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We study the explosive production of gauge fields during axion inflation in a novel gradient expansion
formalism that describes the time evolution of a set of bilinear electromagnetic functions in position space.
Based on this formalism, we are able to simultaneously account for two important effects that have thus far
been mostly treated in isolation: (i) the backreaction of the produced gauge fields on the evolution of the
inflaton field and (ii) the Schwinger pair production of charged particles in the strong gauge-field background.
This allows us to show that the suppression of the gauge-field production due to the Schwinger effect can
prevent the backreaction in scenarios in which it would otherwise be relevant. Moreover, we point out that the
induced current, J ¼ σE, also dampens the Bunch–Davies vacuum fluctuations deep inside the Hubble
horizon. We describe this suppression by a new parameter Δ that is related to the time integral over the
conductivity σ which hence renders the description of the entire system inherently nonlocal in time. Finally,
we demonstrate how our formalism can be used to construct highly accurate solutions for the mode functions
of the gauge field in Fourier space, which serves as a starting point for a wealth of further phenomenological
applications, including the phenomenology of primordial perturbations and baryogenesis.
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I. INTRODUCTION

Gamma-ray observations from distant blazars provide
indirect evidence for the presence of magnetic fields in
voids of our Universe [1–10] (for a recent review, see
Ref. [11]). Together with observations of the cosmic micro-
wave background (CMB) [12–15], this constrains the
strength of the fields in the range 10−17G≲B0≲10−10G.
The very large coherence length of these fields [16],
measured in Megaparsecs, implies that they are of cosmo-
logical nature, because astrophysical mechanisms are inef-
ficient in voids due to their small matter content. In principle,
it is possible to inject magnetic fields into voids through
outflows of matter from galaxies and active galactic nuclei
[17–20]; however, it is quite problematic to attain an
extremely large correlation length of the observed fields.

The possible cosmological origin of magnetic fields in voids
has another important advantage because such primordial
fields could serve as seed magnetic fields for galaxies and
galaxy clusters [21]. These seedmagnetic fields could be later
enhanced astrophysically through different types of dynamo
[22–26] and adiabatic compression [27] to the strength of
magnetic fields observed in galaxies and galaxy clusters
[27–35].
The mechanism of inflationary magnetogenesis proposed

in Refs. [36,37] naturally explains the large correlation length
of magnetic fields in voids. This means that, in addition to
the abundance of chemical elements, the CMB radiation, and
the large-scale structure of galaxies and their clusters, the
observed magnetic fields in voids could provide a unique
source of information about physical processes in the early
Universe at very high energies that are unattainable in the
laboratory. Since Maxwell’s action is conformally invariant,
fluctuations of the massless electromagnetic field are not
enhanced in a conformally flat inflationary background [38].
Consequently, the conformal invariance should be necessarily
broken in order to generate gauge fields during inflation.
Such a breaking can be done in may ways, e.g., by
introducing an interaction with a scalar or pseudoscalar
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inflaton field or with spacetime curvature [36,37,39,40]. In
our study, we will consider the axial coupling of an Abelian
gauge field to a pseudoscalar “axion” inflaton field, which
has attracted a lot of attention in the literature [41–62], mainly
because it produces magnetic fields with nonzero helicity,
which facilitates their survival in the primordial plasma after
inflation.
In addition to magnetic fields, strong electric fields are

always generated in inflationary models. Due to the
Schwinger effect [63–65], these strong electric fields pro-
duce pairs of charged particles and antiparticles and quickly
form an ultrarelativistic plasma. Such a plasma efficiently
screens electric fields and, therefore, strongly influences the
generation and evolution of the gauge fields, especially near
the end of inflation and during reheating. The Schwinger pair
production during inflation and its impact on magneto-
genesis was investigated in Refs. [53,57,59,66–88]. For a
recent application in the context of cosmological relaxation
as a solution to the hierarchy problem, see also Ref. [89].
To handle the complicated dynamics of the inflaton and

gauge fields, taking into account the Schwinger effect and
the backreaction of the generated gauge fields and primordial
plasma on the cosmological evolution, a novel gradient
expansion formalism was developed by three of us in
Ref. [57]. The formalism was later extended also to the
case of the kinetic-coupling model [90]. In the standard
approach to magnetogenesis, one works with separate
Fourier modes of the gauge field which evolve in a given
inflationary background. In contrast, in the gradient expan-
sion formalism, one considers vacuum expectation values of
a truncated set of bilinear functions of the electric and
magnetic fields in coordinate space that include all physi-
cally relevant modes at once. It was shown that, even taking
into account a relatively small number of bilinear functions,
it is possible to describe the electric and magnetic energy
densities with an accuracy of a few percent during the whole
stage of inflation. The formalism also takes into account the
fact that the number of relevant modes constantly grows
during inflation as new modes cross the horizon and undergo
the quantum to classical transition.1 To account for the
growth of the number of relevant modes outside the horizon,
boundary terms are added to the equations of motion for the
electromagnetic bilinear functions.
In the present paper, we will study the problem of

