a dynamical event is triggered
by the Higgs Vacuum Expectation Value (vev) during the early history of the Universe.
This event selects the value of m2

h that we observe today, leaving traces at low energy that
can escape current searches, but are in principle detectable in the near future.

Here we discuss a proposal in this class with the following qualities: 1) It is entirely
described by a simple polynomial potential for two weakly-coupled light scalars 2) it does
not make any assumption on what can explain current CMB observations, in particular
it is compatible with one’s favorite mechanism (and scale) for inflation, but also with de
Sitter swampland conjectures 3) it can explain a small value of the Higgs vev v ' 246GeV,
even if the Higgs is coupled at O(1) with particles at MPl, 4) it is not affected by problems
of measure in the landscape.2

In a companion paper [35] we have already discussed one realization of this idea that
simultaneously explains the value of the Higgs boson mass and of the QCD θ-angle. Here
we discuss the general features of this mechanism, what are the possible implementations
and their phenomenology. Furthermore, we describe how this idea compares to other ideas
that trace the origin of the weak scale to the early history of the Universe. The idea of
crunching away “unwanted” patches of the Multiverse, that we exploit in this work, was
already discussed in relation to fine-tuning problems in [33, 34, 36].

In section 2 we discuss general features of cosmological naturalness that place the
predictions of our mechanism in a broader context and highlight the common predictions
of these mechanisms, which can be used to experimentally test this framework. In section 3
we describe the basic idea behind our proposal. In section 4 we discuss the cosmology of
the mechanism and its predictions for dark matter. In section 5 and 6 we describe two
operators that couple the new scalars to the SM and their phenomenology: the first one
yields a rich phenomenology at colliders, the second one allows to solve also the strong-CP
problem in a novel way [35]. We conclude in section 7.

2 General features of cosmological naturalness

A number of creative ideas that trace the origin of the weak scale to early times in the
history of the Universe are present in the literature [30–35, 37–43]. Taken at face value
these ideas seem widely different, selecting the weak scale by unrelated mechanisms and
predicting different phenomenology. In this section we identify the basic structure common
to these proposals and find that a large subset of these ideas have common ingredients which
often lead to similar low-energy predictions.

Cosmological explanations of the weak scale have the schematic structure shown in
figure 1. Early in the history of the universe (left panel) we have a landscape of values for

2If the landscape is populated via eternal inflation there will be a measure problem if one is interested in
understanding what values of fundamental parameters are more likely in the Multiverse. However this does
not affect the validity of the mechanism, since we are not asking probabilistic questions in the Multiverse.
We instead have a theory where all unwanted patches are either always empty or always crunch. So we
never need to know if the unwanted patches are more or less likely (occupy a smaller or larger volume in
the Multiverse) than the one that we observe.
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Symmetric Sector

⇤S ⌧ MPl

O1 = −O2 + ✏

SM Landscape

Early History of the Universe

Symmetric Sector

⇤S ⌧ MPl

O1 = −O2 + ✏

SM Landscape

Late times

An event triggered by the 
symmetric sector selects 

the observed 

m
2

h

Figure 1. Models of cosmological selection of the weak scale. A symmetric sector, where a large
hierarchy of scales is technically natural, is weakly coupled to a landscape of values of m2

h. The
SM landscape contains tuned values of m2

h including the observed one and is populated early in
the history of the Universe. At a later time a cosmological event selects the observed value of m2

h

through the coupling to the symmetric sector. Different selection mechanisms are shown in figure 2.

m2
h and a symmetric sector weakly coupled to the SM. In the symmetric sector a large

hierarchy of scales is technically natural and it is not destabilized by the small coupling to
the SM. The sector is symmetric in the sense that its approximate symmetries naturally
stabilize a large hierarchy of scales. At late times, a cosmological event triggered by the
Higgs vev and the coupling between SM and symmetric sector selects the observed value
of the weak scale (right panel of figure 1).

The landscape of vacua can be realized in the form of causally disconnected patches of
the Universe forming a Multiverse [44–46], possibly populated during inflation. It is easy
to always approximately decouple the landscape to the point of making detection prospects
of the multitude of vacua almost non-existent. However it is useful to keep in mind that
the more standard string theory (or field theory [47, 48]) landscape is not the only option.
The landscape can also be entirely contained in our patch of the Universe, either in the
form of a scanning field coupled to the Higgs, as is the case for the Relaxion [30], or of
feebly interacting copies of the Standard Model, as was proposed in Nnaturalness [31].

We identify three broad categories for the selection mechanism in figure 2: 1) Anthropic
Selection [29, 49–51]. Observers can arise only if 〈h〉 ' v. 2) Statistical Selection [37, 38,
40, 41, 43]. Given some measure, the Multiverse is dominated by patches where 〈h〉 ' v.
3) Dynamical Selection [30–35, 39, 42]. Only non-empty3 patches where 〈h〉 ' v live for
cosmologically long times.

Anthropic and statistical selection do not require new observable physics coupled to
the SM. The mechanism that populates the landscape and generate its structure can take
place at unobservably high energies or be due to non-dynamical fields with extremely feeble
couplings to the SM [32, 37, 38, 43].

3The simplest definition of an empty a patch is given by a universe where a positive CC always dominates
the energy density. However for our purposes it is sufficient that, as explained below, observers can only exist
for a sufficiently short time. We can consider empty also patches where the CC is positive and larger than a
certain threshold Λ > Λmin. In these patches we can have a period of radiation and/or matter domination
that lasts at most ∼ MPl/

√
Λmin. For an empty patch this time has to be much shorter compared to the

age of our universe. In most models this time is much shorter than typical particle physics scales (� 1/v).
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Dynamical selection occurs when at early times we have a “standard” landscape, with
no preference for small 〈h〉, but at late times only universes with 〈h〉 ' v exist and are
not empty. The distinction between this class of ideas and anthropic selection might seem
blurred. However there are one conceptual difference and one (more important) practical
difference. The conceptual difference is that dynamical selection mechanisms do not require
the absence of observers from other patches of the Multiverse. The “wrong” values of the
Higgs vev are matter and/or radiation dominated for a very short time compared to the
age of the observable Universe (often even compared to particle physics scales). During this
time, an observer whose typical timescales are 1/M � 1/v can possibly exist, but it does
not change the statement that the only way to have a universe even remotely resembling
our own is to have 〈h〉 ' v. The practical difference is that dynamical selection requires
new physics coupled to the Higgs and can be detected in the near future. From now on we
focus on this class of models that does not suffer from measure problems and has the best
chance of being tested experimentally. Our idea belongs to this category.

Having said this, it is clear that what we have called dynamical solutions have anthropic
elements. First of all, most of them, including our proposal, rely on Weinberg’s argument
to explain the CC. Secondly, the existence of a macroscopic, long-lived and non-empty
universe is Weinberg’s argument. We have already argued that dynamical solutions, unlike
anthropic ones, do not require the absence of observers from other universes, but we can
see how this conceptual point can be the starting point of endless debates. However we
find that the distinction between these two classes of ideas has practical value in light of
the important phenomenological distinctions that we now discuss.

In existing “dynamical” models the selection mechanism is composed of two ingredi-
ents: 1) one or more new scalars or pseudo-scalars with masses inversely proportional to
the cutoff of the Higgs sector and 2) an operator whose vev is a monotonic function of the
Higgs vev. These operators are coupled to the new scalar(s) and were collectively identified
as triggers in [42]. When the Higgs vev (and thus the operator vev) crosses certain upper
or lower bounds, a cosmological event is triggered via the coupling to the new scalar(s).

In the next two subsections we show why we expect new particles with masses in-
versely proportional to the cutoff and how the choice of trigger operator determines the
phenomenology of dynamical selection. Our considerations apply to the majority of these
models, but exceptions to the power counting arguments in the next section exist, either
because the weak scale is not selected by comparing two different terms in the potential of
a new scalar, but rather directly its mass to that of SM particles [31] or because it occurs
via a non-dynamical field [32].

2.1 Cosmological naturalness power counting

The presence of new light scalars φ, in many of the models that dynamically select the
weak scale in the early history of the Universe, can be understood from a simple parametric
argument. Neglecting O(1) factors we can write any term in the φ potential as

Vφ ⊃ m2
φM

2
∗

(
φ

M∗

)m
. (2.1)
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Symmetric Sector

⇤S ⌧ MPl

SM Landscape

Anthropic Selection

O1 = −O2 + ✏

Observers Symmetric Sector

⇤S ⌧ MPl

SM Landscape

Statistical Selection

O1 = −O2 + ✏

Symmetric Sector

⇤S ⌧ MPl

SM Landscape

Dynamical Selection

O1 = −O2 + ✏

Figure 2. Models of cosmological selection of the weak scale. Anthropic selection (upper left panel),
Statistical selection (upper right panel) and Dynamical selection (lower panel) are distinguished by
the structure of the landscape at late times. In the anthropic case the landscape contains all values
of m2

h with no preference for 〈h〉 ' v. In the statistical case 〈h〉 ' v dominates Multiverse according
to some measure, but also all other values are present. In the dynamical case only universes with
〈h〉 ' v are cosmologically long-lived and non-empty.

+ =

+ =

+ =

Figure 3. Schematic structure of how the Higgs-dependent potential VHφ can affect the scalar
potential Vφ to trigger a qualitative change when 〈h〉 ' v.
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Here and in the following, we restore units of ~ [52] to infer the correct parametrics.
However, for simplicity, we keep giving formulas in natural units ~ = 1. If ~ 6= 1 masses
and scalar fields/vevs have different dimensions and we will be careful about this distinction.
In our formulasM∗ is a cutoff scale (with the same dimensions as φ), whereas mφ is a mass.
Dimensionally, mass = coupling× scale.

