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Abstract

Collider observables involving heavy particles are subject to large logarithmic terms near
threshold, which must be summed to all orders in perturbation theory to obtain sensible re-
sults. Relatively recently, this resummation has been extended to next-to-leading power in the
threshold variable, using a variety of approaches. In this paper, we consider partonic chan-
nels that turn on only at next-to-leading power, and show that it is possible to resum leading
logarithms using well-established diagrammatic techniques in Quantum Chromodynamics. We
first consider deep inelastic scattering, where we reproduce the results of a recent study using
an effective theory approach. Next, we consider the quark-gluon channel in both Drell-Yan
and Higgs boson production, showing that an explicit all-order form for the leading logarithmic
partonic cross section can be obtained. Our results agree with previous conjectures based on
fixed-order results.

1 Introduction

The ever-increasing precision of experimental data from the Large Hadron Collider, together with
the clear lack of any signatures of new physics, necessitate continual improvements of our under-
standing of the Standard Model. The dominance of the strong force in collider environments makes
it especially important that the theory of Quantum Chromodynamics (QCD) is better understood.
For a given observable computed in perturbative QCD, progress can be made either by including
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subleading fixed orders in the strong coupling constant, or by including certain kinematically en-
hanced contributions at all orders in perturbation theory, a process known as resummation. In this
paper, we will be concerned with color-neutral scattering processes containing a heavy (or off-shell)
finale-state particle produced near threshold (i.e. qq̄ → γ∗/Z or gg → h). In all such processes,
one may define a threshold variable ξ which vanishes at the threshold itself. As is well-known, the
differential partonic cross section with respect to this variable has the following generic form:

dσ

dξ
∼ σ0

∞∑
n=0

(αs
π

)n [2n−1∑
m=0

[
c(−1)
nm

(
lnm ξ

ξ

)
+

+ c(0)
nm lnm ξ + . . .

]
+ c(δ)

n δ(ξ)

]
. (1)

Here, an overall normalisation constant σ0 originating from the leading-order (LO) cross section is
dressed by higher-order contributions, involving a series of terms in the threshold variable ξ that
diverge as ξ → 0, albeit integrably so. The first set of terms in the second sum (with variable m)
and the δ(ξ) contribution are associated with leading power (LP) in a systematic expansion in the
threshold variable. The logarithmic counting is such that those logarithms with m = 2n − 1 at
O(αns ) are called the leading-logarithmic (LL) terms, with m = 2n−2 the next-to-leading logarith-
mic (NLL) terms, and so on. The LP terms are well known to originate from the emission of soft and
collinear radiation. Following the pioneering work of refs. [1–8] based on diagrammatic arguments,
several approaches have been developed for LP resummation, including using Wilson lines [9, 10],
renormalisation group arguments [11], and Soft Collinear Effective Theory (SCET) [12–15]. Recent
pedagogical reviews of different approaches may be found in e.g. refs. [16–18].

Until relatively recently, much less has been known about the second set of logarithmic terms in
eq. (1), which constitute next-to-leading power (NLP) in the threshold variable ξ. Their precise
origin remains unknown to this date, but it has already been shown that their numerical contribu-
tion cannot be neglected [19–26], therefore constituting a necessity to understand and resum them.
Following previous work in Quantum Electrodynamics (QEC) [27–30], refs. [31,32] used a mixture
of diagrammatic and path-integral methods to argue that certain NLP terms should indeed be re-
summable. References [33–37] reached a similar (and indeed more general) conclusion, using results
in fixed-order perturbation theory to conjecture some all-order forms for NLP terms in processes
including deep-inelastic scattering (DIS), Drell-Yan (DY) production of an off-shell vector boson,
and Higgs boson production. Following more formal work showing that next-to-soft physics can be
related to asymptotic properties of scattering amplitudes at null infinity in both gauge theories and
gravity [38,39] (itself related [40] to the earlier work of refs. [41,42]), there has been more widespread
interest in exploring the properties of NLP terms, which could not be more timely given the nu-
merical motivation mentioned above. Examples using direct QCD arguments include developing
factorisation theorems for NLP contributions that extend their LP counterparts [43–49]; carrying
out fixed-order studies that aim to motivate such formulae [50–56]; resumming NLP contributions
by combining factorisation and renormalisation group arguments [26, 57–61]; and resumming spe-
cific contributions [62]. There is also an ever-growing body of work examining NLP effects in
SCET, including identifying relevant operators contributing at NLP order and/or their mixing un-
der renormalisation [63–70]; development of factorisation formulae [71–74]; and explicit studies for
particular observables, either at fixed-order or resummed [75–86]. This has proceeded in tandem
with direct QCD approaches, with a highly useful exchange of ideas and results between what are
often cast as opposing formalisms. Indeed, it is always useful to have complementary viewpoints
on the same underlying physics, such that a more varied toolbox can be employed in extending the
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frontier of QCD perturbation theory yet further.

With this spirit in mind, we turn our attention in this paper to a particular class of NLP contri-
butions present DIS and the production of a colourless off-shell or heavy boson, such as DY and
Higgs production. Much of the above-mentioned work has focused on the study of NLP corrections
to partonic cross sections which have the same initial state as the Born contribution. Indeed, these
partonic channels are the only ones relevant at LP, and it has been explicitly demonstrated that one
can resum their LL NLP contributions in both DY and Higgs production, using SCET [79, 81] or
direct QCD [62], and in agreement with previous conjectures [34]. However, it is also the case that
new partonic channels can open up at next-to-leading order (NLO) and beyond that contribute LL
NLP logarithms, and must be counted alongside their counterparts in the kinematically leading
partonic channel. Näıvely, one expects that one should indeed be able to resum such contributions:
once a subleading partonic channel has been turned on, the cross section is already at next-to-
leading power, and thus any further emissions must be maximally soft and collinear. The known
resummation properties of the latter should then guarantee NLP resummation for these terms, an
expectation that turns out to be ultimately correct. Nevertheless, turning this observation into a
practical resummation formula is not as easy as it might seem. A perusal of the QCD literature

shows that the NLP coefficients c
(0)
nm appearing in eq. (1) for various processes of interest do not have

an obvious exponential form, even for the highest power of the logarithm at each order of αs. This is
in stark contrast to the LL terms at LP, and also the LL NLP terms in the leading partonic channel.

For DIS, important progress was made in ref. [87], which considered the kinematically subleading
gluon initial state, and presented an all-order conjecture for the LL NLP terms in the off-diagonal
DGLAP splitting function Pqg(x), as well as the coefficients appearing in the partonic structure
function. Similar conjectures could be made for the related splitting function Pgq, using a Higgs-
induced DIS process, where an incoming gluon fuses with a Higgs boson at Born level. Recently,
ref. [86] confirmed these results within the framework of SCET, using the assumption that the one-
loop virtual corrections to the new partonic channel at NLO exponentiate, and showing how such
exponentiation can be obtained through re-factorisation (see also [73,74]). Reference [37] provided
further conjectures for the LL NLP terms arising from subleading partonic channels in DY and
Higgs production, which to date remain unproven.

In this paper, we will demonstrate the validity of the conjectures made in refs. [37, 87] using well-
established direct QCD arguments (see e.g. refs. [88–90], and refs. [91,92] for pedagogical reviews).
We will calculate all-order forms for subleading partonic cross sections in the LL approximation at
LP and NLP, using diagrammatic arguments that enable us to straightforwardly obtain the form
of the fully real radiative contribution at each order in the coupling, before fixing the form of the
virtual corrections using known constraints. We will then be able to obtain closed forms for the
various splitting and coefficient functions presented in refs. [37,87], finding full agreement. In DIS,
our results overlap with the SCET approach of ref. [86] (which connects to the work done in ref. [82]
on the NLP thrust distribution), but our approach is entirely complementary: where that paper
examines purely virtual corrections to subleading partonic channels at each order, we consider the
opposite extreme of the fully real contribution. Further, we derive the all-order structure of the qg
partonic cross sections by direct computation, rather than via the renormalization-group evolution
arguments as discussed in section 4 of ref. [86]. Aside from this, our results go further than ref. [86],
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Figure 1: LO squared amplitudes for: (a) DIS; (b) Higgs-induced DIS, where the Higgs boson
couples to the gluon via an effective coupling.

which did not discuss DY or Higgs production.

The structure of our paper is as follows. In section 2, we derive the all-order LL NLP terms in the
off-diagonal splitting functions in (Higgs-induced) DIS, together with the appropriate coefficient
functions. In sections 3 and 4, we extend our arguments to both DY and Higgs boson production,
showing how one can obtain all-order LL forms for the coefficient functions for quark-gluon initial
states. We discuss our results and conclude in section 5. Certain technical details are contained in
appendices A and B.

2 Splitting functions and coefficient functions in DIS

In this section, we consider the deep-inelastic scattering of a virtual photon with a proton. At LO,
the photon couples to a valence quark, leading to the process

q(p) + γ∗(q)→ q(pH) , (2)

whose squared matrix element is depicted in figure 1a. We will also have reason to consider the
alternative process of Higgs-induced DIS, in which the virtual photon is replaced by a Higgs boson,
and the valence quark by a gluon:

g(p) + h(q)→ g(pH) . (3)

It is assumed that the Higgs couples to gluons via a suitable effective coupling (e.g. a top-quark
loop with the top mass taken to infinity), but the precise details need not concern us here. The
squared LO Feynman diagram for eq. (3) is shown in figure 1b.

In both of the above processes, we can define the conventional Björken variable

x =
Q2

2p · q
, Q2 = −q2. (4)
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In the DIS case, we can then define the structure function

F2(x,Q2) =

∫
dΦTαβ2 |MDIS|2αβ , (5)

where the integral denotes a sum over all possible radiative final states, |MDIS|2αβ is the squared
amplitude averaged (summed) over initial (final) state partonic colours and spins, and we have
labelled photon Lorentz indices as in figure 1a. Here the open Lorentz indices α and β belong to
the initial-state photon on either side of the final-state cut, and we have introduced the projector

Tαβ2 = − 1

4π

1

1− ε

(
ηαβ + (3− 2ε)

q2

(p · q)2
pαpβ

)
, (6)

where we work in d = 4 − 2ε spacetime dimensions. For the Higgs process of figure 1b, we may
similarly define the structure function

Fφ(x,Q2) =

∫
dΦ |MDIS|2 , (7)

where |MDIS|2 is the summed/squared amplitude in this case, and no projection is needed to get
a scalar quantity, due to the scalar nature of the virtual Higgs boson.

Dressing the LO processes of figure 1 with additional radiation will open up different partonic initial
states at NLO and beyond. For normal DIS, there is the process of figure 2a, in which a gluon rather
than a quark is present in the initial state. There is also a crossed box diagram for this channel,
where the connection of the quark legs is interchanged in the complex conjugate amplitude (not
shown in figure 2). We will argue that, due to various choices to be described later, this diagram
will not contribute at LL NLP. The equivalent process for Higgs-induced DIS is that of figure 2b
in which the initial state contains a quark. Once the new partonic channels have opened up at
NLO, one may emit further radiation, which becomes complicated very quickly as the perturbative
order increases due to the multitude of possible Feynman diagrams. However, we are after the LL
behaviour at threshold, which necessarily corresponds to all additional radiation being maximally
soft and/or collinear. We will see that it is then possible to arrange things so that only a small set
of Feynman diagrams contribute.

A first restriction that allows us to eliminate contributing diagrams stems from the fact that the
processes of figure 2 are already suppressed by a power of the threshold variable. They involve an
emission of a quark with the soft momentum kq which, after summing over spins, leads to a factor∑

spins

u(kq)ū(kq) =6kq

in the squared matrix element. For a soft gluon emission with momentum k, the sum over polarisa-
tion states is O(k0), which indeed has one less power of soft momentum than the quark case shown
above. The emission of the fermion puts the diagram at NLP, and after this first emission one only
needs to consider further (maximally soft and collinear) gluon radiation (i.e. the same radiation
as one would need to consider at LP for diagonal channels). Let us write the momentum of each
additional parton (including that present at NLO) using a Sudakov decomposition

kµ = αpµ + βq′µ + k⊥µ, k⊥ · p = k⊥ · q′ = 0 , (8)
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Figure 2: (a) NLO correction to DIS, where a gluon couples indirectly to the photon; (b) the
analogous channel in Higgs-induced DIS.

where we have introduced the vector
q′ = q + xp , (9)

which is null from eq. (4). For future use, we also note the relations

p+ q = (1− x)p+ q′, p · q′ = p · q 6= 0 . (10)

In eq. (8), the d-dimensional vector
k⊥ = (0,k⊥, 0) , (11)

containing the (d− 2)-vector k⊥, constitutes the momentum transverse to the incoming beams.

A second restriction on the number of Feynman diagrams that contribute arises as follows. As
argued in detail in refs. [88–90], leading logarithms only arise from the kinematic region in which
the transverse momenta of the emitted partons are strongly ordered. Furthermore, one may reduce
the set of relevant Feynman diagrams for the squared matrix element to those having a pure ladder
form, as shown in figure 3a. Crossed ladders, such as the graph in figure 3b, do not contribute
at LL. In non-abelian theories such as QCD, this property is not guaranteed in general gauges,
but can be made manifest by choosing to define the polarisation states of the emitted gluons in a
particular way. Upon choosing a reference vector cµ, one may define physical gluon polarisation
vectors εµ(k) via the simultaneous requirements

k · ε(k) = c · ε(k) = 0 . (12)

If in addition c is a null vector (c2 = 0), the sum over physical gluon polarisation states has the
form ∑

pols.

