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Abstract: In MPGD detectors evaluation of the space resolution with the charge centroid (CC) method

provides large uncertainty when the impinging particle is not perpendicular to the readout plane. An

improvement of the position reconstruction, and thus of the space resolution, is represented by the µTPC

algorithm. In this work we report the application of this algorithm to the µ-Resistive WELL detector.

Moreover a combination of the CC method with the µTPC algorithm is proposed, showing an almost uniform

resolution over a wide angular range.
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1 Introduction

Space resolution in MPGD can be affected by several factors: primary statistics, electrons diffusion in gas,

readout geometry, Front-End Electronics (digital or analog FEE) and impinging angle θ of the crossing

particle with respect to the normal to the readout electrode (fig. 1). Indeed the larger is the angle the worse

is the resolution σx usually evaluated with the charge centroid method. For an experiment this means a

not uniform resolution in the solid angle covered by the apparatus and results that can be consequently

characterized by large systematic errors. The first four factors are usually optimized with a dedicated R&D

on detector geometry, gas mixture and FEE while for the last factor a new reconstruction algorithm [2] has

been proposed to improve the resolution whatever the angle θ. This work describes the implementation of

the algorithm to the µ-RWELL [1].

2 The charge centroid (CC) method

For a detector equipped with a strip-segmented readout and instrumented with analog FEE, when a set of

strips is fired the position of the track can be computed as

XCC =

∑

xkqk
∑

qk
(2.1)

where xk is the coordinate of the k-th strip and qk is its integrated charge. The uncertainty associated to this

position is strongly dependent on the impinging angle (θ) of the track (fig. 1). To overcome this issue a new

algorithm has been recently proposed.

3 The µuTPC algorithm

The idea developed for the ATLAS MicroMegas of the New Small Wheels [2, 3], and also implemented on

the BESIII cylindrical GEM [11, 12], is to reconstruct a track segment inside the detector conversion gap

rather than a single hit. The procedure is inspired to the Time Projection Chamber (TPC) concept [4, 5]

exploiting the analog readout of the signals. The electrons created by the ionizing particle drift towards the

amplification region. By the measurement of electrons arrival time and knowing their drift velocity in the

gas mixture, the position of the ionization clusters can be localized in the chamber. A fit to these clusters
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Figure 1. A simplified sketch showing how the non orthogonal tracks affect the number of fired strips.

provide the 3D trajectory of the ionizing particle. In our case the readout is segmented in 1D strips, so only a

reconstruction in what we define the x − z plane (fig. 1) is available. The fired strips represent the projection

of the track on the readout and each center is the x coordinate of the corresponding ionization. These hits are

recorded at different times tk , depending on the distance of the ionization electrons from the readout plane.

Applying the simple formula

zk = vdri f t · (tk − t0) (3.1)

the z position of the k-th cluster can be computed. The formula 3.1 exploits the good uniformity of the

drift field in MPDG detectors, so that the velocity of the electrons can be considered constant. The drift

velocity vdri f t of the electrons as a function of the drift field in several gas mixtures can be found in literature.

Anyway a fast tool to catch these measurements is the MAGBOLTZ [6] routine called by the GARFIELD

gas detector simulation program [7]. The t0 is the common trigger time. It is crucial to define the best value

for tk . In our case, using the FEE APV25 [8], the integrated charge is sampled every 25 ns (fig. 2). The

leading edge of this plot is fitted with a Fermi-Dirac function and its flex point is taken as the tk for the eq.

3.1. In fig. 3 it is shown the track segment reconstruction of an event using this algorithm. The error bars on

the x axis basically account for the strip pitch and for the fraction of the total charge collected on the strip

(errors are increased for small charges possibly associated to charge induction); the error bars on the z axis

are propagated from the time measurement uncertainty. Another possible choice for the reconstructed point

errors is stated in [3].

The x coordinate of the event is interpolated from the linear fit, taking the coordinate of the track at the

middle plane of the drift space, following the approach of [3] and [11].

4 Results

Measurements of the space resolution of the µ-RWELL where only the charge centroid method has been

applied are reported in [9]. According to those results for the following tests DLC foils with resistivity ranging

between 60 and 200 MΩ/� have been selected for the realization of the detectors. The µTPC algorithm has

been used with µ-RWELLs during a test beam at H8-SPS CERN with a 150 GeV/c muon beam. Two GEM

detectors (fig. 4) have been used to select fully reconstructed tracks in order to clean. Two µ-RWELLs have

been installed on rotating plates so that the beam could form different angles with respect to the normal to the

electrodes. The µ-RWELLs used in the test (fig. 6) are derivation of the DRL layout [10]: two metallic vias
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Figure 2. Integrated charge as a function of the sampling

time, with the fitting Fermi-Dirac function.
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Figure 3. Example of a 45
◦ track segment reconstruction

using the µTPC algorithm. The line is the linear fit.

Figure 4. Experimental setup. Figure 5. Sketch of the setup with the coordinate system.

Figure 6. Sketch of the Double Resistive Layer µ-RWELL with embedded resistors.

matrices connect two resistive stages to the readout plane for the grounding. The vias density is typically

≤ 1 cm−2. The first stage is a DLC layer, while the second is made of ∼ 5 mm long resistors screen-printed

on a substrate. The detectors are equipped with a strip-segmented readout (400 µm pitch), operated at a gain

of 5000 with readout APV25 front-end electronics and flushed with Ar:CO2:CF4 45:15:40 gas mixture.
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Figure 7. Residuals distribution before any correction.
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Figure 8. Residuals as a function of the x coordinate.