We can now include an interaction between φ and the Higgs boson. We denote the
cutoff scale of the Higgs sector by ΛH and by ṽ ≤ v possible light SM or BSM scales,
not depending explicitly on the Higgs vev 〈h〉. Then, integrating out the SM at tree-level
we have

V〈H〉φ ' µ2M2
∗

(
φ

M∗

)n ṽ2q−j〈h〉j

Λ2q
H

, (2.2)

with q ≥ 1 and j > 0. Examples of couplings of φ to the SM present in the literature
include: 1) φTr[GG̃] [30, 35, 37, 38, 40], giving

ṽ2q−j〈h〉j ' f3
π〈h〉 (2.3)

for QCD (note that fπ depends on 〈h〉). A similar result holds for BSM gauge groups
whose quarks get part of their mass from the Higgs. 2) φnH1H2 [42]:

ṽ2q−j〈h〉j = sin 2β
2 〈h〉2 (2.4)

and 3) φn|H|2 [33, 34, 41]: ṽ2q−j〈h〉j = 〈h〉2.
To select the weak scale, we need the Higgs-induced part of the potential V〈H〉φ to

be comparable to the Higgs-independent part Vφ when 〈h〉 ' v, as sketched in figure 3.
Alternatively, if the mechanism involves, for instance, stopping a slow-rolling scalar, we
want the first derivatives with respect to φ to be comparable [30]. With our parametrization
of the potential these two conditions lead parametrically to the same result

m2
φ

µ2 '
ṽ2q−jvj

Λ2q
H

.
v2q

Λ2q
H

. (2.5)

This shows that the separation between the weak scale and the Higgs cutoff is given by an
approximate symmetry on φ that protects its mass and potential. Furthermore, it gives a
smoking-gun signature for these models. If we measure the φ mass, its coupling to the SM
µ and the Higgs cutoff ΛH , we can test eq. (2.5).

We can go even further and obtain an upper bound on mφ that depends only on the
cutoff scales M∗, ΛH , by noticing that µ2 has two upper bounds. One is determined by
experiment, since µ2 sets the strength of φ interactions with the SM. The other one comes
from quantum corrections, since integrating out the SM beyond tree-level can generate
contributions to Vφ, but to select the weak scale Vφ cannot be too large (i.e. it has to be
comparable to the tree-level Higgs-induced potential V〈H〉φ when 〈h〉 ' v). We now use
these constraints to derive upper bounds on mφ for three different types of couplings of φ
to the SM.
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∼
(
µ2M2

∗

Λ2q
H

)2

× (gHΛH)4(2q−1)−2·2q

(16π2)2q−1

Figure 4. Schematic diagram giving loop corrections to the potential Vφ from two insertions of
VHφ. The scalar φ is denoted by a continuous line, the 2q Higgs propagators by dashed lines.

The simplest example is given by the φ|H|2 coupling. Let us first consider the impact
of quantum corrections on µ. In this case the leading contribution to Vφ is from a single
insertion of VHφ,

VHφ = µ2M∗ φ
|H|2

Λ2
H

. (2.6)

By closing the Higgs loop we see that (barring fine-tuning) m2
φ & g2

Hµ
2/16π2, with gH

being a coupling in the Higgs sector. This takes into account that Higgs loop integrals are
cut off by a mass scale gHΛH (and not a vev ΛH). Eq. (2.5) supplemented by this condition
on µ shows that a cosmological selection mechanism with the trilinear coupling φ|H|2 can
solve only the little hierarchy problem

gHµ . 4πmφ → gHΛH . 4πv . (2.7)

To get the bound on mφ we may use the fact that µ has an experimental bound µ <

µexp(mφ;M∗,ΛH), so that (2.5) gives: mφ . µexp. We do not give the explicit value of
µexp since it depends strongly on mφ. In figure 8 we plot it in terms of κ ≡ µ2M∗/(Λ2

Hmφ)
for mφ . eV.

Instead, if the leading contribution to Vφ arises from two (or more) insertions of VHφ
(for instance in the φH1H2 case) we have

g4q−4
H

(16π2)2q−1
µ4M4

∗
Λ4
H

. m2
φM

2
∗ , (2.8)

as shown in figure 4, assuming for simplicity j = 2q, so that extra light scales ṽ are absent.
If we put this together with eq. (2.5) we obtain

mφ .
g2
HΛ2

H

4πM∗

( 4πv
gHΛH

)2q
.

4πv2

M∗
, (2.9)

where the last inequality is valid in the φH1H2 case, i.e. 2q = 2. We can raise the cutoff
all the way to MPl, predicting very light scalars with mφ . v2/M∗.

As our last example, we consider the coupling (φ/M∗)Tr[GG̃]. With this choice, quan-
tum corrections do not give us any information on mφ beyond eq. (2.5). In this case
experiment is more useful. Stringent bounds on axion couplings allow us to conclude

m2
φ . µ2

exp
vf3
π

Λ4
H

' (0.1 eV)2
(

108GeV
M∗

)2

(2.10)
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for QCD. A similar discussion holds for (φ/M∗)Tr[FF̃ ] with a new non-abelian gauge
group whose charged fermions have a 〈h〉-dependent mass [30].

These three examples make more precise the intuition from eq. (2.5). The separation
between the Higgs vev and the cutoff is made stable by a symmetry protecting mφ. They
also provide a second type of inequalities that can be used to test these mechanisms: the
bigger the cutoff M∗ of the φ sector the lighter we expect the new scalars to be. Note
that eq. (2.5) on its own, in the φTr[GG̃] case, does note give an experimentally interesting
relation between mφ and ΛH , because µ depends on ΛH in a way that cancels it from
the equation.

To conclude we remark that one can couple φ to the SM more weakly than what
naturalness or experiment require, making it even lighter. The dilaton in [34], mχ '
MeV − GeV, saturates our upper bound for the cutoff in the paper M∗ ' ΛH ' few TeV.
On the contrary, the scalar in [33] is much lighter mφ . v4/M3

Pl even if the same |H|2

trigger was used and the cutoff is of a similar order. The relation in eq. (2.5) between
the φ mass and the coupling to the SM remains valid. This gives an interesting target to
laboratory searches, as we discuss in section 4.1 in the context of dark matter.

2.2 Trigger operators and low energy predictions

The second generic prediction of mechanisms selecting the weak scale dynamically is old
or new physics with relatively small mass m . 4πmh coupled at O(1) to the Higgs.
This is what we have called the trigger, i.e. the local operator whose vev depends on
〈h〉. We have already seen in the previous section that four examples exist in the liter-
ature: φTr[GG̃], φH1H2, φ|H|2, φTr[FF̃ ], where G is the QCD field strength and F the
field strength of a BSM gauge group. Clearly the choice of trigger is central to the phe-
nomenology of the model. From the point of view of experiment, models of cosmological
naturalness can be conveniently classified based on their trigger. For example, theories
with a φTr[GG̃] coupling predict axion-like phenomenology at low energy, while theories
with φH1H2, Equivalence-Principle-violating light scalars and a new Higgs doublet.

In the SM we essentially have only one possible category of operators that can act as
a trigger, given by divergences of non-gauge invariant currents: Tr[GG̃] and Tr[WW̃ ]. In
this case QCD and EW interactions are the physics coupled to the Higgs, characterized
by mass scales comparable or smaller than mh. However purely within the SM the weak
θ-angle is not observable [53].

Constructing BSM triggers requires introducing new physics coupled to the Higgs. For
instance we can have a second Higgs doublet and the operator OT = H1H2 [42, 54, 55]
or a new confining gauge group whose fermions have a Yukawa coupling to the Higgs [30]
with trigger operator OT = Tr[FF̃ ]. In general if we introduce in the BSM theory masses
much larger than mh the vev of the trigger operators will be proportional to those scales
rather than v, just from dimensional analysis. This is one of the familiar incarnations of
the hierarchy problem, i.e. dimensional analysis works.

Other examples of triggers that might work in extensions of the SM are Tr[WW̃ ] or
higher dimensional operators breaking baryon and/or lepton number. Both options require
adding to the SM new baryon and/or lepton number breaking sensitive to the Higgs vev.

– 9 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
3

To assess the feasibility of these ideas a phenomenological study comparable in scope to
the one performed in [42] for H1H2 is needed.

The difficulty in finding BSM “trigger” operators OT lies in the requirement that 〈OT 〉
must be sensitive to the Higgs vev. In general we need new particles coupled at O(1) to
the Higgs whose typical mass scales are at most comparable to the weak scale. Beyond the
SM it is extremely challenging to find new physics with these characteristics not already
excluded by the LHC. Currently viable models, as the type-0 2HDM proposed in [42],
which leads to the operator in (3.7), are on the verge of being discovered or excluded. A
similar phenomenological analysis has been performed for Tr[FF̃ ] in [56].

In practice only a limited number of trigger operators is viable and each trigger can
be used in many different ways to select the Higgs mass. For example Tr[GG̃] is used
in [30, 35, 37, 38, 40]. So each trigger identifies phenomenology that is generically associated
to Higgs naturalness, independently of a specific construction.