generating helical magnetic fields in a model with an axial
coupling of the gauge field to the inflaton. Using the gradient
expansion formalism of Ref. [57], which takes into account
the backreaction of the generated fields and the Schwinger
effect, we will develop an approximation scheme that allows
us to reach an unprecedented accuracy in the numerical

results— the error compared to the corresponding mode by
mode solution is always less than one to two percent during
inflation—and compare our results to those in the literature.
Here, a characteristic feature and advantage of our formalism
consists in the fact that we do not rely on an iterative
procedure that needs to be repeated over and over again
before it converges to a self-consistent result. Instead, our
evolution equations only need to be evolved forward in time
once in order to generate the desired output.
We will be particularly interested in the case in which the

Abelian gauge field coupling to the axion inflaton field is
identified with the hypercharge gauge field in the Standard
Model. Consequently, we will evaluate the electric conduc-
tivity σ of the charged plasma generated during inflation
based on the Standard Model particle content, assuming that
all fermions remain massless during inflation. Specifically,
we will use the expressions for the induced current and
electric conductivity in Ref. [59], which account for the
presence of both electric and magnetic background fields.
On the technical side, we will work out an improved
description of the vacuum fluctuations deep inside the
horizon that reflects the damping of the gauge-field ampli-
tude by the charged plasma. This will lead us on the one
hand to improved boundary terms in our evolution equations
and on the other hand to the notion of a damped Bunch-
Davies vacuum, which we describe in terms of a new
parameter Δ. As we will see, Δ is related to the time integral
over the conductivity σ and hence is nonlocal in time. An
important outcome of our analysis therefore is the fact that
the state of the system at any given moment in time t does
not only depend on the choice of parameter values in the
Lagrangian and quantities such as the instantaneous velocity
of the inflaton field; it also depends on the entire prehistory
leading up to this moment in time, which controls to what
extent the vacuum fluctuations of modes inside the horizon
have already been damped in the course of inflation at
times t0 ≤ t.
The paper is organized as follows. The axial-coupling

model for generating magnetic fields during inflation is
described in Sec. II. In Sec. III, the system of equations
for the electromagnetic bilinear quantities is derived using the
gradient expansion formalism. Numerical solutions of this
system of equations are given and discussed in Sec. IV. In this
section, we will compare the outcome of our analysis to other
methods and results available in the literature whenever
possible. This will allow us to validate our formalism; first
in the case of no backreaction and no Schwinger effect, and
then subsequently in the case of relevant backreaction and no
Schwinger effect. In the third step, we will then extend our
analysis and include the Schwinger effect, which goes
beyond existing results in the literature. An important result
of this part of our analysis will be that Schwinger pair
production can suppress the energy density of the electro-
magnetic field to such an extent that no backreaction effects
occur after all, even though backreaction effects would be

1Here and in the following, “horizon crossing” will denote the
time when a given mode with momentum k becomes tachyoni-
cally unstable, which typically happens slightly before it leaves
the actual Hubble horizon, when k ¼ aH, with scale factor a and
Hubble rate H.
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absolutely essential in the absence of the Schwinger pair
production. In addition, we will present the Fourier spectra of
the electric and magnetic fields in this section as well as their
relation to the spectra in the (damped) Bunch-Davies
vacuum. Section V finally summarizes the findings obtained
in this paper and contains an outlook on possible future steps.
In this section, we will also comment on possible phenom-
enological applications of our results, such as the generation
of primordial scalar and tensor perturbations and baryo-
genesis from hypermagnetic fields. Throughout the paper we
use natural units and set ℏ ¼ c ¼ 1 with the reduced Planck
mass equal to MP ¼ ð8πGÞ−1=2 ¼ 2.435 × 1018 GeV. We
assume that the Universe is described on cosmological scales
by a spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metric in terms of the cosmic time, gμν ¼
diagf1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞg.

