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Abstract. We describe a novel application of the end-to-end deep learning
technique to the task of discriminating top quark-initiated jets from those origi-
nating from the hadronization of a light quark or a gluon. The end-to-end deep
learning technique combines deep learning algorithms and low-level detector
representation of the high-energy collision event. In this study, we use low-
level detector information from the simulated CMS Open Data samples to con-
struct the top jet classifiers. To optimize classifier performance we progressively
add low-level information from the CMS tracking detector, including pixel de-
tector reconstructed hits and impact parameters, and demonstrate the value of
additional tracking information even when no new spatial structures are added.
Relying only on calorimeter energy deposits and reconstructed pixel detector
hits, the end-to-end classifier achieves a ROC-AUC score of 0.975+0.002 for
the task of classifying boosted top quark jets. After adding derived track quan-
tities, the classifier ROC-AUC score increases to 0.9824+0.0013, serving as the
first performance benchmark for these CMS Open Data samples.

1 Introduction

The Large Hadron Collider (LHC) is a prolific top quark factory: since the beginning of data-
taking in 2010, over 10® top quarks have been produced. The measurement of the top quark’s
properties and production rates at the LHC remains one of the main research priorities at
experiments like the Compact Muon Solenoid (CMS) at the LHC. Moreover, investigating
the resonant production of top quarks offers potential hints of the presence of new physics
that may lie beyond the standard model (BSM).

Top quarks are unique in that they decay before they have time to hadronize, always
decaying to a bottom quark and a W-boson. During the top decay chain, the W-boson will
decay hadronically to quarks 66.5% or leptonically to a lepton and neutrino pair 33.5% of
the time [1]. At hadron colliders like the LHC, the low production cross section of prompt
electrons and muons can be exploited to boost tagging efficiency when identifying top quarks
with a leptonically decaying W-boson in its decay chain. However, hadronic decays of top
quarks can be much harder to identify, since the primary features used to identify them are
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the topology of its decay products and the track features of the bottom quark decay products.
In particular, at high transverse momenta, the hadronic decay of highly a Lorentz-boosted top
quark can lead to a single merged cluster of particles in the detector, hereby referred to as jets,
offering a unique and challenging view into the study of the top quark’s properties. Because
of this, discriminating boosted top quark-jets from light flavour- or gluon-jets has become
an important challenge for the LHC experiments, and a popular benchmark for data analysis
techniques involving machine learning (ML) algorithms in high-energy physics (HEP).

Most jet identification techniques rely on inputs provided by the Particle Flow (PF) al-
gorithm used to convert detector level information to physics objects [2]. The Particle Flow
algorithm has many advantages due to its ability to greatly reduce the size and complexity
of particle physics data while providing a physically intuitive and easy to use representation
in physics analyses. Many of the modern machine learning approaches to jet discrimination
are based on PF-based inputs [3—-10]. However, there is some invariable loss of information
from reducing the data set complexity. Despite the very high reconstruction efficiency of PF
algorithms, some physics objects may fail to be reconstructed, are reconstructed imperfectly,
or exist as fakes [11]. For that reason it is advantageous to consider end-to-end reconstruction
that allows a direct application of machine learning algorithms to low-level data representa-
tion in the detector.

In this work, we extend the end-to-end deep learning approach for particle and event
classification [12]. Specifically, we extend the use of end-to-end jet images introduced for
quark- vs. gluon-jet discrimination [13] to the task of boosted top quark- vs. light quark- or
gluon-jet discrimination. In previous work [13] we found that the track information was the
leading contributor to the classifier’s performance. Due to this insight and the importance of
identifying displaced tracks associated with bottom quark decays, this new work introduces
a number of key features from the CMS tracking detectors to exploit the full topology of
hadronically decaying top quarks.