This feature is generic to a large class of models that select the observed value of the
weak scale in the early history of the Universe: only a few choices of couplings to the SM
are possible. This leads to unified expectations for their phenomenology and the concrete
possibility of testing in the near future the concept of cosmological naturalness for the
Higgs mass.

3 Description of the mechanism

After this preliminary discussion, we introduce our mechanism to select the electroweak
scale.

3.1 Basic idea

At low energy the theory includes a new scalar φ− with an approximate shift symmetry.
The φ− potential has two widely separated minima. The deepest minimum of the potential
has energy density of O(−M2M2

∗ ) with M the largest mass scale in the theory and M∗ =
M/g∗ ∼ M a vev associated to it. This energy density is O(1) larger than the largest
cosmological constant in the landscape. Universes where φ− rolls to this minimum rapidly
crunch. The shallow “safe” minimum of φ− has energy density O(m2

φ−
M2
∗ ), with mφ− �

M . In this minimum the CC can be scanned finely around zero. Its observed value today
can, for instance, be selected by Weinberg’s anthropic argument [57]. The φ− potential is
schematically depicted in the left panel of figure 5.

A small value for the Higgs vev, 〈h〉 � M∗, is selected by a 〈h〉-dependent tadpole in
the φ− potential. This tadpole destabilizes the safe metastable minimum when the Higgs
vev is larger than v. The tadpole is generated by a coupling of φ− to an operator OT

VHφ = −aφ−OT + h.c. (3.1)

whose vev is a monotonic function of 〈h〉. When 〈h〉 � v the tadpole in eq. (3.1) dom-
inates the φ− potential around M∗ and destroys the safe minimum (see figure 5), so all
universes with large and negative Higgs mass squared rapidly crunch. The small number
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Figure 5. Example potential V−(φ−) with two widely separated minima. The right panel zooms
in close to the safe local minimum at φ ∼M∗. This is destabilised if the Higgs acquires a large vev
(red line). Note the different rescaling in the two panels for both the field and the potential.

Figure 6. Example potential V+(φ+), that selects a nonzero Higgs vev. The right panel zooms in
close to the safe local minimum at φ+ ∼M∗, present only if the Higgs acquires a sufficiently large
vev (green line).

that separates the weak scale from the cutoff M∗ is mφ, i.e. universes where the tadpole
dominates near the metastable minimum of φ−,

a〈OT 〉
m2
φM∗

� 1, (3.2)

are those which crunch fast. The separation between mφ− and M∗ is technically natural,
because φ− is part of a very weakly coupled sector that can naturally be approximately
scale-invariant or supersymmetric, without any measurable trace of scale invariance or
supersymmetry in the SM.

The basic “crunching” setup is conceptually the same as [33, 34], but, as we will see in
more detail in the following, there are two important differences: 1) differently from [34]
in our case inflation can happen at a very high scale and possibly be eternal. Crunching of
patches where 〈h〉 � v occurs after reheating at temperatures below v, independently of
the details of inflation. 2) In [34] the SM becomes approximately scale invariant already
above a few TeV. In [33] new physics that protects the Higgs mass must appear at a few
TeVs. Here and in our companion paper [35] the symmetries protecting the φ− potential
can be invisible in the SM sector.

We have seen that φ− stabilizes a hierarchy between the Higgs vev and the cutoff, but
we can still have universes with vanishing Higgs vev. Universes with small (or vanishing)
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Figure 7. Parameter space of the mechanism, assuming the same mass for both scalars. The red
lines denote the maximal crunching time of patches with the “wrong” value of the weak scale. Red-
shaded regions are excluded either because the crunching time is cosmologically long or because
crunching would occur before the Electroweak phase transition. In the blue region oscillations of
the scalars produce too much dark matter, at its boundary the cosmological DM abundance is
reproduced. In the gray region the DM mass is larger than astrophysical lower bounds [58].

Higgs vevs are destabilized by an additional scalar φ+ coupled to OT in the same way as φ−.
The main difference is that φ+ does not have a safe metastable minimum when 〈h〉 = 0.
This minimum is generated only if 〈h〉 & v. Then, as shown in figure 6, the universe
rapidly crunches unless the Higgs acquires a sufficiently large vev. The mechanism with
both scalars φ± selects a small and non-zero Higgs vev.

In figure 7 we show the allowed parameter space for mφ+ = mφ− and OT = H1H2,
which we discuss in more detail in section 4. The figure shows that cutoffs as large as ∼MPl
can be explained by the mechanism. For cutoffs of O(MGUT) coherent oscillations of the
new scalars can be the DM of our Universe. The crunching time of Universes without the
shallow minimum is approximately 1/mφ± . This gives an upper bound on the φ+ mass:
mφ+ . H(v) ' 10−4 eV. For heavier φ+ also universes with the observed Higgs vev rapidly
crunch, because crunching would occur before the effect of the Higgs vev in our universe
is felt by φ+.

Note also that the lifetime of our “safe” metastable minimum is much longer than the
age of our universe. The tunneling rate is Γ/V .M4

∗ e
−8π2M2

∗/m
2
φ± . If we take for instance

M∗ ' 1014 GeV andmφ+ = mφ− = 10−11 eV, a point in our figure 7 where we also reproduce
the observed DM relic density, we obtain a tunneling action S > 8π2M2

∗ /m
2
φ±
∼ 1069.

Lowering M∗ all the way to a TeV and raising mφ to H(ΛQCD) does not change the
conclusion that our minimum is orders of magnitude more long-lived than the current age
of the Universe.
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3.2 Scalar potential and selection of the weak scale

To make the previous discussion more explicit, we consider the scalar potential

Vφ− = m2
φ−M

2
∗

(
φ−
M∗

+
φ2
−

2M2
∗
−

φ3
−

3M3
∗

+ δ

4
φ4
−

M4
∗

)
+ . . . (3.3)

and imagine that the quartic coupling is small (δ � 1). We have set to one possible
numerical coefficients of the φ− monomials, but our discussion applies also to more general
choices. V− has a low-energy minimum at φ− ∼M∗, where |V−| ∼ m2

φM
2
∗ �M2M2

∗ and a
deep stable minimum at φ− ∼ M∗/δ where −V− ∼ m2

φM
2
∗ /δ

3 & M2M2
∗ . The potential is

shown in the left panel of figure 5.
This potential can naturally arise from simple supersymmetric models. We can con-

sider for instance the superpotential

Wφ− = LΦ− + µΦ2
− + λΦ3

− , (3.4)

and the SUSY breaking term
VB = εµφ3

− . (3.5)

In absence of SUSY breaking, the potential from Wφ− can have two widely separated
minima in field space. One is at φ− ∼ L/µ the other at φ− ∼ µ/λ, both have zero vacuum
energy. The SUSY breaking term can split the two minima by a large amount without
making the construction unnatural. In particular, for L = mφ−M∗, µ = mφ− , ε = mφ/M∗
and λ =

√
δε� ε we recover Vφ− shifted by an unimportant overall CC of O(m2

φ−
M2
∗ ).

This supersymmetric UV completion shows that more general choices than eq. (3.3) are
natural and lead to the structure with a deep and a shallow minimum that we are interested
in. In particular we do not need to consider the form in eq. (3.3) that is suggestive
of the potential for a pseudo-Goldstone boson. We could take mass, cubic and tadpole
at different scales. We could also consider, as we did in [35], a Z2-symmetric potential,
protected by approximate scale invariance, where the deep minimum comes from a negative
quartic coupling, eventually stabilized by non-renormalizable operators at large field values.
For simplicity we use eq. (3.3) in the rest of the paper, which is manifestly natural if
(mφ−/M∗)2 . δ. The second scalar that we introduced, φ+, can have the same potential
as φ−, but a different sign for the cubic term

Vφ+ = m2
φ+M

2
∗

(
φ+
M∗

+
φ2

+
2M2
∗

+
φ3

+
3M3
∗

+ δ

4
φ4

+
M4
∗

)
+ . . . . (3.6)

In this case the metastable minimum is not present. We only have the deep minimum at
φ+ ∼M∗/δ. The potential is shown in the left panel of figure 6. Clearly other possibilities
are viable, but to simplify the discussion we consider the same structure for the potentials
of φ±. In principle the vev M∗ and the parameter δ can be different for the two scalars, as
we discussed in [35]. When appropriate we will comment on the impact of this possibility
on phenomenology. The last aspect that we need to specify is the coupling of φ± to the
SM. In this paper we will mainly consider

Vφ+H + Vφ−H = −κH1H2(mφ+φ+ +mφ−φ−) + h.c. , (3.7)
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whereH1 is a new Higgs doublet present in addition to the SM-like Higgs H2 and κ ≤ 1. For
H1H2 to be a good “trigger”, i.e. select the weak scale, we need to impose an approximate
Z2 on the Two Higgs Doublet Model (2HDM) potential. We discuss this in section 5.
Finally, we could consider cross-couplings between φ+ and φ−. For κ� 1 it is technically
natural to take them to be negligibly small. Therefore, for simplicity in this paper we set
them to zero, although we expect that our mechanism is effective also in the presence of
cross-couplings, provided that the potential has the structure with two minima that realizes
our crunching mechanism.