II. AXIAL-COUPLING MODEL

Let us describe the axial-coupling model that we use for
the analysis of the generation of primordial magnetic fields.
In this model, the conformal invariance of the Maxwell
action is broken by means of the axial coupling of the
electromagnetic field Aμ with the pseudoscalar inflaton
field ϕ. The corresponding action reads as2

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ − 1

4
FμνFμν

−
1

4
IðϕÞFμνF̃μν þ Lchðχ; AνÞ

�
; ð1Þ

where g ¼ det gμν is the determinant of the spacetime
metric, VðϕÞ is the inflaton potential, IðϕÞ is the axial-
coupling function, Fμν ¼ ∂μAν − ∂νAμ is the gauge-field
strength tensor, and

F̃μν ¼ 1

2
ffiffiffiffiffiffi−gp εμνλρFλρ ð2Þ

is the corresponding dual tensor; εμνλρ is the absolutely
antisymmetric Levi-Civita symbol with ε0123 ¼ þ1. The last
term in Eq. (1) is the gauge-invariant Lagrangian of a generic
matter field χ charged under the Uð1Þ gauge group and,
therefore, coupled to the electromagnetic four-potential Aμ.
For the sake of generality, we will not specify this term and
assume that it describes all charged fields in the model.
Action (1) implies the following Euler-Lagrange equa-

tions for the inflaton and electromagnetic fields,

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νϕ� þ

dV
dϕ

þ 1

4

dI
dϕ

FμνF̃μν ¼ 0; ð3Þ

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
Fμν� þ dI

dϕ
F̃μν∂μϕ ¼ jν; ð4Þ

where

jν ¼ −
∂Lchðχ; AμÞ

∂Aν
ð5Þ

is the electric four-current. Equation (4) should be supple-
mented by the Bianchi identity for the dual gauge field
strength tensor

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
F̃μν� ¼ 0: ð6Þ

The energy-momentum tensor equals

Tμν ¼
2ffiffiffiffiffiffi−gp δS

δgμν
¼ ∂μϕ∂νϕ − gλρFμλFνρ

− gμν

�
1

2
∂αϕ∂αϕ − VðϕÞ − 1

4
FαβFαβ

�
þ Tχ

μν; ð7Þ

where the last term describes the contribution of the
charged matter fields.
Now we use the FLRW metric and choose the Coulomb

gauge for the vector potential Aμ where Aμ ¼ ð0;−AÞ. Then,
the three-vectors of electric E ¼ ðE1; E2; E3Þ and magnetic
B ¼ ðB1; B2; B3Þ fields can be defined as E ¼ − 1

a ∂0A and
B ¼ 1

a2 rotA. Note that these are the physically measured
fields by a comoving observer; therefore, we included the
scale factor in their definition. The gauge field stress tensor
and its dual tensor are expressed in terms of the electric and
magnetic fields as follows:

F0i ¼ aEi; Fij ¼ −a2εijkBk;

F̃0i ¼ aBi; F̃ij ¼ a2εijkEk: ð8Þ

The cosmic expansion rate (the Hubble parameterH ¼ _a=a)
is determined by the Friedmann equation

H2 ¼ ρ

3M2
P
; ð9Þ

where the total energy density ρ is given by the zero-zero
component of the energy-momentum tensor (7),

ρ ¼ T0
0 ¼

�
1

2
_ϕ2 þ VðϕÞ

�
þ 1

2
hE2 þ B2i þ ρχ : ð10Þ

Here the two terms in square brackets correspond to the
spatially homogeneous inflaton field, the next term gives the

2In fact, Aμ represents a generic Abelian gauge field axially
coupled to the inflaton. However, for simplicity, we will some-
times refer to it as the electromagnetic field. Our numerical
analysis will be performed for the specific case of the Standard
Model hypercharge field.
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gauge-field contribution (angular brackets denote the vac-
uum expectation value), while the last one is the counterpart
for the charged matter fields.
The electric current four-vector can be decomposed as

jμ ¼
�
ρc;

1

a
J

�
: ð11Þ

We assume that charged particles were absent in the Universe
initially and were produced only later in particle-antiparticle
pairs. Therefore, we set the charge density to zero, ρc ¼ 0.
On the other hand, the current density three-vector J may be
nonzero in the presence of the electromagnetic field. Then the
equations of motion (3)–(4) and (6) take the following form
in the three-vector notation,

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ I0ðϕÞhE · Bi; ð12Þ

_Eþ 2HE −
1

a
rotBþ I0ðϕÞ _ϕBþ J ¼ 0; ð13Þ

_Bþ 2HBþ 1

a
rotE ¼ 0; ð14Þ

divE ¼ 0; divB ¼ 0: ð15Þ

Finally, in order to close the system of Maxwell’s equations,
we need to specify the electric current. It was shown in the
literature (see, e.g., Refs. [59,66,71]) that the induced current
of charged particles produced by the Schwinger effect in a
constant electromagnetic field in de Sitter spacetime satisfies
Ohm’s law,

J ¼ σE; ð16Þ

where σ is the generalized conductivity, which depends only
on the absolute values of electric and magnetic fields. Wewill
utilize this approximation in our analysis too, even though we
will consider time-dependent electric and magnetic fields.
The applicability of this approximation will be discussed in
detail in Sec. III B.

III. GRADIENT EXPANSION FORMALISM

In this section, we derive the system of equations
describing the self-consistent evolution of the inflaton, gauge
fields, and charged particles produced by the Schwinger
effect during axion inflation.

