

C++ Code Generation for Fast Inference of Deep
Learning Models in ROOT/TMVA

Sitong An1,2 , and Lorenzo Moneta1

1CERN, Esplanade des Particules 1, 1211 Meyrin, Geneva, Switzerland
2Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, U.S.

Abstract. We report the latest development in ROOT/TMVA, a new
system that takes trained ONNX deep learning models and emits C++ code
that can be easily included and invoked for fast inference of the model,
with minimal dependency. We present an overview of the current solutions
for conducting inference in C++ production environment, discuss the
technical details and examples of the generated code, and demonstrates its
development status with a preliminary benchmark against popular tools.

1 Introduction
Since 2005, the Toolkit for Multivariate Analysis (TMVA) [1] has been part of the ROOT
Data Analysis Framework [2]. It provides an environment for the training and evaluation of
a large variety of machine learning methods for data analysis in High Energy Physics and
other scientific fields, before the now-popular machine learning tools and platforms
developed by the wider community, such as Scikit-learn, are available. For example,
TMVA provides the training and inference of boosted decision trees (BDTs), which have
been a popular algorithm for classification and regression among high energy physicist,
contributing even to the Higgs discovery in 2012 [3-6].

 In recent years, the rise of modern neural network architecture has revolutionised the
field of machine learning. With the rise the deep learning, software solutions supported by
large technology companies started to emerge and gradually dominated the landscape, such
as TensorFlow, MXNet and PyTorch [7-9]. Nowadays, these external tools have been
adopted and integrated into many high energy physics workflow, such as in the
CMSSW[10].

 While there is a plethora of software support for the training and development of deep
neural network, solutions for doing inference of the trained model on real data in a
production environment have been lacking for some time. While one can always use the
original framework with which the model is trained to carry out the inference, in a C++
based production environment this is usually cumbersome to set up and awkward to use.
This is especially so in the context of high energy physics, where the emphasis is usually on
the event loop. Recently, there has been a lot of effort in making up this missing link. This
paper provides a brief overview of the recent developments in this field, and provides a new
development in TMVA to provides an alternative solution. We will discuss the most salient

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

features of this new c++ code generation system for fast inference of deep learning models
in TMVA and demonstrate its preliminary benchmark.

2 Overview of Deep Learning Inference Solutions
With the rise of competing deep learning frameworks such as MXNet, TensorFlow and
PyTorch, the difficulty in interchanging trained models in different, mutually incompatible
formats arises. ONNX [11], which stands for Open Neural Network Exchange, is an open
standard for defining deep learning models with the aim of improving interoperability. It is
supported natively in PyTorch, and converters from TensorFlow and Keras models to
ONNX models have also been provided. Currently, it supports the most popular deep
learning operators and can be used to describe the vast majority of modern deep learning
architecture.

 Together with ONNX, an open source project aiming to accelerate deep learning
inference across different frameworks, operating systems and hardware platforms has been
developed with the support of Microsoft. This project is the ONNX Runtime [12]. Before
carrying out the inference, ONNX Runtime also optimises the model for best inference
speed. With the provision of C++ interface by ONNX Runtime, there has been some efforts
in integrating ONNX Runtime into analysis frameworks in high energy physics. As ONNX
Runtime provides its inference functionality via a session, any production workflow that
wishes to make use of ONNX Runtime will have to manage properly this dependency on
ONNX Runtime and the dependencies thereof.

 Recently, major deep learning frameworks such as PyTorch and TensorFlow have
proposed more compilation-based solutions for inference. For example, TorchScript is a
recent development in PyTorch that allows the easy creation of serializable and optimizable
models that can be invoked in a standalone C++ program in a production environment.
Nevertheless, to use the generated TorchScript model, the C++ program will still
necessarily have dependency on the PyTorch C++ core library (libtorch). Similarly,
TensorFlow has developed XLA (Accelerated Linear Algebra) that aims to compile
TensorFlow models into computation kernels written in machine codes highly optimised for
the target platform. The generated code has dependencies on the kernels used in the
computation.

 Besides solutions provided by technology companies in the wider community, there are
also excellent options developed closer to home by the high energy physics community. For
example, Lightweight Trained Neural Network (lwtnn) [13] provides fast inference on
some of the popular deep learning architectures trained with Keras framework. It has only
minimal dependency on Eigen and boost PropertyTree. It has been a popular choice for
high energy physicist who need to carry out inference in a lightweight manner in the C++
production environment.

 Aside from software that provide inference on CPUs and GPUs, the recent years have
also seen development of inference tools that specialise on other hardware, such as hls4ml
[14], which emits FPGA implementations of machine learning algorithms.