2 Open Data Simulated Samples

The end-to-end deep learning technique relies on high-fidelity simulated detector data, which
in this work comes from the simulated Monte Carlo in the CMS Open Data Portal [14]. We
use a sample of SM top-antitop (#f) pair production where the W-boson from the top quark
decay is required to decay to quarks as a source of boosted top quarks. Light flavour- and
gluon-jets were obtained from three samples of QCD dijet production in different ranges of
the hard-scatter transverse momentum. The full datasets used for this study can be found in
[15—18]. For all samples, the detector response is simulated using Geant4 with the full CMS
geometry and is processed through the CMS PF reconstruction algorithm using CMSSW
release 5_3_32 [19]. An average of ten additional background collisions or pileup (PU) in-
teractions are added to the simulated hard-scatter event, which are sampled from a realistic
distribution of simulated minimum bias events. For this study, we additionally use a cus-
tom CMS data format which includes the low-level tracker detector information, specifically,
the reconstructed clusters from the pixel and silicon strip detectors [20]. From the tracker
clusters, we then do a parametric estimate of the position of the hit on the sensor surface.
For jet selection, we take reconstructed jets clustered using the anti-k, algorithm [21]
with a radius parameter R of 0.8 (AKS jets) and require pr > 400 GeV and || < 1.37 for
our event selection. Here, 1 is the pseudorapidity and equates to the polar angle of the CMS
detector according to n = —In(tan g). This n cut is to ensure that the jet image does not
extend beyond the || < 2.4 acceptance limit of the current CMS tracker. Additionally, for the
top jets we require the generator-level top quark, its bottom quark and W-boson daughters,
and W-boson daughters to be within an angular separation of AR = /An? + A¢? < 0.8 from

2



EPJ Web of Conferences 251, 04030 (2021) https://doi.org/10.1051/epjcont/202125104030
CHEP 2021

the reconstructed AKS jet axis, where ¢ is the azimuthal angle of the CMS detector. In order
to avoid biases caused by the different py distributions of the two jet samples, we pseudo-
randomly drop jets from the three QCD samples such that the total number of jets and pr
distribution of the tt sample is reproduced. The total number of jets used in the training,
validation, and testing of our networks can be found in Table 1.

3 CMS Detector & Images

CMS is a multi-purpose detector composed of several cylindrical subdetector layers, with
both barrel and endcap sections, encasing a primary interaction point. It features a large B =
3.8 T solenoid magnet to bend the trajectories of charged particles that aid in py measurement.
At the innermost layers, close to the beamline, there is a silicon tracker used to reconstruct the
trajectory of charged particles and find their interaction vertices. The tracker can be divided in
two parts the silicon pixel detector and silicon strip detector. The first silicon pixel detector is
the inner most part and composed of three layers in the barrel region (BPIX) and three disks in
the endcap region (FPIX). Each layer is composed of pixel sensors that provide a very precise
position of the passage of a charged particle. The pixel detector provides crucial information
for vertexing and track seeding. The outer part of the tracking system is composed of several
layers of silicon strip. These provide a precise position in the ¢ coordinate, but not in the
n coordinate. This is followed by the electromagnetic calorimeter (ECAL), made of lead-
tungstate crystals, to measure the energy of electromagnetically interacting particles, then
the hardonic calorimeter (HCAL), made of brass towers, to measure the energy of hadrons.
These are surrounded by the solenoid magnet which is finally encased by the muon chambers
to detect the passage of muons [22].

We construct the jet images using low-level detector information where each subdetector
is projected onto one or multiple image layers in a grid of 125 x 125 pixels with the image
centered around the most energetic HCAL deposit of the jet. Each pixel corresponds to the
span of an ECAL barrel crystal which covers a 0.0174 x 0.0174 in the 1 — ¢ plane, giving our
images an effective AR of 2.175. For the ECAL and HCAL images, each crystal or tower is
directly mapped to one or more image pixels containing the energy deposited in that crystal or
tower, as described in [13]. Reconstructed particle tracks are weighted by their reconstructed
pr and their location is projected to an ECAL crystal. In order to better overlap with the
calorimeter images, the n — ¢ position of the tracks are determined by assuming the track
originated from the primary vertex, the location of the collision with the highest ), p%, before
being propagated to the ECAL surface.

To improve the identification of tracks coming from the hadronization of b quarks, we
added additional layers motivated by the long flight distance of b hadrons producing recon-
structed tracks that do not converge to the primary vertex. To make the network aware of
this information, we tried two approaches: a) additional two layers corresponding to the re-

Table 1. Number of jets used for training, validation, and testing in the top quark and non-top quark jet
categories. Jets in the validation set were used during training to ensure that the network was not
over-training, and jets in the testing set were used after training to quantify network performance.

Numbers are reported after the pr-resampling procedure.