A. Equations for bilinear electromagnetic functions

Solving the system of Maxwell’s equations requires
determining the dependence of the gauge field on the spatial
coordinates, which makes numerical calculations very
demanding. Therefore, as mentioned in the Introduction,
it is advantageous to apply the gradient expansion formal-
ism, where one considers vacuum expectation values of

bilinear electromagnetic functions in coordinate space that
include all physically relevant modes at once. These func-
tions are

EðnÞ ¼ 1

an
hE · rotnEi; ð17Þ

GðnÞ ¼ −
1

an
hE · rotnBi; ð18Þ

BðnÞ ¼ 1

an
hB · rotnBi; ð19Þ

and contain spatial derivatives only as powers of the curl.
This allows us to get a closed system of equations for
these quantities, because Maxwell’s equations (13) and
(14) contain spatial derivatives only in such a form. Using
Eqs. (13)–(15), we get the following equations of motion
for the bilinear electromagnetic functions,

_EðnÞþ½ðnþ4ÞHþ2σ�EðnÞ−2I0ðϕÞ _ϕGðnÞþ2Gðnþ1Þ ¼½ _EðnÞ�b;
ð20Þ

_GðnÞ þ ½ðnþ 4ÞH þ σ�GðnÞ − Eðnþ1Þ þ Bðnþ1Þ

− I0ðϕÞ _ϕBðnÞ ¼ ½ _GðnÞ�b; ð21Þ

_BðnÞ þ ðnþ 4ÞHBðnÞ − 2Gðnþ1Þ ¼ ½ _BðnÞ�b: ð22Þ

Note that the equation of motion for the nth order
function always contains at least one function with the
ðnþ 1Þth power of the curl. As a result, all equations are
coupled into an infinite chain that needs to be truncated in
practice.
The right-hand sides of Eqs. (20)–(22) contain the

contributions due to boundary terms. Their necessity is
dictated by the following consideration. Modes inside the
horizon correspond to vacuum fluctuations of the quan-
tum gauge field. They oscillate in time without significant
change of their amplitude. Therefore, their contribution to
the electromagnetic energy density should be excluded.
However, modes outside the horizon do not oscillate and
can be treated as the Fourier modes of a classical
electromagnetic field [91]. During inflation, modes that
were initially inside the horizon cross the horizon and
begin to behave classically. Therefore, the number of
physically relevant modes (outside the horizon) con-
stantly grows during inflation. To take this fact into
account, one needs to introduce the corresponding boun-
dary terms for the bilinear electromagnetic functions. The
resulting system of equations forms a closed set of
ordinary differential equations that describe the self-
consistent evolution of classical observables in the form
of quadratic functions of the electric and magnetic fields
with an arbitrary power of the curl.
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Wewould like to mention that the boundary terms for the
system of Eqs. (20)–(22) were derived for the first time in
Ref. [57]. In this study, we calculate the boundary terms
more accurately, including the impact of the Schwinger
effect. In addition, we propose a new way of truncating the
infinite chain of equations of the system that allows us to
reach a high accuracy in the numerical results.

B. Schwinger conductivity

Before calculating the boundary terms, let us discuss
the Schwinger pair production. In constant and uniform
collinear electric and magnetic fields in an expanding
Universe, this effect was studied in Ref. [59]. In the case
of one Dirac fermion species with mass m and charge Q,
the conductivity induced by the Schwinger effect has the
form

σf ¼
ðejQjÞ3
6π2

jBj
H

coth

�
πjBj
jEj

�
exp

�
−

πm2

jeQEj
�
; ð23Þ

where jBj and jEj are the absolute values of the collinear
magnetic and electric fields and e is the Uð1Þ gauge
coupling constant. The contribution of a single Weyl
fermion is twice smaller. It is important to remember that
this expression was derived in the strong-field regime,
jeEj ≫ H2, which is the most important one for physical
applications. This expression is in good agreement with
the result for flat Minkowski spacetime (see, e.g.,
Refs. [92–95]) if we replace 1=ð3HÞ with the time Δt
during which the external field is switched on. Moreover,
for small magnetic field jBj ≪ jEj, it reduces to
the expression for the fermionic Schwinger conductivity
in a purely electric field in de Sitter spacetime,
σf;0 ¼ ðejQjÞ3jEj=ð6π3HÞ expð−πm2=jeQEjÞ obtained in
Ref. [71].
Using the same logic, it is easy to construct the

Schwinger conductivity for scalar charge carriers in the
strong-field regime. In flat Minkowski spacetime, the pair
production rate for scalars differs from that of fermions
with the replacement of cothðπjBj=jEjÞ by ð1=2Þcosech
ðπjBj=jEjÞ, where cosechx ¼ 1= sinh x [93,94]. Then, in
de Sitter spacetime, we expect that