3 Code Generation for Fast Inference

2

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

features of this new c++ code generation system for fast inference of deep learning models
in TMVA and demonstrate its preliminary benchmark.

2 Overview of Deep Learning Inference Solutions
With the rise of competing deep learning frameworks such as MXNet, TensorFlow and
PyTorch, the difficulty in interchanging trained models in different, mutually incompatible
formats arises. ONNX [11], which stands for Open Neural Network Exchange, is an open
standard for defining deep learning models with the aim of improving interoperability. It is
supported natively in PyTorch, and converters from TensorFlow and Keras models to
ONNX models have also been provided. Currently, it supports the most popular deep
learning operators and can be used to describe the vast majority of modern deep learning
architecture.

 Together with ONNX, an open source project aiming to accelerate deep learning
inference across different frameworks, operating systems and hardware platforms has been
developed with the support of Microsoft. This project is the ONNX Runtime [12]. Before
carrying out the inference, ONNX Runtime also optimises the model for best inference
speed. With the provision of C++ interface by ONNX Runtime, there has been some efforts
in integrating ONNX Runtime into analysis frameworks in high energy physics. As ONNX
Runtime provides its inference functionality via a session, any production workflow that
wishes to make use of ONNX Runtime will have to manage properly this dependency on
ONNX Runtime and the dependencies thereof.

 Recently, major deep learning frameworks such as PyTorch and TensorFlow have
proposed more compilation-based solutions for inference. For example, TorchScript is a
recent development in PyTorch that allows the easy creation of serializable and optimizable
models that can be invoked in a standalone C++ program in a production environment.
Nevertheless, to use the generated TorchScript model, the C++ program will still
necessarily have dependency on the PyTorch C++ core library (libtorch). Similarly,
TensorFlow has developed XLA (Accelerated Linear Algebra) that aims to compile
TensorFlow models into computation kernels written in machine codes highly optimised for
the target platform. The generated code has dependencies on the kernels used in the
computation.

 Besides solutions provided by technology companies in the wider community, there are
also excellent options developed closer to home by the high energy physics community. For
example, Lightweight Trained Neural Network (lwtnn) [13] provides fast inference on
some of the popular deep learning architectures trained with Keras framework. It has only
minimal dependency on Eigen and boost PropertyTree. It has been a popular choice for
high energy physicist who need to carry out inference in a lightweight manner in the C++
production environment.

 Aside from software that provide inference on CPUs and GPUs, the recent years have
also seen development of inference tools that specialise on other hardware, such as hls4ml
[14], which emits FPGA implementations of machine learning algorithms.

3 Code Generation for Fast Inference

Despite the many choices available, it is noted that many of the solutions have still many
dependencies or comes with a runtime that has a heavy memory footprint. It is for this
reason that we would like to introduce a recent development in TMVA on C++ code
generation for fast inference of ONNX-based deep learning models [15]. Specifically, this
new TMVA inference engine takes a trained ONNX model as input and emits snippets of
C++ code that hard-codes the inference function in a header file. This function can then be
easily included and invoked from any C++ project, with the only dependency on BLAS
(Basic Linear Algebra Subprograms) for the linear algebra operations. The parsing of
ONNX model file would necessitate a dependency on protobuf, but this dependency is not
required for using the emitted C++ code.

 As an example, a general transpose operator as defined by the ONNX Operator
standard, with the hyperparameter permutation set to [3,2,1,0] (i.e., it permutes a tensor
with shape [1,2,3,4] to a new shape of [4,3,2,1]), is parsed by the new inference engine and
the following code snipper is emitted:

 Fig. 1. Code snippet demonstrating the use of inference code generation on a transpose operator, with
permutation set to [3,2,1,0]. For this particular operator, it has an input size of [1,2,3,4] and an output
size of [4,3,2,1].

 Note that the evaluations are made explicit for better compiler optimization, such as
loop unrolling. Activation functions, such as ReLU, can be similarly implemented:

3

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

Fig. 2. Code snippet demonstrating the use of inference code generation on a ReLU operator.
Activation functions are defined in a similar way and exposed to the user’s C++ compiler of choice.
Support for more activation functions are upcoming. Users can also define their own activation
operators with custom evaluations.

 More heavy duty linear algebra operators, such as Gemm (matrix-matrix
multiplications) are implemented with calls to BLAS. The (A*B)T = AT * BT trick has been
applied to call column-major Fortran BLAS functions on row-major C++ arrays.

Fig. 3. Code snippet demonstrating the use of inference code generation on a Gemm operator with a
call to Fortran BLAS.