The mechanism can be realized also for a trigger operator OT purely within the SM,
as we did in [35]. In the following we discuss

Vφ+G + Vφ−G = −αs8π

(
φ+
F+

+ φ−
F−

)
Tr[GG̃] , (3.8)

expanding on the results in [35]. We discuss the coupling to Tr[GG̃] in section 6, while in
the following we consider the potential:4

V = Vφ+ + Vφ− + VHφ+ + VHφ−

= m2
φ+M∗φ+ +m2

φ−M∗φ− +
m2
φ+

2 φ2
+ +

m2
φ−

2 φ2
− +

m2
φ+

3M∗
φ3

+ −
m2
φ−

3M∗
φ3
− + δ

m2
φ+

4M2
∗
φ4

+

+ δ
m2
φ−

4M2
∗
φ4
− − κ

(
mφ+φ+ +mφ−φ−)(H1H2 + h.c.

)
, (3.9)

where we recall that δ � 1. The potential is technically natural for κ . 4π, δ &
max[κ6(v4/m4

H,min),m2
φ/M

2
∗ ] where mH,min is the smallest Higgs mass in the landscape.

If mH,min ' 0 the IR divergence is cutoff by mφ± . Notice that as long as these conditions
are verified, large mixed couplings are not generated by loops, at least if the parameters
of the two scalars are not too different. Furthermore we will see that the values of κ that
give the observed dark matter relic density in the form of coherent oscillations of φ± are
κ . 10−5, making induced cross couplings completely negligible. Therefore, for simplicity
we can set the mixed couplings to zero, as mentioned above, to keep the analytic treat-
ment tractable. Notice however that O(1) cross couplings do not necessarily spoil our
mechanism, provided that at large field values they do not lift the deep minimum of V .

The global minimum of V is at φ± ∼ ∓M∗/δ, where the potential is V ∼ −(m2
φ+

+
m2
φ−

)M2
∗ /δ

3. Since the universes where the scalars are at this minimum must crunch, this
is also the value of the maximal CC allowed in the landscape for our mechanism to work.
For δ . ((m2

φ+
+m2

φ−
)/M2

∗ )1/3 this is ∼M4
∗ or larger, i.e. at the cutoff of the EFT.

The potential in eq. (3.9) has one metastable local minimum (where neither φ+ nor
φ− are at their global minimum) only for

µ2
S . 〈H1H2〉 . µ2

B , (3.10)

where
µ2
S '

mφ+M∗

κ
, µ2

B '
mφ−M∗

κ
. (3.11)

4For those more used to a relaxion-like parametrization of the potential: gM2φ + g2φ2 + . . ., we note
that g = mφ,M∗ = M2/mφ.
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This result can be more easily understood by considering independently the potentials for
the two scalars. Vφ− is depicted in the left panel of figure 5 and it has two cosmologically
long-lived minima. If φ− rolls to the deepest minimum the universe rapidly crunches. The
coupling to the Higgs VHφ− induces a tadpole that destroys the metastable minimum at
φ− ∼M∗ if 〈H1H2〉 & µ2

B (right panel of figure 5), giving the second equality in (3.11). Vφ+

is depicted in the left panel of figure 6 and it has one cosmologically long-lived minimum.
If φ+ rolls to the minimum the universe rapidly crunches. The coupling to the Higgs VHφ+

induces a tadpole that generates a metastable minimum at φ+ ∼M∗ only if 〈H1H2〉 & µ2
S

(right panel of figure 5). This gives the first equality in (3.11). Only universes where this
metastable minimum exists both for φ± can live for cosmologically long times. These are
universe where µ2

S < 〈H1H2〉 < µ2
B.

Given our choice of trigger operator we are really selecting the vev of H1H2. This is
sufficient to select the weak scale (i.e. the vev of the SM-like Higgs) under the conditions
described in section 5. As shown in that section, if we want to select the weak scale we
need parametrically 〈H1H2〉 ' v2 which implies

mφ± '
κv2

M∗
. (3.12)

At the local minimum, if it exists, the potential is thus of order V ' κ2v4 and the φ-
only potential Vφ+ + Vφ− is comparable to the Higgs-induced potential VHφ+ + VHφ− . We
imagine that the CC problem at the local minimum is solved by tuning in the landscape
plus Weinberg’s argument.

4 Cosmology

In this section we describe the cosmology of the model. The initial reheating temperature
does not affect our main results. For concreteness, we take all universes to be reheated
at T ' M∗. We imagine that the scalars can be in any position on their potential after
reheating. In section 4.1 we show that φ± are good DM candidates. In section 4.2 we show
that the crunching time for universes with the “wrong” Higgs vev is dominated by the local
part of the potential (|φ±| .M∗) and is at most tc ∼ max[1/mφ+ , 1/mφ− ].

4.1 Dark matter

As in the previous section, we focus on the coupling to H1H2 in eq. (3.7). Similar results
for the coupling to gluons are discussed in [35] and section 6.

The scalars φ± are stable over cosmological timescales5

Γφ ' Γ(φ→ γγ) '
GFα

2m5
φ

9
√

2π3m2
h

(
κ

λ

)2
' 1

1017 × (13× 109 years)

(
mφ

eV

)5 (κ
λ

)2
, (4.1)

and their coherent oscillations can constitute the DM of the Universe. To compute the
relic density, we note that φ± get a “kick” at the Electroweak (EW) phase transition, when

5Here λ is an O(1) combination of quartics in the 2HDM Higgs sector.
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T ' v, and acquire an energy density in the form of a misalignment from their minimum.
To be more explicit let us consider a single scalar with potential

V = Vφ + VHφ = m2
φM

2
∗

(
φ

M∗
+ φ2

2M2
∗
− φ3

3M3
∗

+ δ
φ4

4M4
∗

)
− (κmφφH1H2 + h.c.) . (4.2)

Before the EW phase transition, under the conditions discussed in section 5 that are neces-
sary to select the weak scale, 〈H1H2〉 = 0, so at early times we can focus on Vφ. Our universe
survived for cosmologically long times, so initially |φ| .M∗. Universes with different initial
conditions eventually see φ roll to its deep minimum and crunch independently of the value
of 〈h〉. Early on, as long as mφ . H(T ), φ is stuck with an initial misalignment from the
minimum φI and an energy density given by Vφ ' m2

φφ
2
I . m2

φM
2
∗ . When mφ & H(T )

it starts to oscillate around its metastable minimum φmin ' M∗, and its energy density
starts to redshift like cold DM. This can occur either before (mφ & H(v) ' 10−5 eV) or
after (mφ . H(v)) the EW phase transition. We can call φEW the average amplitude
of the field at the EW phase transition. This is given by φEW = φI if mφ . H(v) and
φEW = φI(a(Tosc)/a(v))3/2 if mφ & H(v), where a(T ) is the scale factor of our universe
and Tosc the temperature at which φ starts to oscillate. In both cases |φEW| .M∗.

At the EW phase transition the average position of φ in its potential is φ̄ 'M∗+φEW '
M∗ and VHφ starts contributing to the φ potential

∆V = VHφ ' κmφM∗〈H1H2〉us ' κmφM∗v
2 , (4.3)

where 〈H1H2〉us is the operator vev in our universe. If our universe is close to one of the
boundaries of the “safe” region for the Higgs vev, i.e. 〈H1H2〉us ' µ2

S or 〈H1H2〉us ' µ2
B,

then ∆V ' Vφ(M∗) and the minimum of φ is shifted from its initial position,

∆φmin 'M∗ . (4.4)

This contributes another factor of M∗ to φ’s initial misalignment. Generically we expect
to be in the situation 〈H1H2〉us ' µ2

B, given the distribution of mass squared parameters
in a typical landscape (i.e. since we need to tune to make 〈H1H2〉 small, larger values are
generically preferred). Therefore in the following we imagine that 〈H1H2〉us ' µ2

B when
〈h〉 ' v and take eq. (4.4) as a good parametric estimate of the misalignment of φ− at
the EW phase transition. If M∗ and κ are the same for both scalars, φ+ gives at most
a comparable contribution to the DM relic density, and only if it starts oscillating and
redshifting as cold DM after the EW phase transition. Since we are interested in a first
estimate of the relic density, we neglect the φ+ relic density and continue with our single
scalar description, which captures the relevant parametrics.

The kick at the EW phase transition gives the dominant contribution to the relic
density if mφ & H(v), since the initial misalignment (that can be at most O(M∗)) has
already partially redshifted away. If mφ . H(v), ignoring the initial misalignment still
gives parametrically the correct result, since it can give at most an O(1) correction on top
of the EW-induced misalignment. Therefore modulo O(1) factors, we get

ρφ−(T ' v) ' m2
φM

2
∗ & ρφ+(T ' v) . (4.5)
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Figure 8. Laboratory and astrophysical constraints on a scalar coupled to the Higgs boson via the
trilinear interaction κmφ−φ−|H|2. The bounds include tests of the equivalence principle [59–61],
tests of the Newtonian and Casimir potentials (5th force) [62–70] and stellar cooling constraints [71].
The red solid line shows the target given by φ− reproducing the observed dark matter relic density.
Above the gray dashed line κ > 1. In the gray shaded region κ > 4π, making the scalar potential
unnatural. The constraint from AURIGA [72] is not shown because the mass ranged explored is
too narrow to be visible on this scale. The bound does not touch our DM parameter space. Bounds
on this coupling and future probes, spanning a larger mass range, can be found in [73, 74].