The space resolution can be extracted from the distribution width of the residuals (σres), that are defined

as the difference between the coordinates reconstructed by the two µ-RWELLs. Indeed assuming the same

contribution, the µ-RWELL space resolution is obtained as σx = σres/
√

2. For sake of simplicity in this

paper all the plots showing the residual distribution are scaled by a factor of 1/
√

2 in order to directly give

the detector space resolution. The residuals are evaluated and studied for both the charge centroid and for

the µTPC reconstruction.

In order to take into account the presence of tails, we fit the data with the sum of two gaussian curves,

eq. 4.1. The width of the residuals is defined as its standard deviation, eq. 4.2. This is a slightly different

approach with respect to the analysis reported for MicroMegas ([3]). A discussion about the two methods is

shown in appendix A.

f (x) = Ae
− 1

2

(

x−µ1

σ1

)2

+ Be
− 1

2

(

x−µ2

σ2

)2

(4.1)

σ =
1

(Aσ1 + Bσ2)

√

A2σ
4

1
+ B2σ

4

2
+ ABσ1σ2

(

(µ1 − µ2)2 + σ2

1
+ σ

2

2

)

(4.2)

It has been necessary to evaluate and to reduce the systematic effects present in the measurements,

among which the most important are the dependency on the x coordinate and the beam divergence. This

must be done for both CC and µTPC algorithm. In the following the correction of the residuals, reconstructed

with the µTPC algorithm, as a function of the x coordinate is shown as an example of this procedure. The

detectors have been operated with a drift field of 1 kV/cm and an impinging angle (θ) of 30
◦.

In fig. 7 is shown the raw residual distribution. Plotting it as a function of the µTPC-reconstructed

x coordinate, fig. 8, it is visible a clear dependence, evaluated through a profile, fig. 9a. Such profile is

then fitted with a suitable polynomial and the residuals are corrected accordingly (figs. 9b,10). The residual

distribution after all the corrections is shown in fig. 11. The distributions are fitted with function 4.1 over

95% of the events in the histogram.

The space resolution has been evaluated at different θ using both CC and µTPC methods. As expected

for orthogonal tracks the CC provides better results while increasing the angle they quickly worsen, fig. 12a.

Viceversa the µTPC algorithm shows a better behavior for large angles than for small ones (fig. 12b) for wich

the longer projected track segment on the readout plane corresponds to a larger number of points to be fitted.

Since the µTPC method depends on the drift velocity of the ionization electrons in the gas mixture, and

consequently on the drift field, a study at different drift fields has been performed (fig. 12b). For our gas

mixture the electron drift velocity increases with the drift fields, in the range 0.5÷3 kV/cm, [13]. A smaller
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(a) Profile before the correction.
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(b) Profile after the correction.

Figure 9. Dependencies of the residuals distribution on the x coordinate.
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Figure 10. Residuals distribution after the x coordinate

correction.
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Figure 11. Residuals distribution after all the systematic

corrections.

drift velocity allows the reconstruction of the z coordinate with a smaller uncertainty, improving the µTPC

fit.

It is worth noticing that in an experiment it is not possible to determine which algorithm is the best since

the track inclination is known just a posteriori. Just to estimate the effect of this combination on the global

space resolution we consider the following trivial relation:

1

σ
2

comb

=

1

σ
2

CC

+

1

σ
2

µT PC

(4.3)

In fig. 13a the resolutions for both CC and the µTPC are compared and displayed along the combined

resolution from eq. 4.3.

To complete our study we report in fig. 13b the combined space resolution at different drift fields. The

combination of the two algorithms results in space resolutions below 100 microns over a large set of angles

θ., for fields up to 2 kV/cm.

For orthogonal tracks the CC resolution prevails in the combination and it does not depend on the drift

field in this range.
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(b) µTPC spatial resolution.

Figure 12. The results of the two reconstruction algorithm, over a large angle, for various drift field values (ED).
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ED=1 kV/cm.
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corresponding drift velocity.

Figure 13. Results from the CC and µTPC methods.

5 Conclusions

The µTPC method has been succesfully implemented for the tracks reconstruction on the µ-RWELL. By

combining the µTPC algorithm with the charge centroid, an almost uniform space resolution over a wide

range of track incidence angles is reached. At low drift field the measured space resolution is improved

reaching values below 80 µm, reaching a minimum of 60µm.

A Consideration upon the double gaussian fit

As previously stated, equations 4.1 and 4.2 were used to estimate the spatial resolution of the µ-RWELL

detectors. There is not an univocal approach to this task, for example in [3] the width of the residual

distribution, fitted with the same function 4.1, was defined as

σ
2
=

V1σ
2

1
+ V2σ

2

2

V1 + V2

, (A.1)

in which V1,2 are the integrals of the two gaussian functions: V1 =

√
2πAσ1 and V2 =

√
2πBσ2 [14]. The

equation 4.2 reduces to A.1 only if the two gaussian curves have the same mean, µ1 = µ2, namely for a
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symmetric residual distribution. The proof follows straightforward:

σ
2
=

A2
σ

4

1
+ B2
σ

4

2
+ ABσ1σ2

(

σ
2

1
+ σ

2

2

)

± 2ABσ2

1
σ

2

2

(Aσ1 + Bσ2)2
(A.2)

=

(Aσ2

1
+ Bσ2

2
)2 + ABσ1σ2(σ1 − σ2)2

(Aσ1 + Bσ2)2
=

(V1σ1 + V2σ2)2 + V1V2(σ1 − σ2)2
(V1 + V2)2

(A.3)

=

(V2

1
+ V1V2)σ2

1
+ (V2

2
+ V1V2)σ2

2

(V1 + V2)2
=

V1✘✘✘✘(V1 + V2)σ2

1
+ V2✘✘✘✘(V1 + V2)σ2

2

(V1 + V2)✄2
(A.4)
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