ε†µ(k)εν(k) = −ηµν +
kµcν + kνcµ

c · k
. (13)
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(a) (b)

Figure 3: (a) A ladder graph contributing to the gluon channel in DIS at NLP LL; (b) a crossed-
ladder graph.

As explained in detail in refs. [91, 92], the kinematic dominance of uncrossed gluon ladders occurs
for the explicit choice

c = q′ , (14)

i.e. the same vector that occurs in the Sudakov decomposition of eq. (8). Although we will explic-
itly check whether the same holds at NLP, the choice of eq. (14) will allow us to straightforwardly
obtain the purely real corrections to the processes of figure 2, at arbitrary order in the coupling, in
the LL approximation.

Summarising, we have established that to compute the NLP LL contribution of normal or Higgs-
induced DIS, we need to consider the NLO diagrams of figure 2 dressed with n ordered soft-gluon
emissions, after choosing a particularly beneficial form of the reference vector used in the sum over
physical polarisations of the n gluons. If n additional gluons are emitted, we will have to integrate
over an (n+ 2)-body phase space, whose treatment will now be discussed.

2.1 Phase space for multiparton final states

Focusing on the case of conventional DIS process for concreteness, we will need to consider inte-
grating the squared matrix element for the following process:

g(p) + γ∗(q)→ q(pH) + q(kq) +
n∑
i=1

g(ki) , (15)
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where we label the soft-quark momentum present in the NLO matrix element by kq, and any
additional gluon momenta by {ki}. The phase space for this process is∫

dΦ(n+2) = (2π)d
∫

ddpH
(2π)d−1

δ+(p2
H)

∫
ddkq

(2π)d−1
δ+(k2

q )

[
n∏
i=1

∫
ddki

(2π)d−1
δ+(k2

i )

]

× δ(d)

(
p+ q − pH − kq −

n∑
i=1

ki

)

= (2π)(n+2)(1−d)+d

∫
ddkq δ+(k2

q )

[
n∏
i=1

∫
ddkiδ+(k2

i )

]
δ+

(p+ q − kq −
n∑
i=1

ki

)2
 ,
(16)

where we use the conventional notation

δ+(k2) ≡ θ(k0)δ(k2) , (17)

and we have used the d-dimension delta function to carry out the integral over pH in the second line
of eq. (16). Each emitted gluon momentum may be expanded using the Sudakov decomposition of
eq. (8), giving

ki = ᾱip+ β̄iq
′ + ki⊥. (18)

One may find the variables ᾱi and β̄i by contracting on both sides with p and q′:

ᾱi =
q′ · k
p · q

, β̄i =
p · k
p · q

, (19)

where we use that p · q′ = p · q. Furthermore, one may rewrite the measure in an integral over k as
follows:

ddki = p · q dᾱi dβ̄i d
d−2ki,⊥ =

p · q
2

dᾱi dβ̄i dk2
i,⊥(k2

i,⊥)
d−4
2 dΩ

(i)
d−2 , (20)

where we have used the notation of eq. (11), and also introduced the differential solid angle in the

transverse directions of the gluon with momentum ki, dΩ
(i)
d−2. To derive eq. (20), one may first pick

the following parametrisation for p and q (see e.g. ref. [51]):

p =
s+Q2

2
√
s

(1, 0, . . . , 0, 1), q =

(
s−Q2

2
√
s
, 0, . . . , 0,−(s+Q2)

2
√
s

)
, (21)

where we have introduced the partonic squared centre-of-mass energy

s = (p+ q)2 = 2p · q(1− x) . (22)

Then eq. (21) together with eq. (4) implies

p =
Q2

2
√
s

1

x
(1, 0, . . . , 0, 1) , q′ =

Q2

2
√
s

1− x
x

(1, 0, . . . , 0,−1) , (23)

so that eqs. (8, 19) yield the explicit variable transformation

ᾱi =
(1− x)√

s
(k0
i + kzi ), β̄i =

1√
s

(k0
i − kzi ) , (24)
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from which eq. (20) follows as required.

Using eqs. (10, 19) and writing a similar decomposition for quark momentum kq with variables αq
(βq) along the direction of p (q′), the argument of the delta function in eq. (16) can be written as(

(1− x)p+ q′ − kq −
n∑
i=1

ki

)2

= 2p · q

[
(1− x)

(
1− βq −

n∑
i=1

β̄i

)
− αq −

n∑
i=1

ᾱi

]
+ . . . , (25)

where we have neglected terms which are quadratic in kq and/or {ki}, which correspond to corre-
lations between different emitted partons. As discussed above, the emitted parton momenta are
required to be soft in the LL limit. Therefore, these quadratic terms will be power-suppressed with
respect to the terms included in eq. (25). Given that our matrix-element will already be at NLP,
we do not need to keep the phase-space correlations 4. The phase space of eq. (16) then becomes∫

dΦ(n+2) = (2π)−(n+1)d πn+2 (p · q)n
∫

dαqdβqdp
2
q,⊥dΩ

(1)
d−2(p2

q,⊥)
d−4
2 δ+

(
2p · q αq βq − p2

q,⊥
)

×

[
n∏
i=1

∫
dᾱidβ̄idk

2
i,⊥(k2

i,⊥)
d−4
2 dΩ

(i)
d−2 δ+

(
2p · q ᾱi β̄i − k2

i,⊥
)]

× δ

[
(1− x)

(
1− βq −

n∑
i=1

β̄i

)
− αq −

n∑
i=1

ᾱi

]
, (26)

where we have used eq. (20) in squaring the emitted parton momenta inside the on-shell delta
functions for kq and {ki}. We may use these delta functions to carry out the integrals over p2

q,⊥
and {k2

i,⊥}, and can simplify the result further by assuming that the matrix elements we are going
to integrate will not depend on any of the transverse solid angles, which will indeed turn out to be
the case. We get∫

dΦ(n+2) = 2−
1
2

(n+1)(d+4) πn+2−(n+1)d (p · q)n+(n+1)
(d−4)

2 Ωn+1
d−2

×
∫

dαq dβq(αq βq)
d−4
2

[
n∏
i=1

∫
dᾱi dβ̄i(ᾱi β̄i)

d−4
2

]

× δ

[
(1− x)

(
1− βq −

n∑
i=1

β̄i

)
− αq −

n∑
i=1

ᾱi

]
. (27)

Next, we may use the standard result

Ωd−2 =
2π

d−2
2

Γ
(
d−2

2

) , (28)

as well as rescaling

βq →
βq

(1− x)
, β̄i →

β̄i
(1− x)

, (29)

4Note that such terms were considered for kinematically leading channels in DY and Higgs production in ref. [62],
where they could be neglected at NLP LL, but not at NLP NLL order. Here, however, the phase space correlations
will only contribute at NNLP, due to there being no LP contribution to the squared matrix element.

9



to obtain∫
dΦ(n+2) =

2π

(4π)
(n+1)d

2

(Q2)n+(n+1)
(d−4)

2
x−(n+1)

(d−4)
2
−n (1− x)−(n+1) d−2

2

Γ
(
d−2

2

)n+1

×
∫

dαq dβq (αq βq)
d−4
2

[
n∏
i=1

∫
dᾱi dβ̄i(ᾱi β̄i)

d−4
2

]
δ

[
1− x− αq − βq −

n∑
i=1

(ᾱi + β̄i)

]
.

(30)

Notice that the final delta function links all of the Sudakov variables together. We can decouple
this dependence by using the identity

δ(u) =

∫ i∞

−i∞

dT

2πi
eTu, (31)

such that eq. (30) becomes∫
dΦ(n+2) =

2π

(4π)
(n+1)d

2

(Q2)n+(n+1)
(d−4)

2
x−(n+1)

(d−4)
2
−n(1− x)−(n+1) d−2

2

Γ
(
d−2

2

)n+1

∫ i∞

−i∞

dT

2πi
eT (1−x)

×
∫

dαq dβq (αq βq)
d−4
2 e−T (αq+βq)

[
n∏
i=1

∫
dᾱi dβ̄i (ᾱi β̄i)

d−4
2 e−T (ᾱi+β̄i)

]
. (32)

Provided all of the α and β integrals can be carried out, the final integral over T has the form of
an inverse Laplace transform.

In this section, we have derived a convenient form for the (n + 2)-body phase space in the LL
approximation. Although we considered the process of eq. (15), we can also apply this result to
Higgs-induced DIS, given that the phase space is insensitive to the identity of the emitted partons
in the final state, and that the definition of the Björken x variable is the same. Before moving
on, we note that is more convenient at NLO (the case n = 0 above) to use an alternative form of
eq. (32), in which the dependence on (1− x) has not been scaled out of β1, and the delta function
is left intact. From eqs. (27, 28), one finds

dΦ(2) =
2π

(4π)
d
2

(Q2)
(d−4)

2

Γ(d−2
2 )

x−
d−4
2 dαq dβq (αqβq)

d−4
2 δ[(1− x)(1− βq)− αq]. (33)

Let us now proceed to calculate all-order forms for the kinematically subleading partonic structure
functions in (Higgs-induced) DIS, where we will first examine the relevant structure functions at
NLO.

2.2 The quark structure function in Higgs-induced DIS

We start our discussion by computing the NLO structure of the Higgs-induced DIS process. One
reason to consider this process is that it allows for a straightforward calculation of the off-diagonal
splitting function Pgq, as argued in refs. [86,87]. As shown in figure 2b, the quark initial state turns

10



on at NLO. To normalise our results, we first need the result for the LO process of figure 1b, whose
squared matrix element (summed/averaged over colours and spins) is

|Mgh→g|2 =
|λ|2

d− 2

(
−ηαβ +

q′αpβ + q′βpα

q′ · p

)(
−ηαβ +

q′αpβ2 + q′βpα2
q′ · p2

)
, (34)

where we have used the gluon polarisation choice of eq. (14) for the incoming and outgoing gluons,
and denoted the Higgs effective coupling to gluons by

ληµν ,

where µ, ν are the Lorentz indices of the gluon entering the effective vertex. Contracting indices and
combining with the phase space, one finds the following LO contribution to the structure function
of eq. (7):

Fφ(x,Q2)
∣∣∣
LO

=
2π|λ|2

2p · q
δ(1− x) . (35)

For this and subsequent structure functions, we will divide all higher-order contributions by the
prefactor σ0 of the delta-function appearing at LO, thus introducing the normalised quantity

Wi(x,Q
2) ≡ 1

σ0
Fi(x,Q2). (36)

Now let us calculate the LO contribution to the quark structure function, given by the diagram of
figure 2b. One finds a squared matrix element (summed/averaged over spins and colours)

|Mqh→qg|2 =
CF
2
g2
sµ

4−d|λ|2 Tr[6pγβ 6kqγα]

(2p · kq)2

(
−ηαβ +

q′αpH,β + q′βpH,α

q′ · pH

)

=
CF
8

g2
sµ

4−d|λ|2

(p · kq)2

[
(d− 2)Tr[6p 6kq] +

1

q′ · p2

(
Tr[6p 6pH 6kq 6q′] + Tr[6p 6q′ 6kq 6pH ]

)]
, (37)

where CF = (N2
c − 1)/(2Nc) = 4/3 is the Casimir of the fundamental representation, Nc is the

number of colours, g2
s = 4παs denotes the (dimensionless) coupling of QCD, and µ the dimensional

regularization scale. Evaluating the trace terms and using the momentum conservation condition

pH = (1− x)p+ q′ − kq , (38)

the trace contribution appearing in eq. (37) simplifies as follows:

Tr[6p 6pH 6kq 6q′] + Tr[ 6p 6q′ 6kq 6pH ] = 16 p · q kq · q′. (39)

Converting to Sudakov variables, eq. (37) then becomes

|Mqh→qg|2 =
CF g

2
sµ

4−d|λ|2

2p · q

[
d− 2

βq
+

4αq
β2
q [1− x− αq]

]
, (40)

where the first (second) term come from the first (second) term in the gluon polarisation sum of
eq. (13). Combining with the phase space of eq. (33), one finds∫

dΦ(2)|Mqh→qg|2 =
2π

(4π)
d
2

1

Γ
(
d−2

2

)(Q2)
d−4
2

(
1− x
x

) d−4
2 CF g

2
sµ

4−d|λ|2

2p · q

11



×
∫ 1

0
dβq[βq(1− βq)]

d−4
2

[
d− 2

βq
+

4(1− βq)
β3
q

]
. (41)

The integral on the second line is given by∫ 1

0
dβq[βq(1− βq)]

d−4
2

[
d− 2

βq
+

4(1− βq)
β3
q

]
=

Γ
(
d−4

2

)
Γ
(
d−2

2

)
Γ(d− 3)

+
2Γ
(
d−8

2

)
Γ
(
d
2

)
Γ(d− 8)

= −2

ε
+ . . . . (42)

Note that the second term on the first line is O(ε), and therefore does not contribute to LL be-
haviour. This suggests that we do not need to include the second term in the gluon polarisation
tensor for pH , and we will return to this point when discussing the higher-order corrections. Com-
bining eq. (42) with the remaining matrix element and phase space factors, one finds∫

dΦ(2)|Mqh→qg|2 =
αs
4π

(
4πµ2

Q2

)ε
xε

Γ(1− ε)

(
2π|λ|2

2 p · q

)[
−2CF (1− x)−ε

ε
+O(ε)

]
. (43)

Throughout, we will follow refs. [37,87] by defining perturbative coefficients of all quantities X by

X =
∑
n

ansX
(n) , as =

αs
4π

. (44)

Collecting only the single pole in the limit that x → 1, setting the renormalisation scale equal to
the hard scale of the process (µ = Q) 5, and recognising the LO normalisation factor from eq. (35),
we find that

W
(1)
φ,q (x) = −2CF

ε
(1− x)−ε . (45)

That this is indeed NLP in the threshold expansion can be seen by comparing with eq. (1), where
the threshold variable in this case is ξ = (1−x). For later use, it is convenient to express this result
in Mellin space, where the Mellin transform of a function f(x) is defined by

f(N) =

∫ 1

0
dxxN−1 f(x) , (46)

where it is clear from the arguments of the function whether we are in N -space or x-space. In
Mellin space eq. (45) becomes

W
(1)
φ,q (N) = −2CF

ε

N ε

N
, (47)

where we have taken the N → ∞ limit, and we keep only the dependence on LL terms 6. Having
calculated the first non-zero contribution to the subleading partonic channel in Higgs-induced DIS,
we now proceed to calculate its all-order structure function.