From eq. (3.12) we know that to select the weak scale we need m2
φM

2
∗ ' κ2v4, so the relic

density is entirely specified by giving the coupling κ of the scalars to the SM, and their
mass mφ, which determines the moment in time when they start to oscillate and redshift
as cold DM (mφ ' H(Tosc)). We are in the same situation described in [35, 42]. Light
scalars coupled to trigger operators offer universal targets to DM searches. We now give
an estimate of the target. The relic density today is

ρφ− + ρφ+

ρDM
'
ρφ−

ρDM
' m2

φ−M
2
∗

s0
ρ0

DM min[s(v), s(Tosc)]
. (4.6)

To highlight the phenomenological significance of this result we can use eq. (3.12):
m2
φ−
M2
∗ ' κ2v4 and rewrite our expression in terms of the effective trilinear coupling

of φ− with the Higgs that determines the strength of φ− interactions with the SM:

L ⊃ −b−φ−H1H2 + h.c. ' −b−φ−|H|2 + . . . , b− ' κmφ− . (4.7)

Here for simplicity we have taken the limit of a small coupling of H1 to SM fermions (i.e.
λ3 + λ4 + λ5 � λ2 with λi’s defined in eq. (5.3); generalizing introduces additional O(1)
factors that do not qualitatively affect our discussion). In conclusion

ρφ
ρDM

=
b2
−v

4

m2
φ−

s0
ρ0

DM min[s(v), s(Tosc)]
'


b2v

m2
φ−

Teq
mφ− ≥ H(v)

b2v4

m
7/2
φ−

M
3/2
Pl Teq

mφ− < H(v)
(4.8)
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Figure 9. Schematic view of the structure of the potential including the time to cross the local
(global) region around (far from) the metastable minimum. Scalars that roll to the deep minimum
and lead to a crunching universe take most of the time to cross the local region (

√
δ � 1).

where Teq ' eV is the temperature of matter-radiation equality, and we have a target for
ultralight DM searches:

bDM ' mφ−

√
Teq
v

min

1,
m

3/2
φ−
M

3/2
Pl

v3

 . (4.9)

For any given mass only one value of the coupling to the SM bDM gives the observed relic
density. In figure 8 we show this ultralight DM target and current constraints on our
parameter space. The bounds include tests of the equivalence principle [59–61], tests of
the Newtonian and Casimir potentials (5th force) [62–70] and stellar cooling [71].

Future probes of φ− dark matter, including torsion balance experiments [75], atom
interferometry [76], optical/optical clock comparisons and nuclear/optical clock compar-
isons [77], resonant mass detectors (DUAL and SiDUAL [78]) and gravitational-wave de-
tectors [79, 80] are orders of magnitude too weak to probe our parameter space. Current
constraints on 5th forces that are more than twenty years old are relatively close to mo-
tivated parameter space in the range 10−5 eV . mφ− . 10−3 eV and we hope that this
study will motivate future efforts towards improving their sensitivity.

Modulo factors related to the multiplicity of scalars, the prediction for the relic density
is exactly the same as in [42] and similar considerations can be made in relaxion models [81].
This is one manifestation of the universality of this prediction. Light scalars that can select
the weak scale, generically get the biggest contribution to their relic density from a SM
phase transition. If the Universe is reheated above the relevant phase transition, their relic
density today depends only on their mass and coupling to the SM.

4.2 Crunching dynamics

In this section we consider the dynamics of φ± crunching in detail and calculate the crunch-
ing time. We follow the evolution of the Universe after inflation, starting from a SM re-
heating temperature of the order of the cutoff, T ∼ M∗. If the reheating temperature is
lower than this, similar considerations are possible.
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We want to solve the classical equations of motion in an expanding universe

φ̈+ 3Hφ̇+ ∂V

∂φ
= 0 , (4.10)

for both φ+ and φ−, assuming that initially φ̇±(t0) = 0, T ' M∗. Since the two scalars
are approximately decoupled (κ . 10−5 to get the observed DM relic density) we can solve
eq. (4.10) separately for φ+ and φ−. As in the DM case we can consider a single scalar φ,
solve its equations of motion and then see how the solution applies to φ+ and φ−.

In principle there are four relevant regimes (that if needed can be glued together). They
correspond to the position of φ (near the local minimum or as far as it can be, see figure 9)
and to whether H(T ) is dominated by the φ± vacuum energy or SM radiation. If φ±
vacuum energy dominates the expansion of the universe the patch is in a state of φ±-driven
inflation until the rolling of the scalars makes it crunch. These patches do not reheat,6

because of the feeble φ± interactions. As a consequence, independently on the rolling time,
these patches are basically empty, excluded by the standard anthropic arguments on the
possibility of complex structures. In summary only two cases are actually relevant:

1. H(T ) ' T 2/MPl, φ(t0) 'M∗

2. H(T ) ' T 2/MPl, φ(t0) 'M∗/δ .

First consider patches that start with the fields φ±, denoted generically by φ, at the scale of
the local minimum of the potential, i.e. φ ∼M∗. Since at this scale V ∼ m2

φM
2
∗ �M2M2

∗ ,
the patch is initially radiation-dominated and the evolution of the scalars is given by

φ̈+ 3
2 t φ̇+ ∂V

∂φ
= 0 . (4.11)

In universes destined to crunch and in the local region |φ| . M∗, we can approximate
V with a tadpole (either the Higgs induced one for φ− or the one in Vφ+ for φ+), so
∂V
∂φ ' const. and we can solve eq. (4.11) exactly. We find that φ± cross a region of O(M∗)
in a time

∆t−(M∗) =
√

5
2
√
κ(mφ−/M∗)µH

, µ2
H ≡ 〈H1H2〉 ,

∆t+(M∗) =
√

5
2mφ+

, (4.12)

respectively. The longest crossing time for universes with 〈h〉 & v is obtained for 〈H1H2〉 '
µ2
B, i.e. when the Higgs-induced tadpole has the smallest slope that can still destroy the

local minimum for φ−. This happens for ∆t−(M∗) ' 1/mφ− .

6More precisely, as described in [82], while the scalar slides down its potential a subdominant thermal
bath is formed, due to the tiny interaction with the SM photons. When the vacuum energy crosses zero and
crunching starts, both the kinetic energy of φ and the thermal bath rapidly blue-shift until the big crunch.

– 19 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
3

To make sure that this calculation is consistent we need to check that in a time ∆t±
the temperature has not dropped enough from the initial value to take the universe to a
new phase of inflation. We have

∆t± = −
∫ T±

M∗

dT

H(T )T → T 4
± = M4

∗
(2H(M∗)∆t± + 1)2 . (4.13)

Comparing with Vφ± ' mφ±M
2
∗ we get that we do not enter a phase of inflation if

H(M∗)
M∗

. 1 , (4.14)

which is satisfied for sub-Planckian M∗. Now, let us instead assume that the patch starts
from a value of the scalar fields at the global scale, i.e. φ ∼ M∗/δ and V ∼ m2

φM
4
∗ /δ

3.
If δ3 . m2

φ/M
2
∗ the scalar potential dominates with respect to the thermal bath and the

patch is in a state of φ-driven inflation until the rolling of the scalars makes it crunch. As
explained above these universes are empty.

In the opposite regime δ3 & m2
φ/M

2
∗ the patch starts as radiation-dominated. After a

time ∆ts .
√
δ/mφ Hubble friction becomes negligible.7 This can be estimated for instance

by showing that when H(T ) ' mφ/
√
δ, φ is slow rolling over a range ∆φ ' M∗/δ in one

Hubble time. When Hubble friction is negligible we can solve eq. (4.10) in its simpler form

φ̈+ ∂V

∂φ
' 0 . (4.15)

We obtain that φ crosses the “global” region ∆φ ' M∗/δ, in a time ∆tg '
√
δ/mφ.

Therefore the longest time that φ can spend in this region of the potential, obtained
combining the two times (the time in which φ can be stuck due to Hubble friction and
the time needed to cross the region), ∆tg + ∆ts '

√
δ/mφ, is much shorter than the one

required to cross the region around the local minimum: ∆t± . 1/mφ.
In summary, as shown in figure 9, the longest time that it can take a universe with the

wrong Higgs vev to crunch is parametrically

∆tmax
c ' max[1/mφ+ , 1/mφ− ] , (4.16)

dominated by patches where φ± are initially in the region where their local minimum can
be generated |φ±| .M∗.

Finally, notice that: 1) If ∆tg is consistently smaller than a Hubble time, the global
region is crossed in a time ∆tg and the crunching time is dominated by the time to cross
the local region, as discussed above. In the opposite case, instead, the temperature drops
until T 4 ∼ M2

Plm
2
φ/δ. This can be smaller than V itself, signalling the onset of a stage

of φ-driven inflation, which would give an empty patch till crunching. 2) a patch starting
from sufficiently far away from the local minimum could be doomed to crunch anyway,
independently on the value of the Higgs vev, since the kinetic energy of φ when Hubble
friction becomes negligible, which for φ initially at M∗/δ is given by

φ̇2 '
m2
φM

2
∗

δ3 , (4.17)

7Hubble friction can be negligible from the beginning for low cutoffs, i.e. if H(M∗) 'M2
∗/MPl . mφ/

√
δ.
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can be sufficient to overtake the local maximum and access the unstable region of the
potential. Nevertheless, the crunching time of these patches is at most the one given in
eq. (4.16), so our mechanism is effective as long as tc ∼ 1/mφ is short enough.

In conclusion some patches might crunch or enter a phase of φ-driven inflation, leading
to an empty universe, even if they have the observed Higgs vev. However all patches with
the wrong Higgs vev rapidly crunch or enter a phase of φ-driven inflation, in a time bounded
by (4.16), making our mechanism an effective way to select the weak scale.