 At the same time, the new inference system also proposes a user-friendly interface, as
demonstrated in Fig. 4. The implementation of operators are designed to be modular, so as

4

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

Fig. 2. Code snippet demonstrating the use of inference code generation on a ReLU operator.
Activation functions are defined in a similar way and exposed to the user’s C++ compiler of choice.
Support for more activation functions are upcoming. Users can also define their own activation
operators with custom evaluations.

 More heavy duty linear algebra operators, such as Gemm (matrix-matrix
multiplications) are implemented with calls to BLAS. The (A*B)T = AT * BT trick has been
applied to call column-major Fortran BLAS functions on row-major C++ arrays.

Fig. 3. Code snippet demonstrating the use of inference code generation on a Gemm operator with a
call to Fortran BLAS.

 At the same time, the new inference system also proposes a user-friendly interface, as
demonstrated in Fig. 4. The implementation of operators are designed to be modular, so as

to allow for easy support of new neural network architecture in the future. The parsing of
the ONNX model is decoupled from the TMVA intermediate representation of deep
learning model RModel, so that direct support for more deep learning model support can be
developed separately from the core of the new system.

Fig. 4. Code snippet demonstrating the user interface of the new inference code generation system in
TMVA. After running these codes, a header file named “Linear.hxx” is generated in the current
directory.

4 Preliminary Performance Benchmark

A preliminary benchmark has been performed to compare the performance of lwtnn,
ONNX Runtime and TMVA Inference Code Generation. The platform is a CERN Openlab
Machine running CentOS 8, with an Intel Xeon CPU E5-2683 v2 at 2.00 GHz and 25 Mb
cache size. The benchmarked neural network is a feedforward network with 10 dense layers
each with width 50. The number of input features is 100, and 10 output is produced. The
neural network is trained with randomly generated training set. Here, TMVA inference
code generation is built and linked against standalone netlib Fortran BLAS, as well as
OpenBLAS and Eigen. The emitted code is compiled with GCC 10.1.0 at optimization
level O3. lwtnn version 2.11.1 is built according to instructions on the GitHub repository,
with Boost and Eigen downloaded and built as part of the package. ONNX Runtime 1.6.0 is
linked from lcg release LCG 100.

Fig. 5. Preliminary benchmarking results for TMVA inference code generation, as compared against
lwtnn and ONNX Runtime

5

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

 All inferences are instructed to be single-threaded only, and for each batch size, 1000
inference runs are done to measure the mean and variance in runtime. For each inference
run, random data is generated as input for the network. The time necessary to convert the
data into the necessary format for ONNX Runtime and lwtnn is not accounted. Only the
time taken to run the inference call is measured.

 As seen in Fig. 5., TMVA inference code generation performs at least comparatively to
ONNX Runtime at all batch sizes when using Eigen or OpenBLAS as the backend. It
outperforms ONNX Runtime by a factor of 3 and lwtnn by a factor of almost 5 at batch size
equals to 1 (single event inference). At high batch sizes, the difference in time per event
between TMVA inference code generation and ONNX Runtime is very small.

 During benchmarking, we noticed that caching seems to play a significant role in
determining the temporal cost of inference. We envision that the availability of cache in
real life use cases of inference depends on the size of the workflow, and might vary vastly
from use case to use case. To better examine to effect of caching on inference, we repeated
the benchmarking process with the cache flushed at the end of each inference run, by
writing a large vector of random numbers onto the stack.

Fig. 6 Preliminary benchmarking results for TMVA inference code generation, as compared against
lwtnn and ONNX Runtime

 As seen in Fig.6, with cache flushed, TMVA inference code generation performs at
least comparatively to ONNX Runtime at all batch sizes when using Eigen or OpenBLAS
as the backend. It outperforms ONNX Runtime and lwtnn significantly at low batch sizes.

5 Conclusion and future work

6

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

 All inferences are instructed to be single-threaded only, and for each batch size, 1000
inference runs are done to measure the mean and variance in runtime. For each inference
run, random data is generated as input for the network. The time necessary to convert the
data into the necessary format for ONNX Runtime and lwtnn is not accounted. Only the
time taken to run the inference call is measured.

 As seen in Fig. 5., TMVA inference code generation performs at least comparatively to
ONNX Runtime at all batch sizes when using Eigen or OpenBLAS as the backend. It
outperforms ONNX Runtime by a factor of 3 and lwtnn by a factor of almost 5 at batch size
equals to 1 (single event inference). At high batch sizes, the difference in time per event
between TMVA inference code generation and ONNX Runtime is very small.

 During benchmarking, we noticed that caching seems to play a significant role in
determining the temporal cost of inference. We envision that the availability of cache in
real life use cases of inference depends on the size of the workflow, and might vary vastly
from use case to use case. To better examine to effect of caching on inference, we repeated
the benchmarking process with the cache flushed at the end of each inference run, by
writing a large vector of random numbers onto the stack.