5This is allowed at LL, since scale-dependence only contributes at NLL.
6Note that LL is defined to mean the maximum power of ln(N) at each power of αs and ε. Thus, the factor N ε

in eq. (80) generates LL terms at each power of ε when expanded.
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Figure 4: (a) Ladder graph contributing to T
(n)
φ,q , where all possible values of m must be considered;

(b) similar but for T
(n)
2,g .

2.2.1 All-order structure function in Higgs-induced DIS

To derive all-order forms for the relevant splitting and coefficient functions, we now need to dress
these processes with arbitrary numbers of additional soft gluons. As discussed at the beginning of

section 2, we can calculate W
(n)
φ,q by considering general uncrossed ‘ladder graphs’ such as that of

figure 4a, which has m gluon ‘rungs’ connecting the quark legs in the lower part, and n−m gluons
connecting the gluons in the upper part of the diagram. Furthermore, as we have argued that only
maximally soft gluons will contribute at NLP, one may apply the well-known eikonal Feynman rule

V µ = ±gsµ
4−d
2 Ti

pµi
pi · k

, (48)

for emission of a soft gluon of momentum k from a hard leg of momentum pi, where Ti is a colour
generator in the appropriate representation, and the sign + for an outgoing or − for an incoming
hard particle. The summed and averaged squared matrix element for the diagram of figure 4a is
then found to be

|Mqh→qg1...gn |2

=
|λ|2Cm+1

F Cn−mA g
2(n+1)
s

8µ(d−4)(n+1)

(
n∏
i=1

2q · p p · ki
q′ · ki

)
Tr[6pγβ 6kqγα]

(
−ηαβ +

q′αpH,β + q′βpH,α

q′ · pH

)

× 1

(p · k1)2[p · (k1 + k2)]2 . . . [p · (k1 + . . .+ km + kq)]2 . . . [p · (k1 + . . .+ kn + kq)]2
. (49)
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At NLO, we found that the second term in the remaining gluon polarisation tensor did not con-
tribute at LL order. Let us assume the same thing will happen here (we will explicitly check this
later). Then eq. (49) simplifies to

|Mqh→qg1...gn |2 =
d− 2

2
|λ|2Cm+1

F Cn−mA

2ng
2(n+1)
s

(p · q)n+1µ(d−4)(n+1)
βq

(
n∏
i=1

β̄i
ᾱi

)

× 1

β̄2
1(β̄1 + β̄2)2 . . . (β̄1 + . . .+ β̄m + βq)2 . . . (β̄1 + . . .+ β̄n + βq)2

, (50)

where we have introduced the Sudakov variables from eq. (18). To make things look a little more
symmetric, let us introduce the variables

(1− x)bi =


β̄i, 1 ≤ i ≤ m;

βq, i = m+ 1;

β̄i−1, m+ 2 ≤ i ≤ n+ 1.

(51)

Upon combining with the phase space of eq. (32) (suitably relabelled), we will end up with the
integral∫ i∞

−i∞

dT

2πi
eT (1−x) 1

T (n+1)d−4n−3

∫
dαq α

d−4
2

q e−αq

(
n∏
i=1

∫
dᾱi ᾱ

d−6
2

i e−ᾱi

)

×

(
n+1∏
i=1

∫
dbi b

d−2
2

i

)
e−

∑n+1
i=1 bi

b21(b1 + b2)2 . . . (b1 + b2 + . . .+ bn+1)2

= Γn
(
d− 4

2

)
Γ

(
d− 2

2

)
(1− x)(n+1)(d−4)

Γ[(n+ 1)d− 4n− 3]

×

(
n+1∏
i=1

∫
dbi b

d−2
2

i

)
e−

∑n+1
i=1 bi

b21(b1 + b2)2 . . . (b1 + b2 + . . .+ bn+1)2
, (52)

where we have already scaled out the T dependence from the Sudakov variables in the first line,
and carried out the (αq, ᾱi) integrals in the second line, as well as the inverse Laplace transform in
T using ∫ i∞

−i∞

dT

2πi
eT (1−x)T−α =

(1− x)α−1

Γ(α)
. (53)

To carry out the remaining integrals, we may recall the above remarks that crossed-ladder contri-
butions are kinematically subleading. This means that we may add those contributions, ignoring
the colour factor, such that one may replace the factor

1

b1(b1 + b2) . . . (b1 + b2 + . . .+ bn+1)

with a sum over all permutations π (see Appendix A for the justification of this replacement). This
means we can write[

1

b1(b1 + b2) . . . (b1 + b2 + . . .+ bn+1)

]2

→

14



1

(n+ 1)!

[∑
π

1

bπ1(bπ1 + bπ2) . . . (bπ1 + bπ2 + . . .+ bπn+1)

]2

. (54)

To explain the combinatorial factor on the right-hand side, note that expanding the brackets gives
[(n + 1)!]2 terms in total (including identical contributions). The diagonal terms are simply rela-
bellings of the original term on the left-hand side of eq. (54), in which each denominator is explicitly
squared. There are (n+ 1)! such terms, and we must correct for this overcounting. We do not have
to worry about the cross-terms: these correspond to the kinematic parts of crossed-ladder graphs,
and thus are kinematically subleading. The right-hand side of eq. (54) is now written in a form
that allows us to apply the eikonal identity, i.e.

∑
π

1

bπ1(bπ1 + bπ2) . . . (bπ1 + bπ2 + . . .+ bπn+1)
=

n+1∏
i=1

1

bi
, (55)

in each bracket, so that the {bi} integrals simply become(
n+1∏
i=1

∫
dbi b

d−2
2

i

)
e−

∑n+1
i=1 bi

b21(b1 + b2)2 . . . (b1 + b2 + . . .+ bn+1)2

→ 1

(n+ 1)!

n+1∏
i=1

∫
dbi b

d−6
2

i e−bi =
Γn+1

(
d−4

2

)
(n+ 1)!

=
1

(n+ 1)!

(
−1

ε

)n+1

+ . . . .

(56)

For the reader who is not convinced by this argument, we provide a direct computation of the
integrals in eq. (52) in appendix A, finding the same result. Indeed, this also justifies the statement
that crossed ladders are kinematically subleading and would only contribute beyond NLP LL, i.e. at
NLP NLL.

We may now substitute our result for the {bi} integrals from eq. (56) into eq. (52), and then
combine with the remaining factors from the phase space and matrix element. Dividing by the LO
normalisation and keeping only the leading ε behaviour, one finds

W
(n+1)
φ,q (x) =

(
n∑

m=0

Cm+1
F Cn−mA

)
22n+1

(n+ 1)!

(
µ2

Q2(1− x)

)(n+1)ε(
−1

ε

)2n+1

+ . . . , (57)

where we have used the fact that the kinematic part of each ladder diagram is the same to imme-
diately sum over all possible colour structures. In N space one then finds up to LL

W
(n+1)
φ,q = −

(
n∑

m=0

Cm+1
F Cn−mA

)
2

ε

N ε

N

(
4N ε

ε2

)n 1

(n+ 1)!
. (58)

We can resum the tower of higher-order contributions into a closed form:

Wφ,q

∣∣∣
LL

=
∞∑
n=1

ansW
(n)
φ,q
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= −2asCF
ε

N ε

N

1

CF − CA

(
4asN

ε

ε2

)−1{
exp

[
4asCFN

ε

ε2

]
− exp

[
4asCAN

ε

ε2

]}
. (59)

In understanding this result, it is useful to take note of the identity

Cn+1
F − Cn+1

A

CF − CA
=

n∑
m=0

CmF C
n−m
A , (60)

which demonstrates that the inverse factor of (CF − CA) in eq. (59) simply combines with the
colour factors arising from expanding the exponentials, to reproduce the democratic sum of factors
of the form CpFC

q
A in eq. (58).

We now come back to verify an assumption we made above, namely that the second term in the
gluon polarisation tensor of eq. (49) gives a subleading contribution and can therefore be neglected.
The relevant contribution to the squared matrix element is

|λ|2

8
Cm+1
F Cn−mA g2(n+1)

s µ(4−d)(n+1)

(
n∏
i=1

2q · p p · ki
q′ · ki

)
Tr[6pγβ 6kqγα]

(
q′αpH,β + q′βpH,α

q′ · pH

)

× 1

(p · k1)2[p · (k1 + k2)]2 . . . [p · (k1 + . . .+ km + kq)]2 . . . [p · (k1 + . . .+ kn + kq)]2
. (61)

The trace combination appearing on the first line is

(q′αpH,β + q′βpH,α)Tr[6pγβ 6kqγα] = 8(p · pH kq · q′ − p · kq pH · q′ + p · q′ kq · pH)

= 16 kq · q′ p · q + . . . , (62)

where we have used eq. (38) to eliminate pH , and neglected terms which are quadratic in soft
momenta {pq, ki}, which is consistent with neglecting such quadratic terms in the phase space.
Substituting this back into eq. (61) and transforming to Sudakov variables gives

2|λ|2Cm+1
F Cn−mA g2(n+1)

s µ(4−d)(n+1)2n(p · q)−n−1 αq
1− x− αq −

∑n
i=1 ᾱi

[
n∏
i=1

β̄i
ᾱi

]

× (1− x)n+2

β̄2
1(β̄1 + β̄2)2 . . . (β̄1 + . . .+ β̄m + βq)2 . . . (β̄1 + . . .+ β̄n + βq)2

, (63)

where we have rescaled the β̄i and βq variables by 1/(1−x). We now notice that the delta function
in the phase space of eq. (30) allows one to make the replacement

1− x− αq −
n∑
i=1

ᾱi → βq +
n∑
i=1

β̄i , (64)

so that eq. (65) becomes

2|λ|2Cm+1
F Cn−mA g2(n+1)

s µ(4−d)(n+1)2n(p · q)−n−1(1− x)n+2 αq

[
n∏
i=1

β̄i
ᾱi

]
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× 1

β̄2
1(β̄1 + β̄2)2 . . . (β̄1 + . . .+ β̄m + βq)2 . . . (β̄1 + . . .+ β̄n−1 + βq)2(β̄1 + . . .+ β̄n + βq)3

. (65)

Note the difference with eq. (50); here we have an additional factor of αq in the numerator and[∑
i β̄i + βq

]−1
in the denominator, whereas we are missing the factor of βq with respect to eq. (50).

Upon combining with the phase space of eq. (32) and scaling the T dependence out of the Sudakov
variables, the afore-mentioned difference will result in an additional factor of T such that the overall
T integral becomes∫ i∞

−i∞

dT

2πi
eT (1−x) 1

T (n+1)(d−4)
=

1

1− x
(1− x)(n+1)(d−4)

Γ[(n+ 1)(d− 4)]

= −2(n+ 1)ε

1− x
(1− x)−2(n+1)ε + . . . . (66)

There are 2(n+1) remaining integrals over the rescaled Sudakov parameters ᾱi, β̄i, βq and αq, each
of which may potentially contribute at most one singularity in ε. However, contrary to eq. (52), the
αq integral is now not singular due to the additional factor of αq in eq. (65). Together, the total
contribution to the structure function from the second term in the gluon polarisation tensor must
be O(ε−2n) or higher. This is indeed subleading compared to the contributions we have already
considered, and thus we were justified in neglecting it 7.

2.2.2 Adding the virtual corrections

By construction, eq. (59) only includes the pure real emission contributions at each order in per-
turbation theory. There are also virtual corrections, and in a direct calculation of the structure
function one must include all possible channels, with different numbers of real and virtual gluons,
combined with appropriate phase spaces. As is well-known, however, it is not necessary to do this
at LL order: all of our additional gluon emissions are associated with the emission of soft gluons.
These lead to infrared singularities, which must largely cancel between real and virtual graphs (after
phase space integration) [93–95], leaving only collinear poles that can be absorbed into the parton
distribution functions. To be more specific, the purely real result of eq. (59) is O(ε−2n+1) at O(αns ),
which must reduce to O(ε−n) upon combination with the virtual corrections. We may then fix the
latter by the argument made below, which is a variant of the soft gluon unitarity requirement that
has previously been adopted at LP [4].