4.3 Parameter space

Our parameter space is summarized in figure 7. The scalar mass mφ is bounded from
below by the requirement that the crunching time must be shorter than the cosmological
scale, say 109 yr, otherwise patches with heavy Higgs, or without EW symmetry breaking,
are too long-lived. Imposing a shorter maximum crunching time a more stringent limit
is obtained, as shown in figure 7. On the other hand, mφ is bounded from above by the
requirement that the crunching time for φ+ must be longer than 1/H at the EW phase
transition, so that the Higgs vev has the possibility to stop the rolling of φ+ in due time.
Finally, the cutoff M∗ is bounded from above by the requirement that scalar oscillations do
not overclose the Universe. If M∗ & 1012 GeV, they can reproduce the observed DM relic
density. If this is the case, the scalars must however be heavier than ≈ 10−22 eV, because
of limits on fuzzy DM [58].

5 The H1H2 trigger

The essence of our mechanism is the generation of a Higgs-dependent tadpole for two
scalars φ±. When the Higgs vev is larger than a certain threshold, 〈h〉 & µ̄S , this tadpole
generates a “safe” minimum for φ+. When it gets even larger, 〈h〉 & µ̄B & µ̄S , it destabilizes
a minimum for φ−. As discussed in section 3 and section 4, only universes with the Higgs
vev in the range µ̄S . 〈h〉 . µ̄B, do not rapidly crunch. So far we have mainly considered
one operator that can generate this Higgs-dependent tadpole

OT = H1H2 , L ⊃ −κH1H2(mφ+φ+ +mφ−φ−) + h.c. . (5.1)

This type of operator is a trigger in the definition of [42]. When the Higgs vev (and thus
the operator vev) crosses certain upper or lower bounds, a cosmological event is triggered
via the coupling to the new scalar(s). In our case the event is a rapid crunch of the universe.

In this section we discuss the dependence of 〈H1H2〉 on the vev of the SM Higgs in
more detail. In particular we show how bounding the vev of H1H2 selects a value for 〈h〉 if
the Two Higgs Doublet Model (2HDM) has a Z2 symmetry: H1H2 → −H1H2. This singles
out a very specific kind of 2HDM potential that leads to characteristic signals at the LHC.
We find interesting that discovering new fundamental scalars at the LHC, without new
symmetries protecting their masses, is traditionally considered as a “death sentence” for
naturalness. On the contrary, our study and the work in [42] show that this can be the
first manifestation of naturalness of the Higgs mass.
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We consider the most general Z2 symmetric 2HDM potential [42]

H1H2 → −H1H2 , VH1H2 → VH1H2 , (5.2)

where

VH1H2 = m2
1

2 |H1|2 + m2
2

2 |H2|2 + λ1
2 |H1|4 + λ2

2 |H2|4

+ λ3|H1|2|H2|2 + λ4|H1H2|2 +
(
λ5
2 (H1H2)2 + h.c.

)
. (5.3)

This potential does not contain odd spurions that can generate contributions to µ2
H =

〈H1H2〉 sensitive to the cutoff. If the Z2 is exact we have µ2
H = 0. Coupling H1H2 to φ±,

as in eq. (5.1), does not break the Z2 symmetry if φ± → −φ±. Furthermore it leaves µ2
H

and all 2HDM phenomenology approximately unaltered, since the couplings between the
new scalars and the 2HDM are minuscule mφ . v2/M∗, as discussed in sections 3 and 4.
Therefore, in the study of µ2

H we can ignore the coupling to φ± and only (5.3) matters.
The vevs of H1,2 and the QCD condensate break the Z2 and generate µ2

H 6= 0. To
compute the value of µ2

H we need to assign Z2 charges to the quarks and leptons. We choose

H2 → −H2, (quc)→ −(quc), (qdc)→ −(qdc), (lec)→ −(lec), (5.4)

so that one of the two Higgs doublets is inert and the only Yukawa couplings in the
model are

VY = YuqH2u
c + YdqH

†
2d
c + YelH

†
2e
c + h.c. . (5.5)

This is the safest choice phenomenologically. It was shown in [42] that this charge assign-
ment is still viable experimentally, but it will be decisively probed by HL-LHC.

The model defined by eqs. (5.3) and (5.5) has a UV-insensitive and calculable vev µ2
H ,

shown in figure 10. µ2
H gives a tadpole to φ± and so the mechanism is really selecting

µ2
S . 〈H1H2〉 . µ2

B , (5.6)

which is not the vev of the SM Higgs: 〈h〉 '
√
|m2

2|. In principle µ2
H can be close to v2 also

for universes with very different EW-symmetry breaking compared to ours, for instance
m2

1 ∼ −v4/M2
∗ , m2

2 ∼ −M2
∗ still gives µ2

H(T = 0) ' v2. However our selection mechanism
takes place at T 6= 0. In practice we never need to worry about these patches provided that
φ+ is heavy enough to roll to its stable minimum before H1H2 gets a vev in these universes.
In our universe µ2

H 6= 0 already at the EW phase transition, while in these patches it is
zero until much later: T 2 . v4/M2

∗ .
There is one additional subtlety to consider. QCD can generate a vev for H1H2 even

for m2
2 ≥ 0 (see the right panel of figure 10): at the QCD phase transition quark bilinears

condensate. This gives an effective tadpole for H2, via (5.5). As a consequence, µ2
H can be

close to v2 also for another class of universes with very different EW-symmetry breaking
compared to ours, for instance m2

1 ∼ −v4/Λ2
QCD, m2

2 ' 0 still gives µ2
H(T = 0) ' v2.

For concreteness here and in the following we assume that dimensionless couplings do not

– 22 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
3

scan in the landscape. ΛQCD is still different from universe to universe due to the different
SM Higgs vevs, but this does not affect our discussion, so we do not show explicitly this
dependence here and in the following.

As in the previous case, these unwanted patches rapidly crunch if φ+ is heavy enough
to roll to its stable minimum before the QCD phase transition. Indeed, as shown in the
left panel of figure 10, before the QCD phase transition µ2

H can be nonzero only if both
m2

1,2 < 0 and larger, in absolute size, than the positive thermal contribution. These
considerations favour a relative heavy φ+, close to the boundary of its allowed region
mφ+ . H(v) ' 10−4 eV.

There are other possibilities to solve the problem raised by these unwanted patches
(both those with m2

2 > 0 and those with small m2
1 or m2

2). We can consider low cutoffs
M∗ . v2/ΛQCD, so that these patches are not present in the Multiverse or supplement the
mechanism with the anthropic considerations in [42].

The model that we just described has an accidental symmetry, as noted in [42]. The
Lagrangian is actually Z4-symmetric

H1 → iH1 H2 → iH2 (quc)→ −i(quc) (qdc)→ i(qdc) (lec)→ i(lec) , (5.7)

this creates a potential cosmological problem. After EW symmetry breaking a Z2 subgroup
of the Z4 survives

H1 → −H1 . (5.8)

This Z2 subgroup can be obtained from the Z4 after a global hypercharge rotation. As
a consequence the model has a domain-wall problem, i.e. domain walls between regions
with ±v1 are generated at the EW phase transition and they come to dominate the energy
density of our Universe at T ' v(v/MPl)1/2 ' keV. We can solve the problem via a tiny
breaking of the Z4 that does not alter any of our conclusions. If the 2HDM potential
contains a Bµ-term of size

VH1H2 ⊃ −BµH1H2 + h.c. Bµ ' v4

M2
Pl
. (5.9)

This insures that the domain walls annihilate at T ' keV. At larger temperatures they
constitute a negligibly small fraction of the total energy density [42]. This Bµ term breaks
also our original Z2, but it is numerically negligible in our analysis. In a large fraction of
our parameter space, shown in figure 7, the misalignment of φ± at the EW phase transition
automatically generates a large enough Bµ, and we do not need eq. (5.9).

As noted in [42] the phenomenology of this Z2 symmetric “type-0” 2HDM is very
interesting. Since we effectively set to zero any scale in the potential besides the two
masses (Bµ ' v4

M2
Pl
� v2), the new Higgs states contained in H1 are close to the weak

scale. If we adopt the usual notation for charged, scalar and pseudo-scalar Higgses we have

m2
A = −v2λ5 ,

m2
H± = −v2λ5 + λ4

2
m2
h,H = 1

2

(
λ1v

2
1 + λ2v

2
2 ±

√(
λ2v2

2 − λ1v2
1
)2 + 4v2

1v
2
2λ

2
345

)
(5.10)
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Figure 10. Vacuum expectation value of H1H2 in the model of eqs. (5.3) and (5.5) as a function
of the two Higgs masses. We show the vev before (left) and after (right) the QCD phase transition.
m1,2 are effective masses with the dimensions of vevs that contain contributions from O(1) quartic
couplings. ΛQCD is a function of the Higgs vevs and varies within the purple and yellow boxes. We
have approximated thermal corrections to m2

1,2 with T 2 to improve readability. Note that in the
light red regions the vev is not exactly zero, because of a small effective Bµ term induced by the
φ± vevs. However this effect is too small to affect our conclusions. It only gets rid of dangerous
domain walls, as discussed in the main body of the text.

and to avoid TeV-scale Landau poles we need all quartics to be . 2 around the weak
scale [42]. Therefore we have a sharp target for searches at the LHC and HL-LHC, which
is made even sharper if we notice two well-known facts: 1) There are couplings between
the SM and two new Higgses proportional to the SU(2)L gauge coupling, which are fixed
by gauge invariance. 2) Couplings with a single new Higgs, that are proportional to v1,
can not be made arbitrarily small.