σs ¼
ðejQjÞ3
12π2

jBj
H

cosech

�
πjBj
jEj

�
exp

�
−

πm2

jeQEj
�
: ð24Þ

A consistency of this result can be checked by taking the
limit of a vanishingly small magnetic field, jBj ≪ jEj.
In this case, we obtain σs;0 ¼ ðejQjÞ3jEj=ð12π3HÞ exp
ð−πm2=jeQEjÞ, which is the well-known expression for
the Schwinger conductivity in a constant electric field in de
Sitter spacetime computed in Ref. [66].
We would like to emphasize that expressions (23) and

(24) for the Schwinger conductivity have been derived
in the approximation of constant collinear electric and

magnetic fields in the de Sitter background. Therefore, we
assume that the electric and magnetic fields as well as the
Hubble parameter evolve sufficiently slowly during infla-
tion so that at any given moment of time the conductivity is
determined by the corresponding values of these quantities.
Another our assumption is the collinearity of the

electric and magnetic fields. In the axial-coupling model,
the generated fields are almost maximally helical (for
sufficiently large axial coupling). In such a case, the
electric and magnetic fields are indeed nearly collinear.
For instance, in the absence of the Schwinger effect and
for jξj≡ jðdI=dϕÞðdϕ=dtÞj=ð2HÞ≳ 1, there exist quite
simple analytical expressions for the generated fields
[42,57],

hE2i ≃ 9

1120π3
e2πjξjH4

jξj3 ; jhE · Bij ≃ 9

1120π3
e2πjξjH4

jξj4 ;

hB2i ≃ 1

112π3
e2πjξjH4

jξj5 : ð25Þ

Then the angle between the electric and magnetic fields
can be estimated as

θ ¼ arccos
jhE · Bijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2ihB2i

p ≃ arccos
3ffiffiffiffiffi
10

p ≈
π

10
; ð26Þ

which is indeed a relatively small angle. This is the minimal
possible value of θ which can be reached in the free case
without backreaction and the Schwinger effect in the limit
jξj ≫ 1. For smaller jξj, the angle can be greater, while in the
presence of the Schwinger effect it can be even smaller than
the value in Eq. (26), see Figs. 6(b) and 7(b) in Sec. IV.
In the subsequent analysis, we will assume that the Uð1Þ

gauge group is the Standard Model hypercharge group
Uð1ÞY and e ¼ g0, Q ¼ Y. We consider the electroweak-
symmetric phase where all SM fermions are massless. This
requires the SM Higgs field to be stabilized at the origin in
field space during inflation, since any nonzero Higgs field
value would otherwise break the electroweak symmetry and
render the SM fermions massive (except for neutrinos,
possibly). One possibility to stabilize the Higgs field con-
sists, e.g., in a nonminimal coupling to the Ricci curvature
scalar R, which endows the Higgs field with an effective
mass of the order of jRj ≈ 12H2 times a positive coupling
constant during inflation. In the following, we will therefore
focus on scenarios in which the Higgs field is very heavy
during inflation,m2

H ≫ g0jEj, such that its contribution to the
Schwinger current can be neglected. We express the values
of the electric and magnetic fields in the conductivity
through the bilinear functions of the gauge field, i.e.,

we use jBj ¼
ffiffiffiffiffiffiffiffi
Bð0Þp

and jEj ¼
ffiffiffiffiffiffiffiffi
Eð0Þp

, and finally get the
following result (see Appendix A for more details),
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σSM ¼ 41g03

72π2

ffiffiffiffiffiffiffiffi
Bð0Þp

H
coth

�
π

ffiffiffiffiffiffiffiffi
Bð0Þ

Eð0Þ

s �
: ð27Þ

We take into account the running of the coupling
constant g0 due to all SM particles [96],

½g0ðμÞ�−2 ¼ ½g0ðmZÞ�−2 þ
41

48π2
ln
mZ

μ
: ð28Þ

At the energy scale of the Z-boson mass, mZ ≈ 91.2 GeV,
the gauge coupling equals g0ðmZÞ ≈ 0.35. As a character-
istic energy scale μ relevant for the Schwinger pair
production, we use

μ ¼ ρ1=4em ¼
�hE2i þ hB2i

2

�
1=4

: ð29Þ

The coefficient in front of the logarithmic term in Eq. (28)
may be affected by mass threshold effects related to the mass
of the Higgs field during inflation. However, the Higgs
contribution is 40 times smaller than that of all SM fermions,
so these effects can only lead to very small changes,
therefore, we will neglect them in the following.
Finally, we would like to discuss the evolution of the

energy density of the produced charged particles, ρχ , which
affects the cosmic expansion rate. The equation of motion
for this quantity can be derived from the energy conserva-
tion law. Indeed, multiplying Eq. (12) for the inflaton field
by _ϕ, we rewrite in the form