The effect of the virtual corrections is to modify the real emission contributions at each order,
removing singularities which are simultaneously soft and collinear. Thus, they will modify the
double poles in eq. (59) as follows:

N ε

ε2
→ N ε + λ

ε2
, (67)

for some constant λ, where the second term on the right-hand side is down a power of N ε due to
having swapped a phase space integral for a real gluon with an integral over a virtual momentum.

7Note also that the factor of 1/(1− x) in eq. (66) gets cancelled against a factor of (1− x)2 in the matrix element
squared contribution, eq. (65).
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Making this modification everywhere in eq. (59), one obtains the ansatz 8

Wφ,q

∣∣∣
LL

= −2asCF
ε

N ε

N

1

CF − CA

(
4as(N

ε + λ1)

ε2

)−1

exp

[
4as(λ2CF + λ3CA)

ε2

]
×
{

exp

[
4asCF (N ε + λ4)

ε2

]
− exp

[
4asCA(N ε + λ5)

ε2

]}
. (68)

We have been extra general in allowing for the possibility of an overall prefactor, consisting of
exponentiated virtual corrections that modify both terms in the bracket equally. As a result, there
is some redundancy in this parametrisation, as we will see. At O(as) no poles will get removed by
the virtual corrections (as indeed, no virtual correction exists at that order for the qg channel), and

W
(1)
φ,q

∣∣∣
LL

obtained from eq. (68) should be equal to the purely real correction obtained by expanding

eq. (59) up to O(as). Upon doing so we find the condition

W
(1)
φ,q

∣∣∣
LL

= − 2CF
N(CF − CA)

CF (λ4 + 1)− CA(λ5 + 1)

ε(λ1 + 1)
≡ −2CF

N

1

ε
, (69)

which we use as a constraint on λ1. Starting from O(a2
s), we may impose that all poles ε−m with

n+ 1 ≤ m ≤ 2n− 1 vanish due to the virtual corrections, leading to the solution

λ5 = −CAλ3 + CFλ2 + CA
CA

, λ4 = −CAλ3 + CFλ2 + CF
CF

, λ1 = −1 . (70)

Upon using this in eq. (59), we see that the λ2 and λ3 coefficients cancel, and we find the solution

Wφ,q

∣∣∣
LL

= −2asCF
ε

N ε

N

1

CF − CA

(
4as(N

ε − 1)

ε2

)−1

×
{

exp

[
4asCF (N ε − 1)

ε2

]
− exp

[
4asCA(N ε − 1)

ε2

]}
, (71)

which is our final result for the all-order structure function in Higgs induced DIS. Understandably,
the effect of the virtual corrections has been to simply remove the double pole wherever it appears,
and one may question the pedantic nature of our above procedure in this case. Later on when
discussing the DY and Higgs production channels, however, we will see a case that is not so simple
a priori, and thus we have trodden carefully here.

2.2.3 Discussion of the result

Eq. (71) is the all-order LL form for the quark component of the structure function of eq. (7). As
such, we may check it against ref. [87], which conjectures an all-order form for the CF terms, again
at LL order only:

W
(n)
φ,q

∣∣∣
CnF

=
1

n!
W

(1)
φ,q

(
W

(1)
2,q

)n−1
. (72)

Here W
(1)
φ,q has been given in N -space in eq. (47), and we have also introduced the LP NLO

contribution to the conventional DIS structure function of eq. (5):

W
(1)
2,q = 4CF

(N ε − 1)

ε2
+ . . . . (73)

8Using this form we have implicitly assumed that the virtual corrections exponentiate. However, we do not have
to make this assumption, and we come back to this point in section 3.3.
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It is straightforward to check that upon setting CA → 0 in eq. (71) and expanding in as, one verifies
eq. (72). Reference [87] further conjectured that all remaining colour structures would be obtained
by replacing

Cn+1
F →

n∑
m=0

Cm+1
F Cn−mA

at O(ans ). Again, this agrees precisely with our result in eq. (71).

Equation (71) also reproduces the result found in eq. (3.50) of ref. [86]. Therefore, it may be useful
to explicitly mention the differences between the methods used here and in [86], which, taken
together, gives us a more comprehensive understanding of the qg DIS cross section. In eq. (59)
we obtain by direct computation the all-order contribution to the total cross section, due to the
real emission diagrams in figure 4, calculated in the limit in which the radiated particles are soft.
Instead, in [86] one obtains the all-order contribution after calculating the virtual hard diagrams
(see eq. (2.23) there). There, the result is obtained first by assuming the exponentiation of the
one-loop virtual contribution; subsequently, the exponentiation is justified within a re-factorisation
approach in SCET, which allows one to write down a two-step renormalisation group evolution for
the short-distance coefficient responsible for the virtual-diagram contributions to the total cross
section. The two towers of contributions (all-real soft-emission and all-virtual hard diagrams)
contain equivalent information, which is sufficient to reconstruct the full DIS cross section. This
is possible because of the existence of consistency conditions, related to pole cancellations. In [86]
such conditions have been obtained by requiring the finiteness of the hadronic cross section, while
here we require that the partonic cross section has at most poles ε−n at order n, after real and
virtual contributions to the partonic cross section have been summed. The application of these
conditions leads to the characteristic pattern N ε − 1 appearing in the exponents of eq. (71), also
pointed out in eq. (3.53) of [86].

2.3 The gluon structure function in DIS at NLO

After having discussed the quark structure function in Higgs-induced DIS, we now consider the
case of conventional DIS to extract the gluon structure function. Following ref. [87], we may define
W2,g to be the gluon contribution to the structure function of eq. (5), with the LO normalisation
divided out. To be more precise, the LO structure function is straightforwardly found to be

F2(x,Q2)
∣∣∣
LO

= σ0 δ(1− x) +O(ε), σ0 = e2
q , (74)

such that one defines

W2,g =
1

σ0

∫
dΦTαβ2 |Mgγ∗→qq̄|2αβ . (75)

The gluon channel first occurs at NLO, and the squared amplitude is given by the diagram of
figure 2a, where in line with the comments above, and refs. [91, 92], we can ignore the crossed box
diagram as it is kinematically subleading. Averaging (summing) over initial (final) state colours
and spins, one finds a squared matrix element

|Mgγ∗→qq̄|2αβ = TR
e2
qg

2
sµ

4−d

(d− 2)

Tr[6kqγν(6p− 6kq)γβ 6pHγα(6p− 6kq)γµ]

(p− kq)2

(
−ηµν +

q′µpν + q′νpµ

p · q′

)
, (76)
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where we have used the gluon polarisation choice of eq. (14), and introduced the normalisation
factor of the QCD colour generators in the fundamental representation, TR = 1/2. At LL level,
all propagators must be maximally soft and/or collinear, so that we may take the 4-momentum of
the emitted quark kq → 0 in the numerator. Introducing the Sudakov variables from eq. (18) and

projecting onto Tαβ2 defined in eq. (6), one finds

Tαβ2 |Mgγ∗→qq̄|2αβ = TR
(d− 2)e2

qg
2
sµ

4−d

2π

(1− βq)
βq

. (77)

Combining this with the phase space of eq. (33), one may carry out the αq integral using the delta
function, yielding∫

dΦ(2)Tαβ2 |Mgγ∗→qq̄|2αβ =
(αs

4π

)
2TR (1− x)−ε

(
µ2

Q2

)ε ∫
dβq β

d−6
2

q (1− βq)
d−2
2 + . . .

=
(αs

4π

)
2TR (1− x)−ε

(
µ2

Q2

)ε Γ(d−4
2 )Γ(d2)

Γ(d− 2)
+ . . .

=
(αs

4π

)[
−2TR(1− x)−ε

ε

]
+ . . . , (78)

where the ellipsis denotes terms that are suppressed by powers of ε, and thus do not contribute
at LL order. The contents of the square brackets constitute the first non-zero contribution to the
gluon channel for DIS. Note, however, that we have only included a single quark in the diagram of
figure 2a. We must instead include all possible massless (anti)-quark flavours, which amounts to
simply multiplying eq. (78) by a factor of 2nf . From eq. (78), we find the O(αs) gluon structure
function

W
(1)
2,g (x) = −

2nf
ε

(1− x)−ε , (79)

which in Mellin space becomes.

W
(1)
2,g (N) = −

2nf
ε

N ε

N
+ . . . , (80)

in the N →∞ limit. Note that one may obtain eq. (80) directly from the Higgs-induced DIS NLO
result of eq. (47) by the simple colour replacement

CF → nf , (81)

as remarked in ref. [87].

2.3.1 All order structure function in DIS

Similarly to the Higgs-induced DIS case, we can also calculate an all-order LL form for the structure
function W2,g in conventional DIS. This will be given by the ladder diagram of figure 4b, where
again all emitted partons are soft. Dressing eq. (76) with the requisite eikonal Feynman rules and
taking kq → 0 where possible, one obtains the (summed and averaged) squared matrix element

|Mgγ∗→qq̄g1...gn |2 =
TR C

m
A Cn−mF e2

qg
2(n+1)
s µ(4−d)(n+1)

4(d− 2)

(
n∏
i=1

2p · q p · ki
q′ · ki

)
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× Tr[6kqγµ 6pγα 6pHγβ 6pγν ]

(
−ηµν +

q′µpν + q′νpµ

p · q′

)
× Tαβ2

(p · k1)2[p · (k1 + k2)]2 . . . [p · (k1 + . . .+ km + kq)]2 . . . [p · (k1 + . . .+ kn + kq)]2
.

(82)

Substituting the projector of eq. (6), contracting indices and carrying out the trace gives

|Mgγ∗→qq̄g1...gn |2 =
TR C

m
A Cn−mF e2

qg
2(n+1)
s

2π µ(d−4)(n+1)
(p · q)−n

(
n∏
i=1

β̄i
ᾱi

)
βq(1− βq −

∑
i β̄i)

β̄2
1(β̄1 + β̄2)2 . . . (β̄1 + . . . β̄n + βq)2

,

(83)

where we have used momentum conservation to replace pH , and introduced the usual Sudakov
variables. To make the βq and β̄i integrals easier, we can borrow the trick from the previous section
of symmetrising over all crossed ladders. One may also use the delta function that appears in
eq. (26) to replace

1− βq −
∑
i

β̄i →
1

1− x

(
αq +

∑
i

ᾱi

)
. (84)

We then get

|Mgγ∗→qq̄g1...gn |2 =
TR C

m
A Cn−mF e2

qg
2(n+1)
s µ(4−d)(n+1)

2π

(p · q)−n

(n+ 1)!

2n(d− 2)

1− x

(
n∏
i=1

1

ᾱiβ̄i

)
αq +

∑
i ᾱi

βq
.

(85)

After rescaling the β̄i and βq variables by a factor of 1/(1−x) and combining with the phase space,
all integrals may be carried out similarly to the previous case, and one ultimately finds∫

dΦ(n+2) |Mgγ∗→qq̄g1...gn |2 = −2TRasN
ε

ε

(
4asN

ε

ε2

)n CmA Cn−mF

(n+ 1)!
, (86)

which is valid at NLP LL order. As in the Higgs-induced case, we must sum over all values of m
to include all ladder diagrams, where m gluons couple to the gluon leg (lower part of the diagram),
and n −m to the quark leg (upper part of the diagram). We must also multiply by 2nf to take
account of all (anti-)quark species that could be coupling to the gluon. The result is that the pure

real emission contribution to W
(n+1)
2,g can be easily obtained from eq. (58) by replacing a single

power of CF with nf , and interchanging CF ↔ CA elsewhere, as in fact was already noted as part
of the conjectures in ref. [87].

Given the above replacements, it is not necessary to repeat the soft gluon unitarity argument in
order to furnish eq. (86) with virtual corrections. We can simply take the final result of eq. (71)
for the Higgs case, and make the necessary colour factor replacements to obtain

W2,g

∣∣∣
LL

= −
2asnf
ε

N ε

N

1

CA − CF

(
4as(N

ε − 1)

ε2

)−1

×
{

exp

[
4asCA(N ε − 1)

ε2

]
− exp

[
4asCF (N ε − 1)

ε2

]}
. (87)
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2.4 Resummed form for splitting and coefficient functions

We have now derived all-order forms for the partonic structure functions for subleading channels in
(Higgs-induced) DIS. As a consequence, we can derive resummed forms for the off-diagonal splitting
functions Pqg and Pgq, and also for the coefficient functions which control the finite parts of the
structure functions 9. To define things more precisely, let us recall the mass factorisation procedure,
by which those infrared poles remaining in the structure functions after combining real and virtual
contributions can be factorised as follows:

Wa,k = C̃a,iZik , (88)

or, in matrix form, (
Wa,q

Wa,g

)
=
(
C̃a,q C̃a,g

)( Zqq Zqg
Zgq Zgg

)
. (89)

Here, C̃a,i is an infrared finite coefficient function, and the transition function matrix Z ≡ {Zik} col-
lects all the infrared divergences. The latter is related to the DGLAP splitting functions, contained
in the matrix

P =

(
Pqq Pqg
Pgq Pgg

)
. (90)

By definition, this satisfies

P =
dZ

d lnQ2
Z−1, (91)

where Q2 is the hard scale of the process, which has been taken to be equal to both the factorisation
and renormalisation scales. Note that the ordering of the matrix and its inverse in eq. (91) are
important, given the matrix-valued nature of Z. In Mellin space, it is also conventional to define
the anomalous dimension matrix

γ ≡
(
γqq γqg
γgq γgg

)
= −P(N) . (92)

Let us focus explicitly on the function Pgq, which can be obtained from the Higgs-induced DIS
process, as discussed in refs. [86, 87]. Once we have extracted Pgq we may use the colour replace-
ments to straightforwardly get Pqg. One can obtain Pgq from the transition function Zgq using the
relation 10

Z(n)
gq =

1

n!

n−1∑
m=0

γ
(m)
gq

εn−m

n−m−1∑
k=0

(m+ k)!

k!