Both points are quite interesting for the LHC: 1) a CMS search for staus in a
τ+τ−+MET final state, is sensitive to pair production of H+H− [83]. If recasted it can
potentially extend LEP’s bound on the H± mass to about 150GeV [42]. 2) At small v1
the new scalar Higgs becomes light

m2
H = v2

1

(
λ1 −

λ2
345
λ2

)
+O(v4

1/v
4) . (5.11)

So when trying to decouple H1 we rapidly run into stringent constraints from LEP, B-
factories and beam-dump experiments. Quantitatively this means that Higgs coupling
deviations in this model will be visible at HL-LHC. A more complete summary of signals
and constraints can be found in [42].

To conclude this section it is worth to point out that the Z2 symmetry is not mandatory.
However disposing of it forces two coincidences of scale to make µ2

H sensitive to the SM
Higgs vev.

To show this we can write a left-right symmetric model which is approximately in-
variant under H1 ↔ H2 as in [37, 55]. If Bµ . 16π2v2 and λ6,7 . 16π2v2/M2

∗ , µ2
H is

dominated by the tree-level contributions from the vevs. Furthermore, the exchange sym-
metry forces |m2

1,2| ' v2 when µ2
H ' v2, just what we want to select the weak scale from
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H1H2. Nonetheless, to make this model compatible with present LHC constraints we need
both ||m2

1| − |m2
2|| & v2 and Bµ & v2. As we have just shown, to make H1H2 a good

trigger we have upper bounds of the same order on both quantities: 1) we do not want
loop corrections to µ2

H to dominate on the vevs, hence Bµ . 16π2v2, 2) we can not take
the two masses too far apart, since breaking too much the exchange symmetry can lead to
〈H1H2〉 ' Bµ

|m2
1|

|m2
2|
, which can be close to the weak scale even when m2

2 ' −m2
1 ' M2

∗ . In
summary we need both ||m2

1| − |m2
2|| and Bµ to be of O(v2). So this is still an interesting

possibility to consider, but it is not as simple as imposing the Z2 symmetry.

6 The standard model trigger

We now consider the SM trigger, expanding the discussion of [35]. We take φ± to have an
axion-like coupling to gluons

VGφ = − 1
32π2

(
φ+
F+

+ φ−
F−

+ θ

)
Tr[GG̃] . (6.1)

For mu,d . 4πfπ, if we rotate φ± in the quark mass matrix and match to the chiral
Lagrangian at low energy, eq. (6.1) gives

VGφ = −m2
πf

2
π

√
1− 4mumd

(mu +md)2 sin2
(
φ+
2F+

+ φ−
2F−

+ θ

2

)
' Λ4(〈h〉)

2

(
φ+
F+

+ φ−
F−

+ θ

)2
,

(6.2)
where the potential is switched on at the QCD phase transition by chiral symmetry breaking

Λ4(〈h〉) = m2
πf

2
π

mumd

(mu +md)2 . (6.3)

We stress that its size is a monotonic function of the Higgs vev even in the regime mu,d &
4πfπ, although the functional form of Λ(〈h〉) becomes different. For the moment, we assume
that the vacuum angle θ (which includes the quark-mass phases) is fixed and small because
of some UV-mechanism that solves the strong-CP problem. Later, in section 6.1 we will
relax this assumption and show that the mechanism can actually also solve the strong-CP
problem by itself in a novel way [35], if the θ angle instead scans in the landscape.

We consider a scalar potential with the same form as in section 3:

V±(φ±) = m2
±M

2
±

(
φ±
M±

+
φ2
±

2M2
±
±

φ3
±

3M3
±

+ δ

4
φ4
±

M4
±

)
+ . . . (6.4)

with the total potential being V = V+ + V− + VGφ. Notice that (6.2) does not impose
constraints on the naturalness of V±. Therefore, M± are not related to the Higgs cutoff,
which can be arbitrarily large. We take M±/F± � 1 so that in the local region of the
potential VGφ is dominated by the quadratic term in the second equality of eq. (6.2). As
we will see in the following this is required by current measurements of the QCD θ-angle.

We assume m+ . H(ΛQCD), so that when φ+ starts to move, from the local region
φ+ ∼ M+ (otherwise the patch crunches anyway), the potential (6.2) is already switched
on. Then, the φ+ potential is locally stabilized only if 〈h〉 > µS , with

Λ4
S ≡ Λ4(〈µS〉) ' m2

+F
2
+ . (6.5)
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This can be understood as follows: in absence of VGφ, φ+ does not have a metastable
minimum in the local region |φ+| .M+. In this region VGφ is given approximately by the
quadratic term in the second equality of eq. (6.2). The only monomial that can generate
a minimum is the φ2

+ term in VGφ. The minimum is generated only if this term (with
positive sign) dominates within |φ+| .M+.

In general we may not have µS ' v, so in this section we give formulas valid also for
µS < v, which is enough to select successfully the weak scale. For instance, in this case
the size of local stable region around the metastable minimum is increased from M+, at
µS = v, to8

M̃+ '
Λ4

QCD
Λ4
S

M+ . (6.6)

The physical mass of the scalar is

m2
φ+ '

Λ4
QCD
F 2

+
'

Λ4
QCD
Λ4
S

m2
+ . (6.7)

The above arguments show how we get a lower bound on the weak scale. An upper
bound is generated as long as the φ− potential in (6.2) is dominated by the tadpole, i.e.
M−/F− . M̃+/F+ + θ. In this case, the safe local minimum exists as long as 〈h〉 < µB,
with

Λ4
B ≡ Λ4(〈µB〉) '

m2
−M−F−

θ + M̃+/F+
. (6.8)

If both φ+ and φ− exist in Nature, the only patches that do not crunch are those with
µS < 〈h〉 < µB. Given that, typically, large Higgs masses are favoured in the landscape,
we have v ≈ µB, so that ΛB ≈ ΛQCD. The physical scalar mass is mφ− ' m−. This could
be smaller or bigger than m+ and H(ΛQCD). Accordingly, during φ− dynamics the other
scalar φ+ could be still frozen by Hubble friction or not. We have replaced the unknown φ+
misalignment at the time when φ− starts to move, with its typical value M̃+, i.e. the size
of the local stability region close to the safe metastable minimum of φ+. Notice that φ+
moves by an amount ∼ M̃+ after the QCD phase transition, so even patches for which the
denominator in (6.8) is initially tuned to be small can survive until today only if 〈h〉 . µB,
since the denominator will effectively be detuned when φ+ starts to move. The θ-angle
today is

θ0 ' θ + M̃+
F+

+ M−
F−
' θ + M̃+

F+
. (6.9)

We had already assumed θ . 10−10 from an unspecified UV solution to the strong CP
problem (for instance of the Nelson-Barr type [84, 85]), we further require M̃+/F+ .
θexp ' 10−10.

Notice that along the flat direction of (6.2), F−φ+ = −F+φ−−θF+F−, the potential is
not sensitive to the Higgs vev. However, with our assumptions (and at fixed θ), generically
the flat direction does not intersect the local stability region φ± ∼ M± and hence it does
not pose a threat to the mechanism.

8This formula is valid if the instability is generated by a cubic term, as in (6.4). If, instead, the instability
is generated by a quartic coupling, like in the example potential of [35], we find M̃+ 'M+Λ2

QCD/Λ2
S .
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6.1 Solving also the strong-CP problem

So far we have assumed that the θ angle is set to be small by some unspecified mechanism
operating at a high energy scale (E �

√
mφ±M±). We now show that the usual Peccei-

Quinn solution is not compatible with the mechanism. Let us assume that an axion a is
present, heavier than φ±, so that (6.2) is modified to

VGφa '
Λ4(〈h〉)

2

(
φ+
F+

+ φ−
F−

+ a

f

)2
, (6.10)

having used the shift-symmetry of a to absorb the UV θ angle. Then, the first scalar that
starts rolling is the axion itself, which rapidly relaxes the whole 〈h〉-dependent potential
to 0; this is continuously readjusted to 0 even subsequently, during the slower motion of
φ±. As a consequence, φ± would not be sensitive to the Higgs vev. Notice that some small
Peccei-Quinn breaking potential for the axion, coming from the UV, would not help, being
independent on the Higgs vev.

However, if the θ-angle is also scanned in the landscape (for instance because of the
presence of a scalar coupled to GG̃ and lighter than φ±), then our mechanism itself solves
the strong-CP problem in a novel way, in addition to the Higgs hierarchy problem [35].
This occurs because the φ+ metastable minimum is generated only if θ is small enough
that the minimum of (6.2) lies within the local region φ ∼ M+, where the destabilizing
cubic term of V+ does not dominate. Otherwise the patch crunches, in the same way as
the ones with a “wrong” value of the Higgs vev. A small θ is selected by this requirement:

M̃+
F+

& θ . (6.11)

The only patches that do not crunch are those with µS . 〈h〉 . µB and θ0 � 1. This novel
solution to the strong-CP problem has its own phenomenological features that distinguish
it clearly from the axion one, as discussed in [35] and summarized in the next subsection.
Additionally, the same dynamics selects a small and nonzero Higgs vev.