_ρinf þ 3Hðρinf þ pinfÞ ¼ −I0ðϕÞ _ϕGð0Þ; ð30Þ

where ρinf ¼ _ϕ2=2þ VðϕÞ and pinf ¼ _ϕ2=2 − VðϕÞ are the
energy density and the pressure of the inflaton field,
respectively. Further, the equation describing the evolution
of the electromagnetic energy density ρem ¼ hE2 þ B2i=2 ¼
ðEð0Þ þ Bð0ÞÞ=2 can be obtained from Eqs. (20) and (22) for
n ¼ 0,

_ρem þ 4Hρem ¼ ½_ρem�b þ I0ðϕÞ _ϕGð0Þ − σEð0Þ: ð31Þ

The first term on the right-hand side describes the increase of
the electromagnetic energy density due to new modes
crossing the horizon during inflation; therefore, it can be
thought of as a vacuum source term. Comparing Eqs. (30)
and (31), we conclude that the second term on the right-hand
side of Eq. (31) describes the energy transfer from the
inflaton to the gauge field due to the axial coupling. Finally,
the last term in this equation determines the energy loss due
to the Schwinger effect. Then we have the following equation
for the energy density of produced particles,

_ρχ þ 4Hρχ ¼ σEð0Þ; ð32Þ

where we assumed that m2 ≪ g0jEj so that the produced
particles are ultrarelativistic; in fact, we assume them to be
massless. In the opposite case, the factor 4H should be
replaced by 3H as for nonrelativistic particles.

C. Boundary terms

In order to derive the explicit form of the boundary
terms, let us consider the quantized gauge field

Âðt; xÞ ¼
Z

d3k

ð2πÞ3=2
X
λ¼�

h
ϵλðkÞâk;λAλðt; kÞeik·x

þ ϵ�λðkÞâ†k;λA�
λðt; kÞe−ik·x

i
; ð33Þ

where Aλðt; kÞ is the mode function, ϵλðkÞ is the polariza-
tion three-vector, âk;λ ðâ†k;λÞ is the annihilation (creation)
operator of the electromagnetic mode with momentum k
and circular polarization λ ¼ �, and k ¼ jkj. The polari-
zation vectors satisfy the following properties

k · ϵλðkÞ ¼ 0; ϵ�λðkÞ ¼ ϵ−λðkÞ;
½ik × ϵλðkÞ� ¼ λkϵλðkÞ; ϵ�λðkÞ · ϵλ0 ðkÞ ¼ δλλ

0
: ð34Þ

The creation and annihilation operators have the canonical
commutation relations

½âk;λ; â†k0;λ0 � ¼ δλλ0δ
ð3Þðk − k0Þ: ð35Þ

Substituting decomposition (33) into Eqs. (17)–(19) and
taking the vacuum expectation values, we obtain

EðnÞ ¼
X
λ¼�1

Z
kh

0

dk
k
λn

knþ3

2π2anþ2
j _Aλðt; kÞj2

¼
X
λ¼�1

Z
kh

0

dk
k
λn

knþ5

2π2anþ4
jDλðt; kÞj2; ð36Þ

GðnÞ ¼
X
λ¼�1

Z
kh

0

dk
k
λnþ1

knþ4

4π2anþ3

d
dt

jAλðt; kÞj2

¼
X
λ¼�1

Z
kh

0

dk
k
λnþ1

knþ5

2π2anþ4
ℜe½A�

λDλ�; ð37Þ

BðnÞ ¼
X
λ¼�1

Z
kh

0

dk
k
λn

knþ5

2π2anþ4
jAλðt; kÞj2; ð38Þ

where

Dλðt; kÞ ¼
a
k
∂Aλ

∂t ¼ 1

k
∂Aλ

∂η : ð39Þ

Note that the integration in the above expressions proceeds
over wave numbers less than khðtÞ, which is the wave
number of the mode that crosses the horizon at a given
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moment of time t and whose explicit form will be given
below. Clearly, the dependence of kh on time is the
underlying reason for the appearance of the boundary
terms.
Let us forget for a while that the conductivity depends on

the electric and magnetic fields and consider σðtÞ simply as
a function of time. Then, Eqs. (4) and (33) tell us that the
equation of motion for Aλðt; kÞ is given by

Äλðt; kÞ þ ðH þ σÞ _Aλðt; kÞ þ
�
k2

a2
− λ

k
a
dI
dϕ

_ϕ

�
Aλðt; kÞ ¼ 0;

ð40Þ
where σðtÞ appears in the frictionlike term σ _Aλðt; kÞ on the
left-hand side in addition to the usual Hubble friction term
H _Aλðt; kÞ. As we will see shortly, it is this additional
friction term induced by the Schwinger conductivity that
will lead us to the notion of a damped Bunch-Davies
vacuum deep inside the horizon. The longer the friction
term is active, the stronger will be the damping of the
electromagnetic field. In order to find an approximate
solution for the mode equation (40), it is convenient to
do the following changes of function and variable