(
γ(0)
qq

)k (
γ(0)
gg

)n−m−1−k
. (93)

This equation was stated without proof in ref. [87], but we prove it in appendix B. We are after

obtaining γ
(n−1)
gq , which can be found directly from Z

(n)
gq by extracting the O(ε−1) term of eq. (93).

This can be seen by requiring that k = 0 and n−m− 1− k = n−m− 1 = 0 in eq. (93), resulting
in

Z(n)
gq

∣∣∣
k=0,m=n−1

=
1

ε

γ
(n−1)
gq

n
, (94)

9This can be done following the steps described in section 3.2.3 of ref. [86]. Nevertheless, we find it pedagogical
to provide an independent derivation in what follows.

10As usual, we normalise perturbative coefficients in terms of as = αs/(4π). However, following convention, γ
(n)
ij is

defined to be the coefficient of an+1
s .
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from which we see we indeed only need the O(ε−1) part of Z
(n)
gq to obtain γ

(n−1)
qg . The explicit form

of the mass factorisation formula for Wφ,q is

Wφ,q = C̃φ,qZqq + C̃φ,gZgq , (95)

where our aim is now to find both the quantities C̃φ,q and Zgq on the right-hand side. That we only
have a single equation for two unknowns corresponds to the fact that the splitting and coefficient
functions are not unique but defined only up to a choice of factorisation scheme. However, imposing
the MS scheme such that the transition functions contain only poles (and some particular numerical
constants that need not explicitly concern us) is sufficient for us to find the above quantities, as
we will see. Given that Zgq and C̃φ,q already start at NLP, we will need the remaining elements on
the right-hand side of eq. (95) at LP, where they are fixed by standard resummation arguments.
Quoting from ref. [87], we have

Zqq = exp

[
4asCF lnN

ε

]
, C̃φ,g = exp

[
4asCA(N ε − 1− ε lnN)

ε2

]
. (96)

That is, the LL transition function Zqq can be obtained by simply exponentiating the pole in the
NLO result. Likewise, for the gluon coefficient function in Higgs-induced DIS, one removes the pole
terms from the NLP result and exponentiates what is left.

As the coefficient function C̃φ,q is necessarily finite, one may rearrange eq. (95) to obtain the
constraint

C̃φ,q =
Wφ,q

Zqq
−
ZgqC̃φ,g
Zqq

∼ O(ε0) . (97)

This equation implies that all ε poles must cancel between the first and second terms on the right-
hand side. In particular, this must be true for the O(ε−1) contribution, which we will need to
consider to get the single ε pole term of Zgq en route to the anomalous dimension γgq, as dictated
by eq. (94). For the first term in eq. (97), we may substitute the results of eqs. (71, 96), and
rearrange to get

Wφ,q

Zqq
= − CF

CF − CA
1

2N lnN
f(−ε lnN)

{
exp

[
4asCF (N ε − 1− ε lnN)

ε2

]
− exp

[
4asCA(N ε − 1− ε lnN)

ε2
− 4as(CF − CA) lnN

ε

]}
, (98)

where we have isolated the function

f(x) =
x

ex − 1
=

∞∑
m=0

Bm
m!

xm, (99)

which acts as the exponential generating function for the Bernoulli numbers {Bm}. We want to
find the O(ε−1) part of eq. (98), for which we can note that the entire first line is finite as ε→ 0. In
the second line, we can recognise the coefficient function C̃φ,g from eq. (96), such that the second
term of eq. (98) together with the prefactor can be written as

Wφ,q

Zqq

∣∣∣∣
poles

∼
C̃φ,g

2N lnN

CF
CF − CA

∞∑
n=1

ans
[4(CA − CF )]n lnnN

n!εn

∞∑
m=0

Bm(−ε lnN)m

m!
. (100)
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By defining

Zgq =
∞∑
n=1

−1∑
m=−n

ans ε
mZ(n,m)

gq , (101)

where m labels the power of ε, we can write eq. (97) as

C̃φ,q ≡ O(ε0)

= C̃φ,g

∞∑
n=1

ans

[
1

2N lnN

CF
CF − CA

[4(CA − CF )]n lnnN

n!εn

∞∑
m=0

Bm(−ε lnN)m

m!

− 1

Zqq

−1∑
m=−n

εmZ(n,m)
gq

]
, (102)

where we have extracted a common factor of C̃φ,g. The above equation implies that the pole
cancellation must apply within the square brackets. We remind the reader that we are in particular
interested in the cancellation that happens for the O(ε−1) part of this equation. For this reason,
we can neglect the inverse factor of Zqq, as it will only contribute further poles in ε. In the first
term, the O(ε−1) contribution can only arise from the term in the second sum with m = n− 1. In
the second term, we need the term with m = −1. Demanding that these contributions cancel each
other leads to the following result:

Z(n,−1)
gq = −2asCF

N
[4as(CF − CA) ln2N ]n−1 Bn−1

n!(n− 1)!
. (103)

Combining this with eqs. (94, 92) yields

Pgq(N)
∣∣∣
LL

=
2asCF
N
B0[4as(CF − CA) ln2N ] , (104)

where

B0(x) =

∞∑
n=0

Bn
(n!)2

xn . (105)

Equation (104) is precisely the result conjectured in ref. [87], including the full colour dependence.
This result has also been obtained in section 3.2.3 of ref. [86], following an equivalent derivation,
that leads from the expression given in eq. (71) to eqs. (102, 104), exploiting eq. (95).

Using the all-order form of Pgq, and as in ref. [86], we can go further and derive the all-order LL

form of the coefficient function C̃gq. Indeed, this is straightforward given the results of eqs. (97,
98). We have seen in eq. (100) that the pole contributions from the first term in eq. (97) have an
explicit factor of C̃φ,g in them. Thus, all the second term in eq. (97) does is to remove the poles

in the first term, and any other terms in which higher-order in ε contributions in C̃φ,g interact

with the poles. We can thus find the coefficient function C̃φ,q by simply taking the O(ε0) piece of

eq. (98), ignoring the higher-order ε terms in C̃φ,g as we do so. The first term in eq. (98) is finite,
and taking ε→ 0 gives

− CF
CF − CA

1

2N lnN
exp

[
4asCF ln2N

]
. (106)
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In the second term of eq. (98), we can expand to get

CF
CF − CA

e2asCA ln2N

2N lnN

∞∑
n=0

[−4as(CF − CA) lnN ]n

n!

∞∑
m=0

εm−n
Bm
m!

(− lnN)m, (107)

such that the O(ε0) piece has m = n in the second sum, yielding

CF
CF − CA

e2asCA ln2N

2N lnN

∞∑
n=0

[−4as(CF − CA) ln2N ]n
Bn

(n!)2

=
CF

CF − CA
e2asCA ln2N

2N lnN
B0[4as(CF − CA) ln2N ] . (108)

Putting things together, we get

C̃φ,q

∣∣∣
LL

=
1

2 lnN

CF
CF − CA

[
B0[4as(CF − CA) ln2N ]e2asCA ln2N − e2asCF ln2N

]
, (109)

which matches the result in refs. [86, 87].

Given the colour replacements in going from eq. (71) to eq. (87), we can easily recycle our results
to provide the counterparts of eqs. (104), (109) in conventional DIS:

Pqg

∣∣∣
LL

=
2asnf
N
B0[4as(CA − CF ) ln2N ];

C̃2,g

∣∣∣
LL

=
1

2 lnN

nf
CA − CF

[
B0[4as(CA − CF ) ln2N ]e2asCF ln2N − e2asCA ln2N

]
. (110)

To summarise, in this section we have derived all-order LL forms for the kinematically subleading
structure functions in (Higgs-induced) DIS. We used them to derive resummed results for the
off-diagonal DGLAP splitting functions and the infrared-finite coefficient functions. Our results
are in agreement with refs. [86, 87], but our complementary approach – constructing the structure
functions using real emission contributions plus soft gluon unitarity – means we do not have to make
any assumptions about the exponentiation or otherwise of the virtual corrections. Furthermore, it
seems clear that our arguments should generalise to other processes. Indeed they do, as we discuss
in the following sections.

3 Resummation of the gq̄ channel in Drell-Yan production

DY production of a vector boson is a canonical testbed for new resummation ideas, as well as
being of phenomenological importance in its own right. Production of SM vector bosons is a key
background to many new physics processes, and the production of new heavy bosons via an s-
channel resonance is an important potential discovery mode of new physics that is actively being
probed. For our purposes, we will consider the original DY process of production of an off-shell
photon, where the latter decays to a lepton pair, which at LO corresponds to:

q(p1) q̄(p2) → γ∗(q)→ e+(q1) e−(q2) . (111)
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Figure 5: (a) LO squared amplitude for the DY production of an off-shell photon, with decay to a
lepton pair; (b) the gq̄ channel at NLO.

We quickly review the ingredients for the LO computation of this process, as their definitions will
be needed in what follows. The squared amplitude for this process is shown in figure 5a. The
virtuality of the off-shell photon is conventionally written as

Q2 = q2 , q = q1 + q2 , (112)

and we also define the variable

z =
Q2

s
, (113)

where s = (p1 + p2)2 is the partonic centre-of-mass energy. Thus, z represents the fraction of the
centre-of-mass energy that is carried by the vector boson, such that z → 1 corresponds to threshold
production.

The squared matrix element from figure 5a summed (averaged) over final (initial) state colours and
spins evaluates to

|Mqq̄→γ∗ |2 =
1

2CA
e4e2

q (cos(2θ) + 3) , (114)

where e =
√

4παEM is the electromagnetic coupling, eq the charge of the quark in units of e, and θ
the angle between the z-axis and the e+ lepton. We may write the 2-body phase space of the LO
final state in d = 4 dimensions as∫

dΦ(2)(p1 + p2; q1, q2) =
1

16π

∫ π

0
d cos θ , (115)

leading to the LO cross section:

σqq̄→γ∗ =
1

2s

∫
dΦ(2)(p1 + p2, q1, q2)|Mqq̄→γ∗ |2 (116)

=
1

Q2

4πα2
EMe

2
q

3CA
,
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where we have used the fact that z = 1 at LO in the second line. In calculating higher-order
corrections in what follows, we will normalise to this LO cross section. In particular, the following
expression will be useful:∫

dΦ(2)(p1 + p2, q1, q2)|Mqq̄→γ∗ |2 = 8Q2CA σqq̄→γ∗ , (117)

where the left-hand side contains the squared amplitude before spin and colour averaging. Note
that this squared amplitude can be written as a contraction between a hadronic and leptonic tensor,
defined as follows

|Mqq̄→γ∗ |2 = Hµν
treeLµν , (118)

where
Hµν

tree = e2e2
qTr [ 6p2γ

µ 6p1γ
ν ] , (119)

and

Lµν =
e2

Q4
Tr [ 6q1γµ 6q2γν ] . (120)

We aim to show how LL logarithms can be resummed in the kinematically subleading gq̄ channel
for DY, which starts at NLP. We now proceed in the same way as before: we first compute the
all-order phase space in the NLP approximation, then we examine the NLO qg channel before
moving to the all-order results.

3.1 All-order phase space for DY production

In considering higher-order corrections to DY production, we will need to integrate over the multi-
parton phase space for a given number of real emissions. As we discussed for DIS in section 2.1, we
must then find suitable variables such that this phase space is tractable. The solution is again to
use a Sudakov decomposition for the emitted parton momenta, and the analysis proceeds similarly
to section 2.1, albeit with minor changes due to having a different threshold variable.

Consider the emission of one additional soft quark with momentum kq and n additional gluons with
momenta {ki} dressing the LO process, which includes already the two leptons in the final state.
As is well-known, the (n+ 2)-body phase space can then be decomposed as follows:∫

dΦ(n+3) =
1

2π

∫
dQ2

∫
dΦ(n+2)(p1 + p2; q, k1 . . . kn, kq)

∫
dΦ(2)(q; q1, q2) , (121)

which has a straightforward physical interpretation. The second integral on the right-hand side
is over the intermediate phase space of the off-shell photon (with fixed virtuality) and additional
partons; the third integral corresponds to the decay of the photon into the lepton pair. Finally, one
must integrate over all virtualities for the photon, and include an appropriate normalisation factor.
Considering the second integral, we may evaluate this further as (suppressing the arguments for
brevity)∫

dΦ(n+2) = (2π)d
∫

ddq

(2π)d−1
δ+(q2 −Q2)

[
n∏
i=1

∫
ddki

(2π)d−1
δ+(k2

i )

]
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×
∫

ddkq
(2π)d−1

δ+(k2
q ) δ

(d)

(
p1 + p2 − q − kq −

n∑
i=1

ki

)
. (122)

We may then take p1 and p2 as the null vectors in our Sudakov decomposition, writing each parton
momentum (including the quark momentum) as

ki = ᾱip1 + β̄ip2 + ki,⊥, ki,⊥ · p1 = ki,⊥ · p2 = 0 . (123)

The δ(d)-function can be removed using the ddq integral. The overall δ+ function then becomes

δ+

(p1 + p2 −
n∑
i=1

ki

)2

−Q2

 =
1

s
δ(1− z −

n∑
i=1

ᾱi −
n∑
i=1

β̄i) , (124)

where, similarly to eq. (25), we have neglected terms that are quadratic in the soft parton momenta.
Transforming from the usual momentum components to the Sudakov variables, one finds

ddki =
s

4
dᾱidβ̄i

(
k2
i,⊥
) d−4

2 dk2
i,⊥dΩ

(i)
d−2 . (125)

As in the DIS analysis, all matrix elements we encounter will not depend on transverse angles, so
that we can simply replace the differential solid angles with their integrated results of eq. (28). We
find∫

dΦ(n+2) =
2π

s
sn+1+(n+1) d−4

2
1

(4π)(n+1) d
2

1

Γn+1
(
d−2

2

) [ n∏
i=1

∫
dᾱidβ̄i

(
ᾱiβ̄i

) d−4
2

]

×
∫

dαqdβq (αqβq)
d−4
2 δ+(1− z − αq − βq −

n∑
i=1

(ᾱi + β̄i)). (126)

This may be used in eq. (121) together with eq. (115).