Category Top quark jets QCD jets | Total Jets
Train 1280830 1279170 | 2560000
Validation 47859 48141 96000
Test 319819 320181 640000
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Figure 1. Jet images of the 1st layer of the BPIX (top left), 1st & 2nd layers of the BPIX (top right),
Ist, 2nd, & 3rd layers of the BPIX (bottom left), and all layers of the BPIX with the reconstructed track

pr (bottom right) of a simulated 703 GeV pr merged top jet. Images are created at the nominal ECAL
resolution.
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Figure 2. Composite image of a simulated boosted top quark jet at ECAL resolution
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Figure 3. Full detector composite image of a tt simulated event. Image is constructed at the ECAL
resolution.

constructed tracks weighted by their transverse (d0) and longitudinal (dZ) impact parameter
significance and b) additional layers from the BPix detector that contain low-level represen-
tation of tracker RecHits. The impact parameter (IP) is defined as the distance vectors of
minimum approach between the track helix and the primary vertex. To obtain the IP signif-
icance, the d0 and dZ values are divided by their respective uncertainties. These quantities
are computed without using approximations making them accurate even for tracks relatively
far from the primary vertex. Any d0 (dZ) values larger than 10 cm (20 cm) are suppressed
to zero to prevent training degradation caused by the inclusion of tracks with superfluously
large IP. Such tracks are expected to originate from photon conversions in the tracker or from
poor track reconstruction, and these cuts are not expected to negatively impact network per-
formance. Finally, each layer is independently normalized such that the value of the average
cell, ignoring empty cells, is approximately unity to facilitate training convergence.

In an effort to extract as much information as possible from the tracking subdetector, we
include the low-level detector information from this system: the tracking hits traditionally
used for track reconstruction. There are multiple steps in the conversion from charge clusters
produced via charged particles passing through the tracker to fully reconstructed tracks. In
this study, we consider the reconstructed hit (RecHit) information from the three layers of the
BPIX, but not from the FPIX or the silicon strip detector. The majority of tracks will pass
through the BPIX, which allows us to simplify the geometry of the RecHit layers by omitting
the FPIX hits while minimizing the amount of omitted information. RecHits are obtained by
first clustering nearby pixels of a given sensor which pass an adjustable charge threshold. A
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straight line fits the pixel cluster to center of the beam, and it’s angle with the sensor surface is
used to compute a hit location which is corrected for the Lorentz drift the charges experience
before being read off the sensor. Given the hit location on the sensor and location of the
sensor in the detector, the location of the RecHit in 77 and ¢ is obtained. The RecHits serve as
a good intermediary between raw detector outputs and reconstructed track quantities, serving
as a map between a module based coordinate system and the detector coordinates.

For this study, one additional step is performed on the RecHits prior to producing the
image layers. The i and ¢ position of the RecHit is re-calculated with respect to the primary
vertex of the collision rather than the geometric center of the detector. This is done so that
the n and ¢ of the RecHits better match the n and ¢ of their corresponding tracks when
reaching the ECAL, which would otherwise deviate due to the pixel detectors closeness to
the beamline. After these computations are performed, image layers are produced where
each pixel intensity is set to one if the image pixel contains a RecHit and zero otherwise.
We generate three different image layers, one for each of the three concentric layers of the
BPIX. Figure 1 shows the successive addition of the three pixel layers and the track pt. The
cluster of RecHits in the center of the images corresponds to a cluster of jet particles, while
many of the outer RecHits originate from pile-up or detector noise. Figures 2 and 3 shows a
end-to-end image featuring all the image layers considered in this work for a single jet and
the full detector. The only layers that cannot be seen are the track d0 and dZ values because
the perfectly overlap with the track pr layer. A full list of all image layers along with their
description can be found in Table 2.

4 Network, Training and Jet Identification Results

The network architecture and hyperparameters used in this work closely follow what was
previously used in [12, 13], making use of a ResNet-15 CNN [23] trained with the ADAM
optimizer [24]. The full network infrastructure is outlined in Table 3. The initial learning rate
is 5 x 107 and is explicitly reduced by half every 10 epochs. The network was trained on a
set of 2.56M jets, and we found that training for 20 epochs was sufficient for convergence.
However, for our final network evaluations we trained for an additional 20 epochs. The
network was developed and trained using the TensorFlow library v1.14 [25].

Table 4 shows the area under the receiver operator curve (AUC) for the different combi-
nations of track and calorimeter layers at ECAL granularity. The network was evaluated on a
separate sample of 200k jets giving an AUC statistical uncertainty of 0.002.