Fig. 6 Preliminary benchmarking results for TMVA inference code generation, as compared against
lwtnn and ONNX Runtime

 As seen in Fig.6, with cache flushed, TMVA inference code generation performs at
least comparatively to ONNX Runtime at all batch sizes when using Eigen or OpenBLAS
as the backend. It outperforms ONNX Runtime and lwtnn significantly at low batch sizes.

5 Conclusion and future work

Deep learning model inference in an event loop is probably the most important usage
scenario of these different inference solutions for high energy physics. Here, we have
demonstrated for this benchmarked neural network architecture that TMVA inference code
generation can achieve at least comparable performance to ONNX Runtime at high batch
sizes, and significantly outperforms it at low batch sizes.

Currently, the system supports operator Gemm, Relu and Transpose. Operator Conv
is already implemented and under testing. In the next few months, we aim to provide
support for more operators in this new inference code generation system. Specifically,
support for operators RNN, GRU, LSTM, BatchNormalization and InstanceNormalization
are foreseen by the end of the summer 2021. We also plan to make further studies into
better compiler optimization of the generated code, as well as the memory footprint thereof.
We will also update the benchmark for more complex neural network architectures once
further operators are supported.

This new system will also be part of the proposed new TMVA machine learning
interface[16]. Integration with ROOT for interactive execution by making use of the Cling
just-in-time compilation is also foreseen.

As of the submission of this paper, the initial pull request to include this development
into ROOT is under review[17][18]. A development prototype can be found in [19] and
example benchmarking code can be found in [20].

Sitong An gratefully acknowledges the support of the Marie Skłodowska-Curie Innovative Training
Network Fellowship of the European Commission Horizon 2020 Programme, under contract number
765710 INSIGHTS.

References
1. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M.

Backes, T. Carli, O. Cohen, A. Christov et al., TMVA - Toolkit for Multivariate Data
Analysis (2007), physics/0703039

2. R. Brun, F. Rademakers, Nucl.Instrum.Meth.A 389 (1997) 81-86
3. S. Chatrchyan et al. (CMS), Phys. Lett. B710, 403 (2012), 1202.1487
4. The ATLAS collaboration, Evidence for Higgs Boson Decays to the τ+τ− Final State

with the ATLAS Detector (2013)
5. S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo, T.

Bergauer, M. Dragicevic, J. Erö, C. Fabjan et al., Physics Letters B 716, 30–61 (2012)
6. G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. Abdelalim, O. Abdi-

nov, R. Aben, B. Abi, M. Abolins et al., Physics Letters B 716, 1–29 (2012)
7. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.

Irving, M. Isard et al., TensorFlow: A system for large-scale machine learning (2016)
8. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep
Learning Library (2019)

9. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z.
Zhang, MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems (2015), 1512.01274

10. CMSSW, GitHub repository, http://cms-sw.github.io

7

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

11. B. Junjie, L. Fang, Z. Ke et al, ONNX: Opern Neural Network Exchange (2019)
12. ONNX Runtime Developers, ONNX Runtime (2021), https://onnxruntime.ai/
13. D. Guest, J. Smith, M. Paganini, M. Kagan, M. Lanfermann, A. Krasznahorkay, D.

Marley, A. Ghosh, B. Huth, Lightweight Trained Neural Network (2020), DOI
10.5281/zenodo.4310003. GitHub repository, https://github.com/lwtnn/lwtnn.

14. J. Duarte et al., JINST 13 P07027 (2018), Fast inference of deep neural networks in
FPGAs for particle physics

15. K. Albertsson, S. An, L. Moneta, S. Wunsch, L. Zampieri, EPJ Web of Conferences
245, 06008 (2020)

16. K. Albertsson, S. An, S. Gleyzer, L. Moneta, J. Niermann, S. Wunsch, L. Zampieri, O.
Mesa, EPJ Web of Conferences 245, 06019 (2020)

17. TMVA SOFIE - Fast Inference Code Generation Initial Commit, GitHub pull request,
https://github.com/root-project/root/pull/7544

18. TMVA SOFIE, GitHub repository, https://github.com/sitongan/root/tree/tmva-
sofie/tmva/sofie

19. TMVAFastInferencePrototype, GitHub repository,
https://github.com/sitongan/TMVAFastInferencePrototype

20. sofie_benchmarking, GitHub repository,
https://github.com/sitongan/sofie_benchmarking

8

EPJ Web of Conferences 251, 03040 (2021)	 https://doi.org/10.1051/epjconf/202125103040
CHEP 2021