3.2 The qg channel at NLO

To show how LL logarithms can be resummed in the gq̄ channel for DY, we will use similar
arguments to those used in the DIS analysis of section 2. There, we heavily made use of the results
of refs. [88–90] (reviewed in refs. [91, 92]) to greatly streamline the effort involved in calculating
all-order matrix elements. The key idea was to make a particular reference vector choice for the
gluon polarisation sum, which in turn led to only pure ladder graphs being relevant for the real
emission contributions at arbitrary order. As discussed in detail in refs. [91, 92], this idea readily
generalises to DY production, and we will choose p2 as our reference vector 11. With this choice,
the squared matrix element of figure 5b evaluates to

|Mgq̄→γ∗q̄|2 =
1

2(d− 2)

e2e2
qg

2
sµ

4−dCF

C2
A − 1

Lµν
1

(2p1 · kq)2

11In fact, refs. [91, 92] advocate the use of a more general reference vector, involving a superposition of p1 and
p2. Whilst this leads to a more physical interpretation of the resulting Feynman diagrams, it makes the phase space
integrals more difficult, hence we will not adopt this here.
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×Tr [ 6p2γ
µ 6p1γ

σ 6kqγρ 6p1γ
ν ]

(
−gσρ +

p1,σp2,ρ + p2,σp1,ρ

p1 · p2

)
=

TR
2CA

g2
sµ

4−d

2p1 · kq
|Mqq̄→γ∗ |2 . (127)

Defining Sudakov variables for the emitted quark momentum via

kq = αqp1 + βqp2 + kq,⊥ , (128)

we obtain

|Mgq̄→γ∗q̄|2 =
4παsµ

4−d TR
2CA

1

s

1

βq
|Mqq̄→γ∗ |2.

We may integrate this over the phase space using eq. (121) for the case n = 0. Including also the
flux factor and the integral representation of the δ function (eq. (31)), one finds a cross section

σgq̄→γ∗q̄ =
1

2s

∫
dQ2

s

1

16π

∫
d cos θ|Mqq̄→γ∗ |2s

d−4
2

4παs

(4π)
d
2

µ4−d

Γ
(
d−2

2

) TR
2CA

×
∫ +i∞

−i∞

dT

2πi
eT (1−z)

∫
dαq e−Tαq (αq)

d−4
2

∫
dβq e−Tβq (βq)

d−6
2 . (129)

The required integrals are straightforward using the methods of section 2. After normalising to the
LO cross section using eq. (117) one finds

1

σqq̄→γ∗

dσgq̄→γ∗q̄
dz

=
(αs

4π

)[
−2TR

ε
(1− z)−2ε

]
+ . . . , (130)

where we have kept only the LL dependence at NLP. Following ref. [37], we will expand the cross
section normalised to the LO result as in eq. (44), writing

1

σqq̄→γ∗

dσDY,gq̄

dz
≡WDY,gq̄ =

∞∑
n=1

ansW
(n)
DY,gq̄ , (131)

where we have shortened the notation σgq̄→γ∗q̄g1...gn to σDY,gq̄. From eq. (130), we then find the
Mellin space result

W
(1)
DY,gq̄(N) = −2TR

ε

N2ε

N
. (132)

3.3 All-order form for the gq̄ cross section

Having calculated the NLO result for the gq̄ channel using the choice of p2 as the reference vector,
let us now generalise the calculation to higher orders. As for the DIS case, the emission of a soft
quark at NLO has already placed us at next-to-leading power in the threshold variable, so that
we need only include further emission of soft gluons at higher orders. As discussed above, only
ladder graphs will be relevant. Furthermore, our choice of p2 as a reference vector means that only
gluons emitted from the upper half of the squared amplitude in figure 5b will contribute 12. Indeed,

12It is for this reason that refs. [91,92] advocated using a more general reference vector, that interpolates between
axial gauges in the upper and lower halves of the amplitudes, making each half of the DY amplitude look more
DIS-like.
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Figure 6: (a) Ladder diagram contributing to the gq̄ channel in DY production; (b) similar but for
the qg channel in Higgs production.

applying eikonal Feynman rules to emissions in the lower part of the diagram results in a vanishing
factor

pµ2p
ν
2

(
−ηµν +

p2,µkν + p2,νkν
p2 · k

)
= 0 . (133)

The most general ladder diagram we have to consider is shown in figure 6a, and contributes to the
summed-and-averaged matrix element

|MDY,gq̄|2 = e2
q

CmA C
n−m+1
F

C2
A − 1

g
2(n+1)
s µ(4−d)(n+1)

2(d− 2)

× Lµν

(2(p1 · (k1 + . . . km + kq))
2 Tr [ 6p2γ

µ 6p1γ
ρ 6kqγσ 6p1γ

ν ]

× pµ11

p1 · k1
. . .

pµm1

p1 · (k1 + . . . km)

p
µm+1

1

p1 · (k1 + . . . km+1 + kq)
. . .

pµn1

p1 · (k1 + . . . kn + kq)

× pν11

p1 · k1
. . .

pνm1
p1 · (k1 + . . . km)

p
νm+1

1

p1 · (k1 + . . . km+1 + kq)
. . .

pνn1
p1 · (k1 + . . . kn + kq)

×
(
−gρσ +

p2,ρp1,σ + p2,σp1,ρ

p2 · p1

) n∏
i=1

(
−gµiνi +

p2,µiki,νi + p2,νiki,µi
p2 · ki

)
. (134)
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This can be simplified enormously by realizing that in the the −gµiνi contributions vanish as p2
1 = 0,

and that the trace times the polarization sum for the incoming gluon evaluate to

Tr [ 6p2γ
µ 6p1γ

ρ 6kqγσ 6p1γ
ν ]

(
−gρσ +

p2,ρp1,σ + p2,σp1,ρ

p2 · p1

)
= (d− 2)2p1 · kq

Hµν

e2
q

. (135)

Introducing again the Sudakov variables, we find

|MDY,gq̄|2 = TRC
m−1
A Cn−mF g2(n+1)

s µ(4−d)(n+1) 22(n+1)

8sn+1
|Mqq̄→γ∗ |2 βq

[
n∏
i=1

β̄i
ᾱi

]

× 1

(β̄1)2 . . . (β̄1 + · · ·+ β̄m)2(β̄1 + · · ·+ β̄m + βq)2 . . . (β̄1 + · · ·+ β̄n + βq)2
. (136)

To efficiently carry out the phase space integral, we can apply a similar trick to the DIS case of
section 2, and symmetrise over crossed-ladder contributions, given that genuinely crossed ladders
will be kinematically subleading 13. The result is

|MDY,gq̄|2 = TRC
m−1
A Cn−mF g2(n+1)

s µ(4−d)(n+1) 22(n+1)

8sn+1

1

(n+ 1)!
|Mqq̄→γ∗ |2

1

βq

n∏
i=1

1

ᾱiβ̄i
. (137)

We must combine this with the phase space of eq. (126). Upon rewriting the delta function according
to eq. (31), one obtains∫

dΦ(n+2) |MDY,gq̄|2 = TRC
m−1
A Cn−mF

(αs
4π

)n+1
2π

22(n+1)

8s

1

(n+ 1)!

(
µ2

s

) (4−d)(n+1)
2

|Mqq̄→γ∗ |2

×
Γ2n+1

(
d−4

2

)
Γ
(
d−2

2

)
Γ (n(d− 4) + d− 3)

(1− z)−(n+1)(d−4) . (138)

Combining this with the remaining integrals in eq. (121) and using eq. (117), one finds that the
normalised contribution to eq. (131) at O(αn+1

s ) is

W
(n+1)
DY,gq̄ (z) = −

(
n∑

m=0

CmA C
n−m
F

)
1

(n+ 1)!

2TR
ε2n+1

4n(1− z)−2ε(n+1) + . . . , (139)

where we have summed over all possible ladders, and kept LL terms only. In Mellin space, this
result may be written as

W
(n+1)
DY,gq̄ (N) = −

(
n∑

m=0

CmA C
n−m
F

)
1

(n+ 1)!

1

N

2TRN
2ε

ε

(
4N2ε

ε2

)n
+ . . . , (140)

which may be resummed via eq. (60) into the closed form

WDY,gq̄

∣∣∣
LL

= −2asTRN
2ε

ε

1

N

(
4asN

2ε

ε2

)−1
1

CF − CA

{
exp

[
4asCFN

2ε

ε2

]
− exp

[
4asCAN

2ε

ε2

]}
.

(141)

13This statement has been checked explicitly at NNLO. Moreover, if one computes the phase-space integrals with-
out the symmetrisation over crossed-ladder contributions, one arrives at the same answer as demonstrated in ap-
pendix A.2.
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This is the pure real emission contribution, and must be complemented by virtual corrections. As in
section 2, we may fix these using soft gluon unitarity, i.e. the requirement that sufficiently divergent
infrared contributions must cancel when real and virtual corrections are combined, leaving only
those collinear poles which can be absorbed into the parton distribution functions. The argument
here is necessarily more complicated than that of section 2, however, as each double pole in ε
appearing in eq. (141) is accompanied by a factor of N2ε rather than N ε as a result of the different
phase space in DY as opposed to DIS. We may modify each such pole according to

N2ε

ε2
→ N2ε + λiN

ε + λj
ε2

(142)

for some constants λi and λj . Furthermore, we may again allow for an overall multiplicative factor
involving both CA and CF , which motivates the following ansatz:

WDY,gq̄

∣∣∣
LL

= −2asTRN
2ε

ε

1

N
exp

[
4as[CF (λ1N

ε + λ2) + CA(λ3N
ε + λ4)]

ε2

]
×
(

4as(N
2ε + λ5N

ε + λ6)

ε2

)−1
1

CF − CA

×
{

exp

[
4asCF (N2ε + λ7N

ε + λ8)

ε2

]
− exp

[
4asCA(N2ε + λ9N

ε + λ10)

ε2

]}
. (143)

One can directly simplify this expression by looking at the possible colour structures at each order.
At the first order in as, there are no virtual corrections needed. At this order, the only possible
colour structure (after factoring out the Born one) is proportional to TR, which can only be created
by eq. (143) by setting λ9+λ10 = λ7+λ8, whereas λ9+λ10 = λ7+λ8 = λ5+λ6 is needed to have the
correct normalisation of the real emission contribution. Expanding to O(a2

s) furthermore requires
that λ7 = λ9 (and therefore that λ10 = λ8), whereas at O(a3

s) we find the constraint λ7 = λ5 (and
therefore λ8 = λ6). We then arrive at the reduced ansatz

WDY,gq̄

∣∣∣
LL

= −2asTRN
2ε

ε

1

N
exp

[
4as[CF (λ1N

ε + λ2) + CA(λ3N
ε + λ4)]

ε2

]
×
(

4as(N
2ε + λ5N

ε + λ6)

ε2

)−1

× 1

CF − CA

{
exp

[
4asCF (N2ε + λ5N

ε + λ6)

ε2

]
− exp

[
4asCA(N2ε + λ5N

ε + λ6)

ε2

]}
.

