Top quark angular measurements with ATLAS and CMS

14th International Workshop on Top Quark Physics

What types of physics can we access with angular information?

Spin correlation (Δφ), quantum entanglement (D),
 Toponium (Δφ near threshold).

• Forward-backward (A_{FB}), charge ($\Delta |y|$), and energy asymmetries ($A_E(\theta_j)$).

• Spin density matrix $(\hat{k}, \hat{n}, \hat{r})$, t-channel polarisation $(\ell x, \ell y, \ell z)$.

• Quantum tomography.

Spin Correlation and Polarisation

ATLAS-CONF-2021-027

- Polarisation measured in t-channel production using full Run2 data.
- Events required to have exactly one lepton, two jets, and significant MET and exactly one b-tagged jet (as well as some additional multi-jet suppression cuts).
- S/B after selection in signal region is 0.94.

 Strong polarisation in z-direction (as expected) and little in other directions:

 $P_x = -0.02 \pm 0.20$ $P_y = -0.007 \pm 0.051$ $P_z = 0.91 \pm 0.10$

• Limits set on CtW and CitW:

 $C_{tW} \in [-0.7, 1.5]$ $C_{itW} \in [-0.7, 0.2]$

ATLAS-CONF-2021-027

- Data also unfolded to particle level in fiducial phase space for EFT fit.
- Good agreement with SM predictions.

Spin Correlation ($\Delta \phi$)

LHCTopWG

• No new full Run2 $\Delta \phi$ (yet) but ATLAS and CMS are progressing towards combining previous results.

Spin Correlation ($\Delta \phi$)

NNLO

Top2018

Jay Howarth

Spin Correlation ($\Delta \phi$)

ATLAS webpage online shortly

 "New" Monte Carlo predictions (such as Powheg bb4l) may also sculpt this observable.

Spin Density Matrix

Х

Phys. Rev. D 100 (2019) 072002

- Gold standard measurement for spin structure of the top quark!
 - Measure the single and double angles between leptons and a special *"spin analysing basis"* in dileptonic tt events.
 - Angles correspond direction to elements of spin density matrix:
 - \rightarrow C = 3x diagonal elements (spin corr.)
 - \Rightarrow B = 6x polarisation
 - ➡ 6x Off diagonal "cross correlations"

Spin Density Matrix

Phys. Rev. D 100 (2019) 072002

- Observables are very sensitive to the presence of spin correlation, but tricky to reconstruct and unfold.
- From extracting all the information possible from these obs.

Spin Density Matrix

Phys. Rev. D 100 (2019) 072002

No new full Run2 (yet), previous results agree with SM predictions but are heavily affected by tt modelling uncertainties
 New techniques/better understanding of modelling needed as much as more data!

W boson helicity

JHEP 08 (2020) 051

- Can use similar observables (with a slightly different definition) to measure the helicity of the W boson.
- Recent ATLAS + CMS combination of Run1 results in excellent agreement with the SM.

Production Asymmetries

Asymmetries

- Preference in direction of top and anti-top in ppbar collisions.
- At the LHC, no directional preference, but tops are preferentially more forward than anti-tops.
- Effect arises due to higher order interference effects and are both sensitive to potential new physics.

Charge Asymmetry

ATLAS-CONF-2019-026

 ATLAS found strong evidence (4σ) for charge asymmetry in the I+jets channel using full Run2 data.
 ➡ Set limits on 4 linear combinations of 4-fermion EFT operators.

Forward/Backward Asymmetry

CMS

CMS PAS TOP-15-018

 $d = 0.002^{+0.017}_{-0.021} \quad A_{FB} = 0.048^{+0.092}_{-0.089} \quad \mu = -0.024^{+0.021}_{-0.009}$

 CMS use a template method to isolate the qqbar initial state and measure A_{FB} with 35.9 fb⁻¹ in I+jets events.

Also fit anomalous chromoelectric (d) & chromomagnetic (μ) moments.

Energy Asymmetry

- Asymmetry at tree-level in ttj events.
- $$\begin{split} \sigma^{opt} &= \sigma(\theta_j \,|\, y_{t\bar{t}j} > 0) + \\ \sigma(\pi \theta_j \,|\, y_{t\bar{t}j} < 0) \end{split}$$
- Sensitive to four-quark operator insertions (orange dots).
- Measured in boosted I+jets final state with hard additional jet (p_T > 100 GeV) using full Run2 data.

Energy Asymmetry

TOPQ-2019-28-002

- Unfolded to particle level, no significant deviation from SM.
- Inclusive asymmetry $A_E^2 = -0.043 \pm 0.020$ in close agreement with SM expectation.
- Limits placed on 4-fermion operators.