Before discussing the phenomenology, we point out a subtlety that arises once θ scans
in the landscape. In this case, there certainly exist patches with tuned values of θ such
that the flat direction of (6.2) crosses the local stability region φ± ∼ M± and therefore
becomes relevant. Recall that along the flat direction the potential is not sensitive to the
Higgs vev. On the one hand, it is possible to show that the potential along this direction is
locally stabilized by the quadratic terms of (6.4), as long as ΛB & ΛS . On the other hand,
this “tuned” local minimum keeps being present in the potential even for large values
of Λ(〈h〉) � ΛQCD, threatening the successful selection of 〈h〉 . v: as just mentioned
along the flat direction the potential is locally stable to start with, along the orthogonal
direction it is made stable by the large contribution of (6.2). However, our mechanism is
still successful because these metastable patches with Λ(〈h〉) � ΛQCD are doubly tuned.
First, in order for the flat direction to cross the local stability region, θ needs to be tuned
by an amount

εθ ∼
M−/F−

M̃+/F+
� 1 (6.12)
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as compared to stable patches with Λ(〈h〉) ∼ ΛQCD. Second, given that the flat direction
is essentially parallel to φ− ∼ const., the barrier along it is ∆V‖ ∼ m2

−M
2
−. Then, for these

“bad” patches to be metastable, the initial value of φ+ needs to be tuned to lie within a
tiny region of size ∆φ+ such that ∆V⊥ . ∆V‖, otherwise the combined evolution of φ±,
which explores the phase-space energetically allowed, would probe the instability. This
gives an additional tuning εφ+ ∼ ∆φ+/M̃+, with:

Λ(〈h〉)4∆φ2
+

F 2
+

∼ m2
−M

2
− , (6.13)

yielding

εφ+ ∼
√
M−/F−

M̃+/F+

Λ2
B

Λ(〈h〉)2 � 1 . (6.14)

The combined tuning εθεφ+ can be made arbitrarily small by taking M−/F− � M̃+/F+,
so to compensate any reasonable a priori preference for large values of Λ(〈h〉) in the
landscape, thus making the doubly tuned patches irrelevant, being arbitrarily rare or ab-
sent altogether.9

6.2 Smoking-gun phenomenological pattern

The cosmology of the model is basically the same as for the H1H2 trigger, with the role
of the electroweak phase transition replaced by the QCD one. In particular, the scalar
φ+ needs to be lighter than H(ΛQCD), or the universe would crunch independently of 〈h〉
before the Higgs-dependent potential is switched on.

Both scalars can constitute the totality of dark matter in the Universe, yielding a DM
phenomenology cross-correlated with EDM experiments, as studied in detail in [35] for φ+.
Let us start from this scalar. At the QCD phase transition it gets a kick of order M̃+,
which dominates its oscillations. Then, its energy density when it starts oscillating after
the QCD transition is ρ+ ∼ m2

φ+
M̃2

+ ∼ θ2
0Λ4

QCD, giving the relic density today

ρφ+

ρDM
'

θ2
0Λ4

QCD

TeqM
3/2
Pl m

3/2
φ+

'
(

θ0
10−10

)2(10−19 eV
mφ+

)3/2

. (6.15)

Therefore, its relic density is ' θ2
0 times smaller than the one of a Peccei-Quinn axion with

the same mass, avoiding overclosure constraints on light axions. Also φ− can be the dark
matter of the Universe, if light enough. Analogously to φ+, its energy density at the onset
of its oscillations is ρ− ∼ m2

−M
2
− ∼ (M−/F−)θ0Λ4

QCD . θ2
0Λ4

QCD, smaller than the one for
φ+. However, it can give the correct relic density if lighter than φ+:

ρφ−

ρDM
'
θ0Λ4

QCDM−/F−

TeqM
3/2
Pl m

3/2
φ−

'
(

θ0
10−10

)(
M−/F−
10−10

)(10−19 eV
mφ−

)3/2

. (6.16)

9This latter possibility happens in case the tuned initial values of θ or φ+ are forbidden by additional
interactions in the UV, for instance non-minimal couplings to gravity during inflation.
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Figure 11. Parameter space for which φ+ (left panel) or φ− (right panel) constitute the totality
of DM of the Universe, as function of their mass and the θ-angle today. The DM relic density is
reproduced along the blue line (left panel) or white region (right panel). The red shaded region
(dashed line) shows bounds [86] (future prospects [87–89]) from hadronic EDM searches. New ideas
involving molecular compounds could further improve future sensitivities [90–94]. We also plot in
black constraints on fuzzy DM from Lyman-α forest [95–100], measurements of the subhalo mass
function [101] and the Eridanus II dwarf galaxy [102] (similar to the constraints from other dwarf
galaxies [103, 104]). We shade the area where multiple observations disfavor the corresponding DM
mass hypotheses [58]. The dashed lines denotes the potential sensitivity from future observations
in 21 cm cosmology (HERA) [105] and by the Vera Rubin Observatory [106].

Summarizing, the scalar φ+ is an axion of mass mφ+ . 10−11 eV which lies on the
QCD line mφ+ ' Λ2

QCD/F+, as it can be seen by combining (6.5) and (6.7). Instead, φ− is
an ALP with a mass comparable to or larger than a QCD axion with the same couplings,
as it can be seen from (6.8) and M−/F− . θ0.

Notice that φ± do not give rise to black hole superradiance in the region mφ± ∼
10−12 eV because of the self-coupling in eq. (6.4) [107]. If either of them is observed in this
region, this would then constitute a first characteristic trait that distinguishes our scalars
from the Peccei-Quinn axion.

However, the best phenomenological prospects occur if they are lighter and constitute
the dark matter of the Universe, as shown in figure 11. Their relic density is strongly
correlated with the value of the θ angle today. This is a 1-to-1 correspondence for φ+,
while for φ− there is an additional parameter M−/F−. However this ratio has the upper
bound M−/F− . θ0. As a consequence, limits on fuzzy DM imply θ0 & 10−12, observable
at future EDM experiments [87–89]: if either φ+ or φ− is dark matter, we predict sizeable
EDMs. A joint observation of θ0 in the near future and a measurement of the DM mass
would allow to test the smoking-gun relations in eq. (6.15) or (6.16). A combination of
future EDM measurements and fuzzy DM probes [58, 95–106] can fully test the hypothesis
of φ± DM, as shown in figure 11.
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7 Conclusions

The two main discoveries of the LHC so far have been: the Higgs boson and the unnatu-
ralness of its mass. In this work we have presented a novel mechanism that explains this
unnaturalness by means of cosmological selection: the multiverse is populated by patches
with different values of the Higgs mass; the ones where the EW scale is too small or too
large crunch in a short time, the other ones, with the observed (unnaturally small) value of
the EW scale survive and expand cosmologically, resulting in an universe as the one that
we observe. In a companion paper [35] we called this scenario Sliding Naturalness, since
the crunching is due to two light scalars sliding down their potential.

The phenomenology of our proposals depends strongly on the trigger operator that
connects the two scalars to the SM. For the H1H2 trigger, as discussed in detail in [42]
and summarized in section 5, the most favourable prospects for detection come from the
observation of the type-0 2HDM at colliders, with the high-luminosity LHC probing com-
pletely this possibility. For the SM trigger GG̃, the mechanism yields ALP phenomenology.
However, a remarkable feature of our scenario [35] is that in this case it also solves auto-
matically the strong-CP problem, in a novel way, different from the usual Peccei-Quinn
mechanism, as described in section 6.

In both cases, the oscillations of the two scalars can constitute the totality of dark
matter in the Universe (see section 4). In the case of the SM trigger, this possibility
additionally implies a large value of the QCD angle θ & 10−12, observable in the near
future, and strongly correlated to the DM mass, the latter in the fuzzy-DM range (see
figure 11).

In the last years several cosmological approaches to naturalness have been developed.
In the preliminary discussion of section 2 we have attempted to draw an unified picture
by identifying the general features of these proposals and then focused on what we called
dynamical selection. This class of models is the one with the best prospect of detection.
We identified three main ingredients. First, the presence of a landscape for the Higgs mass,
which is often difficult to observe. Second, the presence of light scalars coupled to the SM.
By means of NDA considerations, we argued that their lightness is related to having a
large cutoff for the Higgs sector. While the presence of light scalars is not common to all
cosmological approaches to the hierarchy problem, it is frequent enough to provide guidance
for experimental searches. Third, a trigger operator [42] that connects the scalars to the
SM, which determines the phenomenological strategy to probe these solutions.

There are a number of important features that single out our mechanism as compared
to other existing proposals in the literature. First, an important distinction between mod-
els of cosmological naturalness arises from how they influence inflation. In some cases the
Hubble rate during inflation is required to be smaller than mh and an exponentially large
number of e-folds might be needed. This clearly requires additional model building that the
reader is screened from, but which might considerably complicate the model or introduce
tuning. Our mechanism, instead, factorizes from the sector responsible for inflation. Sec-
ond, the model can have large cutoffs (comparable toMPl) for both the CC and Higgs mass
and at low energy only predicts two extremely weakly coupled scalars with a simple poten-
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tial. Finally, as argued in [35], Sliding Naturalness is compatible with modern swampland
conjectures and does not suffer from ambiguities connected to eternal inflation.10

We cannot know if the unnaturalness of the Higgs mass discovered by the LHC will
ultimately be explained by cosmological dynamics. However, the progress of the last years
gives us a plausible alternative to traditional solutions to the problem or to accepting
tuning. This framework can be tested experimentally in the next decade. In this context,
the novel mechanism that we propose is, in our opinion, a particularly attractive solution,
in view of its simplicity, and compatibility with simple realizations of other sectors of
the theory.
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