Aλðt; kÞ ¼ exp
�
−
1

2

Z
t

−∞
σðt0Þdt0

�
fλðz; kÞ; z ¼ kηðtÞ;

ð41Þ
where ηðtÞ ¼ R

t dt0=aðt0Þ is the conformal time. If we
assume that during inflation the cosmic expansion can be
approximated by the de Sitter solution η ≃ −1=ðaHÞ, the
function fλ satisfies the following equation

∂2fλðz; kÞ
dz2

þ
�
1þ λI0ϕ _ϕ

Hz
−
σ2 þ 2σH þ 2_σ

4H2z2

�
fλðz; kÞ ¼ 0:

ð42Þ

For further convenience, we introduce the notations

ξðtÞ ¼ dI
dϕ

_ϕ

2H
; sðtÞ ¼ σðtÞ

2H
: ð43Þ

Although the Schwinger conductivity depends on elec-
tric and magnetic fields, we assume that they vary slowly
during inflation. Therefore, the term with _σ in square
brackets of Eq. (42) can be neglected. Then we get the
following simplified equation

∂2fλðz; kÞ
dz2

þ
�
1þ 2λξ

z
−
s2 þ s
z2

�
fλðz; kÞ ¼ 0: ð44Þ

Deep inside the horizon, when the first term in square
brackets dominates, the solution must satisfy the Bunch-
Davies boundary condition [97]

fλðz; kÞ ¼
1ffiffiffiffiffi
2k

p e−iz; −z ≫ 1: ð45Þ

We emphasize that Eq. (45) does not fully describe the
gauge-field mode function inside the horizon in the
presence of finite conductivity. Indeed, the full mode
function is given by Eq. (41) and includes an exponential
damping factor,

Aλðz; kÞ ¼
ffiffiffiffiffi
Δ
2k

r
e−iz; −z ≫ 1; ð46Þ

where we introduced the new parameterΔ, which is defined
in terms of the exponential of the integrated conductivity,

ΔðtÞ≡ exp

�
−
Z

t

−∞
σðt0Þdt0

�
: ð47Þ

This parameter suppresses the gauge-field amplitude on
small scales. It is, moreover, nonlocal in time, since it
depends on the conductivity at all times t0 ≤ t.
A mode crosses the horizon when the expression in the

square brackets in Eq. (44) vanishes for the first time at
least for one polarization, which is the case when

k
aðtÞHðtÞ ¼ jξðtÞj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ðtÞ þ s2ðtÞ þ sðtÞ

q
⇒ t ¼ thðkÞ:

ð48Þ

In the vicinity of the horizon crossing when t ≈ th, ξðtÞ
and sðtÞ in Eq. (44) can be replaced by ξðthÞ ¼ constant
and sðthÞ ¼ constant, respectively. Then the solution of
Eq. (44) satisfying the Bunch-Davies boundary condition
(45) can be expressed in terms of the Whittaker function
(see Appendix B for more details),

fλðz; kÞ ¼
1ffiffiffiffiffi
2k

p eπλξðthÞ=2Wκ;μð2izÞ; κ ¼ −iλξðthÞ;

μ ¼ 1

2
þ sðthÞ: ð49Þ

The derivative of this expression with respect to z can be
computed by using Eq. (B4) in Appendix B.
Now we are ready to calculate the boundary terms in

Eqs. (20)–(22). Let X represent an electromagnetic bilinear
function (any of the functions EðnÞ, GðnÞ, BðnÞ), whose
spectral decomposition reads

X ¼
Z

khðtÞ

0

dk
k

dX
d ln k

: ð50Þ

Here, khðtÞ is the momentum of the mode that crosses the
horizon at time t. It can be found by inverting the function
thðkÞ in Eq. (48)
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khðtÞ¼max
t0≤t

faðt0ÞHðt0Þ½jξðt0Þjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ðt0Þþs2ðt0Þþsðt0Þ

q
�g:

ð51Þ
The function X varies in time because (i) the integrand

evolves in time and (ii) the upper integration limit is time-
dependent. The time evolution of the integrand is described
by the left-hand side of Eqs. (20)–(22). The time depend-
ence of the upper integration limit leads to the boundary
terms on the right-hand side of these equations. Thus, the
boundary term for X equals its time derivative coming from
the variable upper integration limit,

ð _XÞb ¼
dX
d ln k

����
k¼kh

·
d ln kh
dt

: ð52Þ

Using the spectral decompositions (36)–(38) and the
approximate solution (49) valid in the vicinity of the
horizon crossing, we obtain the following boundary terms