Accepted by EPJC

- Spin correlation VERY different in ttX events than in tt:
 Can't use lab-frame observables like Δφ.
 Spin density matrix from tt works well, along with cos(φ').
- Could potentially find evidence with existing data and discover with full Run2+3 data.

Accepted by EPJC

Coefficient	$t\bar{t}Z$ NLO 13 TeV	$t\bar{t}$ NLOW 13 TeV	$t\bar{t}Z$ NLO 14 TeV	$t\bar{t}$ NLOW 14 TeV
$egin{arr} c_{rr} \ c_{kk} \ c_{nn} \end{array}$	-0.198 ± 0.004 -0.193 ± 0.004 -0.117 ± 0.004	$\begin{array}{r} 0.071 \pm 0.008 \\ 0.331 \pm 0.002 \\ 0.326 \pm 0.002 \end{array}$	$\begin{array}{r} -0.190 \ \pm \ 0.004 \\ -0.182 \ \pm \ 0.004 \\ -0.118 \ \pm \ 0.004 \end{array}$	$\begin{array}{r} 0.072\ \pm\ 0.008\ 0.331\ \pm\ 0.002\ 0.325\ \pm\ 0.002 \end{array}$
$egin{aligned} & c_{rk} \ & c_{kn} \ & c_{rn} \ & c_{r} \ & c_{k} \ & c_{k} \ & c_{n} \end{aligned}$	$\begin{array}{r} -0.173\ \pm\ 0.006\\ 0.012\ \pm\ 0.006\\ -0.004\ \pm\ 0.006\\ 0.007\ \pm\ 0.006\\ 0.003\ \pm\ 0.006\\ 0.005\ \pm\ 0.006\end{array}$	$\begin{array}{l} -0.206\ \pm\ 0.002\\ \lesssim\ 2\cdot10^{-3}\\ \lesssim\ 1\cdot10^{-3}\\ \lesssim\ 1\cdot10^{-3}\\ \lesssim\ 1\cdot10^{-3}\\ \lesssim\ 1\cdot10^{-3}\\ \lesssim\ 1\cdot10^{-3}\end{array}$	$\begin{array}{rrrr} -0.180 \ \pm \ 0.006 \\ -0.001 \ \pm \ 0.006 \\ 0.006 \ \pm \ 0.006 \\ -0.004 \ \pm \ 0.006 \\ 0.001 \ \pm \ 0.006 \\ -0.008 \ \pm \ 0.006 \end{array}$	$\begin{array}{r} -0.204 \ \pm \ 0.004 \\ \lesssim 2 \cdot 10^{-3} \\ \lesssim 1 \cdot 10^{-3} \end{array}$
$b_{r}^{+}\ b_{r}^{-}\ b_{k}^{+}\ b_{k}^{+}\ b_{k}^{+}\ b_{n}^{+}\ b_{n}^{+}\ b_{n}^{-}$	$\begin{array}{c} 0.055\ \pm\ 0.001\ 0.055\ \pm\ 0.001\ -0.077\ \pm\ 0.001\ -0.076\ \pm\ 0.001\ 0.001\ \pm\ 0.001\ 0.001\ \pm\ 0.001\ \end{array}$	$\begin{array}{l} \lesssim 2 \cdot 10^{-3} \\ \lesssim 2 \cdot 10^{-3} \\ \lesssim 4 \cdot 10^{-3} \\ \lesssim 4 \cdot 10^{-3} \\ \lesssim 3 \cdot 10^{-3} \\ \lesssim 3 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 0.055\ \pm\ 0.001\ 0.057\ \pm\ 0.001\ -0.077\ \pm\ 0.001\ -0.001\ \pm\ 0.001\ 0.001\ \pm\ 0.001\ -0.001\ \pm\ 0.001\ \end{array}$	$\begin{array}{l} \lesssim 2 \cdot 10^{-3} \\ \lesssim 2 \cdot 10^{-3} \\ \lesssim 4 \cdot 10^{-3} \\ \lesssim 4 \cdot 10^{-3} \\ \lesssim 3 \cdot 10^{-3} \\ \lesssim 3 \cdot 10^{-3} \end{array}$