(144)

Contrary to the DIS case, here we find that expanding eq. (144) and requiring that higher-order
poles vanish is not quite sufficient to fix all of the coefficients. However, there is more information
that we can use. Mass factorisation implies that, at NLP order, the unfactorised cross section can
be written as

WDY,gq̄ = C̃DY,gq̄ZqqZgg + C̃DY,qq̄ZqgZqq , (145)

where we have introduced the relevant infrared finite coefficient functions C̃DY,ij , and the transition

functions Zij , which are already known from the DIS analysis in section 2. Given that both C̃DY,gq̄
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and Zqg(= Zq̄g) start at NLP, it is sufficient to know C̃DY,qq̄ at LP, which is given by standard
resummation as

C̃DY,qq̄ = exp

[
4asCF (N2ε − 1− 2ε lnN)

ε2

]
. (146)

Rearranging eq. (145), we obtain the constraint

C̃DY,gq̄ =
WDY,gq̄

ZqqZgg
−
C̃DY,qq̄Zqg

Zgg
≡ O(ε0) . (147)

We have quoted the all-order LL form for Zqq(= Zq̄q̄) in eq. (96), and its counterpart for the gluon
is

Zgg = exp

[
4asCA lnN

ε

]
. (148)

The ratio Zgq/Zqq may be obtained directly from eq. (102): since the C̃φ,q coefficient is necessarily
of O(ε0) and the transition functions capture all the poles in ε, we find that

Zgq
Zqq

=

∞∑
n=1

ans
2N lnN

CF
CF − CA

[4(CA − CF )]n lnnN

n!εn
f(−ε lnN)

∣∣∣∣
poles

. (149)

The explicit amplitude results of section 2 imply that we can find a similar equation for the com-
bination appearing in eq. (147) by relabelling q ↔ g, replacing CF by TR in the numerator of the
prefactor in eq. (149), and replacing CA ↔ CF elsewhere:

Zqg
Zgg

=

∞∑
n=1

ans
2N lnN

TR
CA − CF

[4(CF − CA)]n lnnN

n!εn
f(−ε lnN)

∣∣∣∣
poles

. (150)

We may now substitute eqs. (96, 143, 146, 148, 150) into eq. (147), and expand eq. (147) to fixed
order to constrain the coefficients λi by requiring that C̃DY,qq̄ is of O(ε0). At O(a2

s) we constrain
λ1 and λ2 to be

λ1 = −CA(2λ3 + λ5 + 1) + CF (λ5 − 1)

2CF
, λ2 = −CA(2λ4 + λ6) + CF (λ6 + 2)

2CF
. (151)

At O(a3
s) we find the additional constraints

λ5 = λ6 − 1 , λ6 = 0 . (152)

After this order we do not find any new constraints, as the λ3 and λ4 coefficients are cancelled from
WDY,gq̄. We may therefore write the full LL form of the unfactorised gq̄ cross section as

WDY,gq̄

∣∣∣
LL

= − TR
2(CF − CA)

1

N

ε(N ε−1)

N ε − 1
exp

[
4asCF (N ε − 1)

ε2

]
×
{

exp

[
4asCFN

ε(N ε − 1)

ε2

]
− exp

[
4asCAN

ε(N ε − 1)

ε2

]}
. (153)

We now come back to a point raised already in section 2.2.2 concerning our implicit assumption
on the exponentiation of the virtual contributions. Some readers may therefore be concerned that
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our ansatz of eq. (143) is not general enough. An alternative procedure would be to expand each
order of the partonic cross section as follows:

W
(n)
DY,gq̄ =

1

Nε2n−1

2n∑
l=2

N lεA
(n,l)
DY,gq̄, (154)

where the right-hand side includes all permissible powers of N ε. The coefficient A
(n,2n)
DY,gq̄ is fixed

from eq. (141), and reads

A
(n,2n)
DY,gq̄ = − 1

n!

TR4n

2

n−1∑
m=0

CmA C
n−m−1
F = −2TR

n!

n−1∑
m=0

(4CA)m(4CF )n−m−1 . (155)

The remaining coefficients at each order can be fixed using the constraint from eq. (147). Upon

carrying out this exercise, we obtain precisely the coefficients {A(n,l)
DY,gq̄} conjectured in ref. [37],

based on exact calculations of the fixed-order cross section. These coefficients agree with the terms
we find from expanding eq. (153), which is obtained using the exponentiated ansatz for the virtual
corrections. This shows that indeed we do not need to assume the exponentiated nature of the vir-
tual corrections, although the procedure of obtaining WDY,gq̄ is simplified if we do. Note a similar
procedure may be employed for the DIS results of section 2 as well.

We may now proceed to also find the NLP LL resummed form for the coefficient function C̃DY,gq̄.
From eqs. (153, 96, 148, 146), one finds for the first factor appearing on the right-hand side of
eq. (147)

WDY,gq̄

ZqqZgg
= − TR

CF − CA
f(−ε lnN)

2N lnN
exp

[
4asCF (N2ε − 1− 2ε lnN)

ε2

]
×
{

exp

[
4as(CF − CA) lnN

ε

]
− exp

[
4as(CA − CF )[N ε(N ε − 1)− ε lnN ]

ε2

]}
. (156)

Recognising that C̃DY,qq̄ multiplies the entire result, we see that the only effect of the second term
in eq. (147) is to remove the poles of the first term, and also any contributions from these poles
hitting higher-order terms in C̃DY,qq̄. We can thus find the coefficient C̃DY,gq̄ by taking the O(ε0)

piece of eq. (156), ignoring any higher order terms in C̃DY,qq̄ as we do so (n.b. this argument is

similar to finding the coefficient C̃φ,q in eq. (109)). The result is

C̃DY,gq̄

∣∣∣
LL

=
TR

CA − CF
1

2N lnN

[
e8CF as ln2NB0[4as(CA − CF ) ln2N ]− e(2CF+6CA)as ln2N

]
, (157)

which precisely matches the conjecture in ref. [37]. Given that the resummation of LL NLP terms
in the kinematically leading channels in DY production has already been established previously,
see refs. [62, 79], this analysis, for the first time, completes the resummation of the DY process at
NLP LL order. We examine the closely related Higgs production process in the following section.

4 Resummation of the qg channel in Higgs boson production

The final process we will consider in this paper is that of Higgs boson production via gluon-gluon
fusion, which is closely related to the DY process from the resummation point of view. The LO
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Figure 7: (a) LO squared amplitude for Higgs boson production via gluon-gluon fusion; (b) the
quark-gluon channel at NLO.

squared amplitude is shown in figure 7a, where we assume the same effective coupling as in figure 1b.
The summed and averaged LO squared amplitude corresponding to figure 7a is

|Mgg→h|2 =
|λ|2

(d− 2)2

1

N2
c − 1

(
−ηµν +

cµp1,ν + cνp1,µ

p1 · c

)(
−ηµν +

cµpν2 + cνpµ2
p2 · c

)
, (158)

where cµ is the reference vector entering the gluon polarisation sum. In contrast to the DY case
of the previous section, we now face the complication that we cannot simply choose c = p2, as the
second gluon polarisation sum is then ill-defined. However, it would be desirable to keep this choice
for any final-state gluons, given that it means that we only have to consider ladder graphs associated
with the upper part of the amplitude. A simple calculational fix is to choose different reference
vectors for initial state and final state gluons, which amounts to defining polarisations differently
for incoming or outgoing gluons. There is nothing to forbid this, although Bose symmetry demands
that we treat all initial (or all final) gluons on an equal footing. For the initial-state gluons, let us
leave cµ general, but satisfying the conditions

c2 = 0, c · p1 = c · p2 = 0 . (159)

For final state gluons, we will continue to use p2 as the reference vector.

With the above general cµ, eq. (158) can be simplified to

|Mgg→h|2 =
|λ|2

(d− 2)

1

N2
c − 1

, (160)

such that the LO cross section is found to be

σgg→h =
1

2s

∫
dΦ(1) |Mgg→h|2 =

π

s2

|λ|2

(d− 2)

1

N2
c − 1

δ(1− z) , (161)

where we have defined

z =
q2

s
≡
m2
H

s
. (162)

As for DY, the threshold variable is simply given by ξ = (1 − z). Thus, we may reuse the same
phase space for n soft-gluon and 1 soft-quark emissions, provided we ignore the additional two-body
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phase-space due to the decay of the virtual photon into the lepton pair. The relevant phase space
is then given by eq. (126).

The prefactor in eq. (161) is needed to normalise higher-order contributions. Keeping with the
theme of the paper, we will be concerned with the qg channel that opens up for the first time at
NLO, as shown in figure 7b. How to resum NLP contributions at LL in the gluon-gluon channel
has already been discussed in refs. [62, 81]. Analogous to the DY case, the LL contribution to the
qg channel at arbitrary order will originate from general ladder diagrams such as that shown in
figure 6b, which gives a summed and averaged squared matrix element

|Mh,qg|2 =
g

2(n+1)
s µ(4−d)(n+1)|λ|2

8(d− 2)

Cm+1
F Cn−mA

N2
c − 1

Tr[6kqγα 6p1γ
β]

(
−ηαβ +

cαp2,β + cβp2,α

p2 · c

)
×

(
n∏
i=1

2p1 · p2 p1 · ki
p2 · ki

)
1

[p · k1]2 . . . [p · (k1 + . . .+ kn + kq)]2
. (163)

The second term in the gluon polarisation tensor will not contribute. To see this, note that con-
tracting it with the trace and using the conditions of eq. (159) yields

Tr[6kq 6c 6p1 6p2] + Tr[6kq 6p2 6p1 6c] = 8kq · c p1 · p2 . (164)

This projects out the transverse components of kq which, occurring linearly in the phase-space
integral, will vanish. Simplifying the remainder of eq. (163), we may convert to Sudakov variables
and symmetrise over crossed-ladder contributions as in the DY case, finding

|Mh,qg|2 =
g

2(n+1)
s µ(4−d)(n+1)|λ|2Cm+1

F Cn−mA

N2
c − 1

4ns−n−1

(n+ 1)!

1

βq

n∏
i=1

1

ᾱiβ̄i
. (165)

We must combine this with the phase space of eq. (126) and the flux factor to obtain the cross
section. The integrals may all be carried out similarly to in section 3, and after dividing by the LO
normalisation in eq. (161) we find the NLP LL contribution

W
(n+1)
h,qg (z) = − 1

(n+ 1)!

2CF
ε

(
4

ε2

)n
(1− z)−2ε(n+1)

n∑
m=0

CmF C
n−m
A + . . . , (166)

which in Mellin space becomes

W
(n+1)
h,qg (N) = − 1

(n+ 1)!

2CFN
2ε−1

ε

(
4N2ε

ε2

)n n∑
m=0

CmF C
n−m
A + . . . . (167)

Perhaps unsurprisingly, this is exactly what one would obtain from the DY formula of eq. (140),
upon making the colour replacements we have already seen, namely TR → CF in the prefactor and
CF → CA elsewhere. The reason for these replacements should hopefully be clear: the replacement
in the prefactor reflects the difference in colour structure (but similar kinematics) of the NLO pro-
cesses. The second replacement follows from having interchanged the gluon and quark backbones
of the ladders, and the fact that eikonal Feynman rules depend on the colour representation of the
emitting particle, but not its spin.
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The above replacements allow us to immediately recycle eqs. (153, 157) to get the all-order LL
form of the qg cross section

Wh,qg

∣∣∣
LL

= − CF
2(CA − CF )

ε(N ε−1)

N ε − 1
exp

[
4asCA(N ε − 1)

ε2

]
×
{

exp

[
4asCAN

ε(N ε − 1)

ε2

]
− exp

[
4asCFN

ε(N ε − 1)

ε2

]}
, (168)

as well as the resummed coefficient function

C̃h,qg

∣∣∣
LL

=
CF

CF − CA
1

2N lnN

[
e8CAas ln2NB0[4as(CF − CA) ln2N ]− e(2CA+6CF )as ln2N

]
, (169)

Again, these results match the conjectures of ref. [37].

5 Discussion

In this paper, we have investigated the resummation of logarithmically enhanced contributions af-
fecting the threshold production of heavy particles, specifically those contributions which are LL at
NLP in the threshold variable. Previous studies have established that such terms can be resummed
in those partonic channels which contribute already at LP in the threshold expansion. Here, we
have completed the set of LL NLP terms by examining those partonic channels that start at NLP,
due to the emission of a soft quark at NLO. In some sense, one expects these contributions to be
straightforward to resum, in that they originate from an underlying NLO process which is dressed
by purely soft gluon radiation. However, the combinatorics of the resummation is rather intricate,
as has been previously discussed in refs. [37, 86,87].

Our resummation approach uses well-established diagrammatic arguments [88–90] to efficiently cal-
culate all-order forms for the purely real emission contributions to partonic structure functions and
cross sections at LL order. We then fix the virtual corrections using a variant of the soft gluon
unitarity procedure that has been applied at leading power [4], namely by requiring that virtual
corrections cancel appropriate higher-order poles in the dimensional regularisation parameter ε,
leaving only those collinear singularities that can be absorbed into the parton distributions. Our
all-order forms for the structure functions and cross sections lead straightforwardly to resummed
splitting and coefficient functions, once mass factorisation is carried out.

As specific examples, we consider DIS induced by both a virtual photon and a Higgs boson, and also
DY and Higgs production. We confirm the conjectures for splitting and coefficient functions that
were first given in refs. [37, 87]. The DIS case was also obtained in ref. [86], under the assumption
that the one-loop virtual corrections to the underlying NLO processes exponentiate, motivated by
a re-factorisation and renormalisation-group evolution in SCET. Our approach is complementary
to this, in that we focus primarily on an explicit calculation of the real emission contributions, with
the virtual corrections uniquely determined by consistency requirements.

It would be very interesting to see if our methods can be applied to other scattering processes of
immediate phenomenological interest, where the results could supplement existing LP resummation
formulae at NLP LL. We hope that our study might be useful for those working on a variety of
approaches to NLP resummation, including regarding how to relate these different methods.
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topics, and to Jort Sinninghe Damsté, some time ago, for conversations about subleading partonic
channels. This work has been supported by the UK Science and Technology Facilities Council
(STFC) Consolidated Grant ST/P000754/1 “String theory, gauge theory and duality”, the STFC
grant 452 number ST/T000864/1, and by the European Union Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No. 764850 “SAGEX”. L.V. is
supported by Fellini – Fellowship for Innovation at INFN, funded by the European Union’s Horizon
2020 research programme under the Marie Sk lodowska-Curie Cofund Action, grant agreement no.
754496.