Our previous end-to-end deep learning results showed that the Track pr layer gave the
best single layer performance for jet discrimination [13]. Therefore, we choose track pr
layer performance as a baseline for our models’ performance. We observe that the largest
single-subdetector performance increase comes with the inclusion of the d0 and dZ track
information, leading to an AUC score improvement of 0.014-0.017. Comparing rows 2 and
3 in Table 4 shows that the combination of track pt, d0, and dZ outperforms the nominal

Table 2. Summary descriptions of the image layers considered.

Layer Description

Track pr track momentum, position at ECAL surface

Track d0 & dZ  track impact parameter projections, w.r.t PV, at ECAL surface
BPIX1-3 Barrel pixel hits, position, binary value, PV-shifted
ECAL EM energy deposit, per crystal

HCAL Had energy deposit, per tower
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Table 3. Network infrastructure of the ResNet-15 CNN used in this study. All convolutional layers
used same padding and are followed by a ReLU activation function. The network was built using
TensorFlow version 1.14, extra parameters refers to the arguments used when constructing layers.

Block Layer Type Extra Parameters
Tnput Node Conv 2D kernel size 7, stride 2,. 16 channels
Global Pool 2D 2 X 2 pool size
Resblock 1 Conv 2D kernel §ize 3, st?ide 1, 16 channels
Conv 2D filter size 3, stride 1, 16 channels
Resblock 2 Conv 2D kernel size 3, stFide 2, 32 channels
Conv 2D filter size 3, stride 1, 32 channels
Resblock 3 Conv 2D kernel size 3, stTide 1, 32 channels
Conv 2D filter size 3, stride 1, 32 channels
Max Pooling 2D global pool size
Output Node Dense size 32 X 2
Activation Sigmoid

Table 4. Performance of the classifier trained up to 20 epochs and evaluated on a set of 200000 jets.
AUC and signal-efficiency at 1% misidentification rates are shown for different combinations of
tracking and calorimeter layers; AUC scores have a statistical uncertainty of +0.002.

Layer Combinations AUC Sig-eff at 1%
Track pr (baseline) 0.955+0.002 39.6%
Track pr + ECAL + HCAL (nominal)  0.967+0.002 56.9%
Track pr + d0 + dZ 0.972+0.002 57.2%
Track pr + dO + dZ + ECAL + HCAL  0.981+0.002 64.4%

combination layers despite the fact that the pr + dO + dZ images are agnostic to neutral
particles, since they do not produce charge clusters in the tracker. What we observe is in
agreement with [13] where the tracks were observed as the most important feature for jet
discrimination, as well as more traditional jet tagging approaches which require the presence
of a b-tagged subjet tagged using IP variables [26, 27].

Table 5 shows the network performance when including the BPIX RecHits in the jet im-
ages. On their own, the BPIX RecHits give a worse performance than the track pr. However,
we observe multiple improvements in network performance after combining the BPIX Re-
cHit images with other layers. When training the network on images composed of BPIX1-3,
ECAL, and HCAL layers we find that it outperforms the nominal combination of layers,
shown in the second row of Table 4, and improves the AUC score by 0.008. Comparing row
4 of Table 5 with row 3 of Table 4 shows that adding the BPIX RecHits to the track pt + d0
+ dZ images improves the AUC by 0.005. To study the effect of BPIX RecHit resolution on
network performance, we additionally trained the network on images produced at sub-ECAL
granularity. However, we found that the higher granularity produced no significant changes
in network performance.

The bottom row of Table 5 reports the performance of our network when trained on all 8
image channels. The network was trained for 40 epochs and used the training, validation, and
testing dataset sizes listed in Table 1. When evaluating the network, we find an AUC score of
0.9824+0.0013 and a signal efficiency of 66.41% at 1% misidentification.
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Table 5. AUC and signal efficiency at 1% misidentification rates of the classifier after including BPIX
layers. When training on a subset of image layers, the network was trained for 20 epochs and evaluated
on 200k jets. Training on the full images was performed for 40 epochs and evaluated on 640k jets.