Accepted by EPJC

Coefficient	$t\bar{t}Z$ NLO 13 TeV	$tar{t}$ NLOW 13 TeV	$t\bar{t}Z$ NLO 14 TeV	$t\bar{t}$ NLOW 14 TeV
$egin{aligned} & c_{rr} \ & c_{kk} \ & c_{nn} \end{aligned}$	-0.198 ± 0.004 -0.193 ± 0.004 -0.117 ± 0.004	$\begin{array}{c} 0.071 \pm 0.008 \\ 0.331 \pm 0.002 \\ 0.326 \pm 0.002 \end{array}$	-0.190 ± 0.004 -0.182 ± 0.004 -0.118 ± 0.004	$\begin{array}{c} 0.072 \pm 0.008 \\ 0.331 \pm 0.002 \\ 0.325 \pm 0.002 \end{array}$
$egin{aligned} & c_{rk} & \ & c_{kn} & \ & c_{rn} & \ & c_r & \ & c_k & \ & c_k & \ & c_n & \ $	$\begin{array}{r} -0.173 \ \pm \ 0.006 \\ 0.012 \ \pm \ 0.006 \\ -0.004 \ \pm \ 0.006 \\ 0.007 \ \pm \ 0.006 \\ 0.003 \ \pm \ 0.006 \\ 0.005 \ \pm \ 0.006 \end{array}$	$ \begin{array}{c c} -0.206 + 0.009 \\ \lesssim 2 \\ \lesssim 1 \\ \lesssim 1 \\ \lesssim 1 \\ \approx 1 \\ \approx 1 \\ \end{array} $ $ \begin{array}{c} \text{Non} \\ \text{to E} \\ \text{radi} \\ \text{conha} \end{array} $		ations due ations due when Z top (can be 15% with
$egin{array}{ccc} b_{r}^{+} \ b_{r}^{-} \ b_{k}^{+} \ b_{k}^{-} \ b_{k}^{-} \ b_{n}^{+} \ b_{n}^{-} \ b_{n}^{-} \ b_{n}^{-} \end{array}$	$\begin{array}{c} 0.055 \pm 0.001 \\ 0.055 \pm 0.001 \\ -0.077 \pm 0.001 \\ -0.076 \pm 0.001 \\ 0.001 \pm 0.001 \\ 0.001 \pm 0.001 \end{array}$	$\begin{array}{l} \lesssim 2 & \text{suita} \\ \lesssim 2 \cdot 10 \\ \lesssim 2 \cdot 10 \\ \lesssim 4 \cdot 10^{-3} \\ \lesssim 4 \cdot 10^{-3} \\ \lesssim 3 \cdot 10^{-3} \\ \lesssim 3 \cdot 10^{-3} \end{array}$	ble kinematic 0.057 ± 0.001 -0.077 ± 0.001 -0.074 ± 0.001 0.001 ± 0.001 -0.001 ± 0.001	Cuts!) $\gtrsim 2 \cdot 10^{-3}$ $\lesssim 4 \cdot 10^{-3}$ $\lesssim 3 \cdot 10^{-3}$ $\lesssim 3 \cdot 10^{-3}$

Conclusions

- Angular analyses are some of the most powerful tools we have in understanding the behaviour of the top quark.
- Full Run2 analyses are starting to mature (song remains the same for many, modelling systematics are intolerably large).

"What's the point of having a 1% stat uncertainty if you're gonna stick a 20% Parton shower uncertainty on it..." Jay, ranting in a pub

- Some exciting never-before explored avenues to pursue:
 Interplay with Quantum information field (Entanglement).
 Replacing "the top decays before it can hadronise" with "the top almost always decays before it can hadronsie" (i.e. discovering topponium)
 - Studying spin in ttZ events.

Backup

TOPQ-2019-28-002

$C(T_{A})^{2}$	$A_E (\Lambda^{-4})$		$A_E (\Lambda^{-2})$	
$C(1ev/\Lambda)$	68% CL	95% CL	68% CL	95% CL
C_{Oq}^{11}	[-0.41, 0.47]	[-0.65, 0.67]	[-0.68, 4.06]	[-3.36, 6.16]
$C_{Oa}^{\tilde{18}^{1}}$	[-0.87, 1.24]	[-1.72, 2.10]	[-1.26, 4.76]	[-3.24, 9.64]
$\tilde{C_{tq}^{1}}$	[-0.43, 0.52]	[-0.69, 0.75]	[-0.60, 5.76]	[-3.42, 9.36]
C_{tq}^{8}	[-1.41, 0.84]	[-2.01, 1.43]	[-1.86, 1.70]	[-3.30, 3.98]
C_{tu}^{1}	[-0.50, 0.56]	[-0.78, 0.81]	[-0.96, 5.82]	[-4.72, 8.88]
C_{tu}^8	[-1.00, 1.01]	[-1.71, 1.56]	[-1.30, 2.52]	[-3.02, 4.66]

QCD Production

- Dominant production for tt.
- Parity invariant \Rightarrow no intrinsic polarisation.
- Some degree of spin correlation, depending on sensible choice of reference basis.

EW Production

- Dominant production for single top.
- Violates parity ⇒ expect strong polarisation.

Energy Asymmetry