A Direct calculation of ladder integrals

A.1 DIS

In this appendix, we show how to directly calculate the multiple integral appearing in eq. (52).
One may start by transforming from the {bi} variables to the set {ξi}, given by

ξ1 = b1 , ξ2 = b1 + b2 , ξn = b1 + b2 + . . . bn , (170)

or, in matrix form, 
ξ1

ξ2
...
ξn

 =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

...
...

1 1 1 · · · 1




b1
b2
...
bn

 . (171)

This allows us to quickly work out the Jacobian which, given the triangular form of the matrix, is
simply equal to 1. The inverse transformation is

b1 = ξ1 , b2 = ξ2 − ξ1 , . . . bi = ξi − ξi−1 , (172)

so that the {bi} integrals become(
n+1∏
i=1

∫
dξi

)
ξ
d−2
2

1 (ξ2 − ξ1)
d−2
2 (ξ3 − ξ2)

d−2
2 . . . (ξn+1 − ξn)

d−2
2

ξ2
1 ξ

2
2 . . . ξ

2
n+1

. (173)

Given that the singularities are associated with all bi → 0, and thus ξi → 0, we are free to set
the upper limits of the {ξi} integrals to arbitrary values. We may now evaluate the integrals in
sequence, starting with the ξ1 integral, which is∫

dξ1 ξ
d−6
2

1 (ξ2 − ξ1)
d−2
2 = ξd−3

2

∫
dξ1 ξ

d−6
2

1 (1− ξ1)
d−2
2

= ξd−3
2

Γ
(
d−4

2

)
Γ
(
d
2

)
Γ(d− 2)

, (174)
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where we have scaled ξ1 → ξ1ξ2, and then set the upper limit of the ξ1 integral to 1. Next, we have
the ξ2 integral which, including the additional factor of ξ2 from rescaling ξ1, is∫

dξ2 ξ
d−5
2 (ξ3 − ξ2)

d−2
2 = ξ

3d
2
−5

3

Γ(d− 4)Γ
(
d
2

)
Γ
(

3d
2 − 4

) . (175)

If we carry on in this fashion then it is not too difficult to spot the pattern: the product of the first
n {ξi} integrals gives

n∏
i=1

∫
dξi ξ

id
2
−(2i+1)

i (1− ξi)
d
2
−1 =

n∏
i=1

Γ[i(d2 − 2)]Γ(d2)

Γ[ (i+1)d
2 − 2i]

=
1

n!

(
−1

ε

)n
+ . . . . (176)

There remains the final integral over ξn+1, which is∫
dξn+1 ξ

(n+1)d
2
−2(n+1)−1

n+1 e−ξn+1 = Γ

[
(n+ 1)

(
d− 4

2

)]
= − 1

ε(n+ 1)
+ . . . , (177)

so that the full {ξi} integrals evaluate to

1

(n+ 1)!

(
−1

ε

)n+1

. (178)

This is exactly the same result as found in eq. (56), as claimed.

A.2 DY

Like in the DIS case, we may also prove eq. (137) for DY without the symmetrisation of crossed-
ladder contributions. We start with eq. (136) and integrate over the phase space appearing in
eq. (126). Introducing the Laplace transformation of the δ function we find for the cross section
and making the replacement of eq. (51) we find

σDY,gq̄ =
1

2s

∫
dQ2

s

1

16π

∫
d cos θ|Mqq̄→γ∗ |2 TRCmA Cn−mF g2(n+1)

s µ(4−d)(n+1) (179)

×
∫ +i∞

−i∞

dT

2πi
eT (1−z)s(n+1) d−4

2
22(n+1)

8(4π)(n+1) d
2

1

Γn+1
(
d−2

2

)
×

[
n∏
i=1

∫
dᾱie

−T ᾱi (ᾱi)
d−6
2

]∫
dαqe

−Tαq (αq)
d−4
2

×

[
n+1∏
i=1

∫
dbie

−Tbi (bi)
d−2
2

]
1

(b1)2 . . . (b1 + · · ·+ bn+1)2
.

Now we scale out the T dependence from the Sudakov variables by making the replacement ᾱi →
1
T ᾱi (and similary for αq, bi). We find that the T -dependence becomes∫ +i∞

−i∞

dT

2πi
eT (1−z)T−n

d−6
2 T−

d−4
2 T−(n+1) d−2

2 =
(1− z)(n+1)(d−4)

Γ (d(n+ 1)− 4n− 3)
. (180)
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The ᾱi and αq integrals may computed easily, whereas we transform the bi variables to ξi as in
eq. (170). As above, we may do the set of ξi integrals in sequence to find the final result

1

σqq̄→γ∗

dσDY,gq̄

dz
= (1− z)−2ε(n+1) TRC

m
A C

n−m
F

(αs
4π

)n+1 22n+1

(n+ 1)!

(
−1

ε

)2n+1

, (181)

where we have neglected terms that come with a higher power of ε. Summing over all possible

ladder orderings and using (131) to extract W
(n+1)
DY,gq̄ we indeed match the result of eq. (139). The

fact that we may symmetrise over crossed-ladder contributions and find the same answer indeed
proves that these crossed-ladder contributions are kinematically subleading.

B LL form of the Zgq transition function

In this appendix, we prove eq. (93), which is needed to relate the transition function Zgq to the
splitting function Pgq. Whilst this result may or may not be standard, we were unable to find an
alternative proof in the literature, which is our reason for providing one here. We begin by noting
that eqs. (91, 92) imply

dZ

d lnQ2
= −γZ . (182)

We may rewrite the left-hand side using the expression for the running coupling in d = 4 − 2ε
dimensions:

das
d lnQ2

= −εas + β(as) . (183)

Using standard arguments, we may ignore the β function at LL level, since including it would
introduce logarithms of the renormalisation scale, which replace ln(N) at a given order in αs, and
thus result in subleading logarithmic contributions. Then eq. (182) becomes

d

das

(
Zqq Zqg
Zgq Zgg

)
=
as
ε

(
γqq γqg
γgq γgg

)(
Zqq Zqg
Zgq Zgg

)
, (184)

so that Zgq satisfies
dZgq
das

− as
ε
γggZgq =

as
ε
γgqZqq . (185)

This is a first-order ordinary differential equation (ODE), and can be solved using the method of
integrating factors. That is, given a first-order ODE in the form

dy(x)

dx
+ P (x)y(x) = Q(x) , (186)

one may define the integrating factor

I(x) = exp

[∫ x

dx′P (x′)

]
. (187)

Multiplying this factor with eq. (186) yields

I(x)
dy(x)

dx
+ P (x)I(x)y(x) =

d

dx
[I(x)y(x)] = I(x)Q(x) , (188)
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which may be straightforwardly integrated to get

y(x) = I−1(x)

∫ x

dx′I(x′)Q(x′) , (189)

where the lower limit of integration on the right-hand side will be determined by the boundary
conditions. Comparing with eq. (185), we can immediately write down the solution:

Zgq(as) = I−1(as)
1

ε

∫ as

0

da′s
a′s

I(a′s) γgq(a
′
s)Zqq(a

′
s) , (190)

where we have implemented the boundary condition Zgq(0) = 0. The integrating factor I(as) is
given by

I(as) = exp

[
−1

ε

∫ as

0

da′s
a′s

γgg(a
′
s)

]
. (191)

Note that the lower limit of integration is arbitrary, as it will cancel out on the right-hand side of
eq. (190). We may thus choose it to be zero for convenience.

Thus far, all of our statements have been exact. However, we can simplify things by restricting
ourselves to LL order, in addition to noting (as above) that we may ignore NLP contributions
in the diagonal anomalous dimensions and/or transition functions. Furthermore, the higher-order
diagonal anomalous dimensions have the large N behaviour 14

γ(n−1)
qq,gg (N) ∼ ln(N) + . . . , (192)

where the ellipsis denotes non-logarithmic or power-suppressed terms. That is, γqq and γgg only
have a single logarithmic enhancement at all orders in as. Hence, as noted already in ref. [87],
leading logarithms in Zgq can only come from keeping the first-order terms in γgg and γqq:

γgg,qq(as) ∼= asγ
(0)
gg,qq(N) , γ(0)

qq = 4CF ln(N) , γ(0)
gg = 4CA ln(N) . (193)

Using this result, the integrating factor of eq. (191) simplifies to

I(as) = exp
[
−as
ε
γ(0)
gg

]
, (194)

which is now a simple function of as, without an additional integration. Next, we can use the
known all-order LL form for the diagonal transition function Zqq given in eq. (96). Substituting
this equation along with eq. (194) into eq. (190), the LL solution for Zgq takes the form

Zgq(as) =
1

ε
exp

[as
ε
γ(0)
gg

] ∫ as

0

da′s
a′s

exp

[
−a
′
s

ε
γ(0)
gg

]
γgq(a

′
s) exp

[
a′s
ε
γ(0)
qq

]
=

∞∑
m=0

γ
(m)
gq (N)

ε
exp

[as
ε
γ(0)
gg

] ∫ as

0
da′s (a′s)

m exp

[
−a
′
s

ε

(
γ(0)
gg − γ(0)

qq

)]
, (195)

14Following ref. [87], we adopt the MS factorisation scheme throughout. The large N behaviour of higher-order
anomalous dimensions might be different in other factorisation schemes.
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where in the second line we have substituted the perturbation series

γgq(as) =

∞∑
m=0

am+1
s γ(m)

gq (N). (196)

Let us now focus on a given value of m on the right-hand side. We may first transform to the
integration variable

x′ =
a′s(γ

(0)
gg − γ(0)

qq )

ε
(197)

such that eq. (195) can be integrated to give

Zgq

∣∣∣
γ
(m)
gq

=
εmγ

(m)
gq

(γ
(0)
gg − γ(0)

qq )m+1
exp

[as
ε
γ(0)
gg

]
γ

(
m+ 1,

as(γ
(0)
gg − γ(0)

qq )

ε

)
. (198)

where we have introduced the lower incomplete gamma function

γ(α, z) =

∫ z

0
dt tα−1e−t , (199)

not to be confused with an anomalous dimension. It has the series expansion

γ(α, z) = zαe−zα!

∞∑
k=0

zk

(α+ k + 1)!
. (200)

Implementing this in eq. (198) leads to

Zgq

∣∣∣
γ
(m)
gq

=
am+1
s γ

(m)
gq

ε
m! exp

[
asγ

(0)
qq

ε

] ∞∑
k=0

aks
εk

(γ
(0)
gg − γ(0)

qq )k

(m+ k + 1)!

= γ(m)
gq m!

∞∑
k=0

∞∑
l=0

ak+l+m+1
s

εl+k+1

(γ
(0)
qq )l(γ

(0)
gg − γ(0)

qq )k

l!(m+ k + 1)!
, (201)

where in the second line we have also expanded the overall exponential factor. We are currently
still working at all orders in as. But let us now isolate a particular coefficient, say of ans , so that
one may set k = n− l −m− 1 on the right-hand side:

Z(n)
gq

∣∣∣
γ
(m)
gq

=
γ

(m)
gq m!

εn−m

n−m−1∑
l=0

(γ
(0)
qq )l(γ

(0)
gg − γ(0)

qq )n−l−m−1

l!(n− l)!
. (202)

To connect to eq. (93), we want to write the summand in terms of pure powers of γ
(0)
qq and γ

(0)
gg . To

do so, we may use the binomial theorem

(x+ y)n =

n∑
p=0

(
n
p

)
xpyn−p , (203)

to arrive at

Z(n)
gq

∣∣∣
γ
(m)
gq

=
γ

(m)
gq m!

εn−m

n−m−1∑
l=0

n−l−m−1∑
k=0

(−1)n−l−m−k−1

l!(n− l)!

(
n− l −m− 1

k

)(
γ(0)
qq

)n−m−1−k (
γ(0)
gg

)k
.

(204)
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The last step consists of removing the double sum. First, we interchange the order of summation
in k and l, and then relabel l→ n−m− 1− k − l, to rewrite eq. (204) as

Z(n)
gq

∣∣∣
γ
(m)
gq

=
γ

(m)
gq m!

εn−m

n−m−1∑
k=0

k∑
l=0

(−1)k−l

l!(n− l)!

(
n− l −m− 1
n− k −m− 1

)(
γ(0)
qq

)k (
γ(0)
gg

)n−m−1−k
. (205)

The sum over l has the form

k∑
l=0

(−1)−l

l!(n− l)!

(
n− l −m− 1
n− k −m− 1

)
=

1

n!

k∑
l=0

(−1)−l
(
n
l

)(
n− l −m− 1
n− k −m− 1

)

=
(−1)k

n!

k∑
l=0

(
n
l

)(
k +m− n
k − l

)
, (206)

where in the second line we have used [96](
n
k

)
= (−1)n−k

(
−k − 1
n− k

)
. (207)

We can then use the Chu-Vandermonde identity

k∑
j=0

(
m
j

)(
n−m
k − j

)
=

(
n
k

)
(208)

to get
k∑
l=0

(
n
l

)(
k +m− n
k − l

)
=

(
k +m
k

)
. (209)

Substituting our results back into eqs. (205), we find eq. (93) as required, upon reintroducing the

sum over m. Recall that γ
(m)
gq contributes at O(am+1

s ), so that the upper limit of the m sum must
be n− 1 rather than n.
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