Layer Combinations AUC Sig-eff at 1%
BPIX1-3 0.947+0.002 38.2%
BPIX1-3 + Track pr 0.965+0.002 45.6%
BPIX1-3 + ECAL + HCAL (no reconstruction) 0.975+0.002 56.9%
BPIX1-3 + Track pr + d0 + dZ 0.977+0.002 64.4%

BPIX1-3 + Track pr + d0 + dZ + ECAL + HCAL 0.9824+0.0013 66.41%

5 Interpretation and Discussion

An in depth look at the networks’ performance when trained on different image layer com-
binations provides an insight into the features that the network is learning. We first note that
the strongest single subdetector performance comes from the reconstructed tracks weighted
by their pr and IP variables. This is in agreement with the expectation based on the current
understanding of high momentum top jets. We expect a large number of high pr tracks, due
to the jet containing three merged subjets, and a small subset of tracks having large IP values,
attributed to a decaying B-meson. What is particularly interesting is that the network is able
to successfully extract this IP information from the addition of the d0 and dZ layers to the
track pr image layer. By design, these track-only images are composed of a set of sparse
layers with the same distribution of activated pixels. Intuitively, extracting information from
such images using 2D convolutions becomes much more difficult than the traditional com-
puter vision tasks. However, in this difficult to parse regime, our network achieves an AUC of
0.972+0.002, outperforming the denser jet images used for our nominal layer combination.

The second insight comes from the performance of the BPIX RecHits. As mentioned in
Section 4, the BPIX RecHits do not show strong standalone single-layer performance. How-
ever, this is to be expected for multiple reasons. The pixel detector has an r7 and ¢ resolution
of 10 um, giving the inner most layers a 1D spatial resolution that is almost eight times finer
than the ECAL [22]; the ECAL resolution is too coarse to derive vertex information from
pixel hits. Furthermore, we only considered the barrel region of the pixel detector, and do not
include any RecHits from the forward region of the pixel detector. Any jets that border the
acceptance of this study will only have RecHit information for a portion of the jet image. Fi-
nally, our network is agnostic to each layer’s distance from the beamline, giving the network
incomplete information about the RecHits global positioning. For example, the RecHits will
drift in ¢ as the charged particle bends in the CMS detector’s magnetic field. But unless more
layers are added to the image, the network does not have enough information to know the
order of each hit nor the direction in ¢ the particle is moving. But despite the shortcomings
of our current RecHit implementation, we find remarkable results. With the exception of the
final layer combination, where BPIX RecHits are added to images composed of track pr +
d0 + dZ + ECAL + HCAL information, we note that adding the RecHits gives a significant
increase in network performance. The most notable are cases where BPIX RecHits are added
on top of the tracking variables (1), and the case where BPIX RecHits are used in lieu of the
derived tracking information (2).

In the case of (1) we see that the network is able to use the BPIX RecHits to derive new
jet features which were not present in the derived track quantities alone. One possible feature
is the track charge, where motion through ¢ can be combined with the final location of the
track to determine its direction of curvature, and thus the charge, of the track. However, more
abstract features can also exist in these images. In the case of (2), the network does not use
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any reconstructed variables for its inputs. We see that despite the lack of derived variables,
the network outperforms the track pt + d0 + dZ images, and only performs marginally worse
than the final performance on the full images. The overall success of our network’s ability
to learn from BPIX RecHits paves the foundation for future studies of an end-to-end top
tagger where no derived variables are used. In addition to including the forward region of the
pixel detector, future work can include RecHits from the silicon strip detector, which is used
for track seeding and track momentum measurement. We also look to explore new types of
architectures, such as graph neural networks [28], that can exploit the full spatial resolution
of the CMS tracker and the 3D correlation of its layers to complement existing architecture
in other layers.

6 Conclusions

In this work we have extended the end-to-end deep learning technique to top quark jet classi-
fication. To enhance the performance of the classifier we added additional layers containing
information about track parameters and pixel detector reconstructed hits, marking the first
top-tagging algorithm which uses tracking RecHits as input variables. The model was trained
using CMS Open Data datasets containing low-level tracking information [15-18].

The end-to-end classifier trained on all input features achieves the performance of AUC of
0.9824+0.0013. We find that the addition of d0 and dZ variables gives the largest boost to net-
work performance when compared to subdetector information used in previous end-to-end jet
discrimination studies [13]. At ECAL image granularity, we observe that the BPIX RecHits
do not provide the network with information that is not already present in the combination
of track pT, dO, dZ, ECAL, and HCAL layers. However, we find that it still improves sub-
groups of these layers, and the network achieves an AUC score of 0.975+0.002 when training
on images void of derived variables. These findings lay the ground work for future studies
which look to incorporate RecHits from the full CMS tracker, higher-resolution training,
and to explore new deep learning architectures that can fully exploit the tracker granularity.
Furthermore, we believe that the improvements in classifier performance observed after the
inclusion of BPIX RecHits signals that more jet tagging algorithms should incorporate these
features into their algorithms.
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