½ _EðnÞ�b ¼
d ln khðtÞ

dt
ΔðtÞ
4π2

�
khðtÞ
aðtÞ

�
nþ4X

λ¼�1

λnEλðξðtÞ; sðtÞÞ;

ð53Þ

½ _GðnÞ�b ¼
d lnkhðtÞ

dt
ΔðtÞ
4π2

�
khðtÞ
aðtÞ

�
nþ4X

λ¼�1

λnþ1GλðξðtÞ; sðtÞÞ;

ð54Þ

½ _BðnÞ�b ¼
d ln khðtÞ

dt
ΔðtÞ
4π2

�
khðtÞ
aðtÞ

�
nþ4X

λ¼�1

λnBλðξðtÞ; sðtÞÞ;

ð55Þ

where khðtÞ is given by Eq. (51) and

Eλðξ; sÞ ¼
eπλξ

r2ðξ; sÞ
���ðirðξ; sÞ− iλξ− sÞW−iλξ;1

2
þsð−2irðξ; sÞÞ

þW1−iλξ;1
2
þsð−2irðξ; sÞÞ

����2; ð56Þ

Gλðξ; sÞ ¼
eπλξ

rðξ; sÞ
n
ℜe

h
Wiλξ;1

2
þsð2irðξ; sÞÞ

×W1−iλξ;1
2
þsð−2irðξ; sÞÞ

i
− s

���W−iλξ;1
2
þsð−2irðξ; sÞÞ

���2o; ð57Þ

Bλðξ; sÞ ¼ eπλξjW−iλξ;1
2
þsð−2irðξ; sÞÞj2; ð58Þ

with rðξ; sÞ ¼ jξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ sþ s2

p
. For large ξ, these

expressions can be expanded into series in inverse powers
of rðξ; sÞ, which is convenient for numerical computations.
They are listed in Appendix B.We point out again that, in the

presence of conductivity (e.g., caused by the Schwinger
effect), the evolution of the gauge field becomes nonlocal in
time. This nonlocality originates from the exponential factor
ΔðtÞ in the boundary terms, which contains information
about the conductivity in all preceding moments of time, see
Eq. (47). This implies that the generation of gauge fields at a
given moment of time depends not only on the parameters
H, ξ, and s at the same moment of time, but also on the entire
prehistory of the system. We also emphasize once more that
the presence of boundary terms is caused by the cutoff in the
spectrum of physically relevant gauge-field modes, which
changes in time. Moreover, the explicit form of these terms
depends on the choice of the cutoff. However, expression
(51) for the cutoff is quite natural, because for any given
k > khðtÞ, the effective frequency of the mode is always
positive for all times t0 ≤ t. Consequently, this mode has not
yet experienced any tachyonic instability. This can be clearly
seen from the spectra of generated fields.
Figure 1 shows the spectral densities of the electric

(blue solid lines) and magnetic (red dashed lines) energy
densities as well as of the scalar product 1

2
jhE · Bij (green

dashed-dotted lines) at ΔNe ¼ 5 (top row), 2.5 (middle
row), and 0 (bottom row) e-foldings before the end of
inflation generated in the axial-coupling model IðϕÞ ¼
βϕ=MP for different values of the coupling parameter β in
the absence of the Schwinger effect (left and middle
columns) and in its presence (right column). The spectral
densities and momenta are normalized by H4 and aH,
respectively, at the corresponding moments of time. The
purple dotted lines show the unperturbed spectrum of
vacuum fluctuations [corresponding to the Bunch-Davies
solution in Eq. (45)]. In the presence of the Schwinger
effect, the vacuum fluctuations inside the horizon are
damped because of the finite conductivity of the plasma,
see Eq. (46). The corresponding damped Bunch-Davies
vacuum spectrum is shown by the black dotted lines in
panels (c), (f), and (i). Notice, that the damping is quite
strong for large β, see panel (i). The gray vertical lines
show the momenta of the horizon-crossing modes kh at the
corresponding moments of time. This figure nicely illus-
trates the fact that kh in form (51) provides a good
separation between the enhanced modes (to the left of
the gray vertical lines) and almost unperturbed ones (to the
right of the gray vertical lines). Such a separation works
well in the absence of backreaction (β ¼ 10, left column)
as well as in its presence (β ¼ 20, middle column), and
also in the presence of the Schwinger effect (right
column). Finally, we would like to comment on the
behavior of the spectral density of hE · Bi, which is shown
by the green dashed-dotted lines in Fig. 1. In the case of a
free gauge field, whose mode function is given by the
Bunch-Davies solution (45), such a spectral density
identically vanishes (while the spectral densities of ρE
and ρB are equal and scale as ∝ k4, see the purple dotted
lines in Fig. 1). In the axial-coupling model, we obtain a
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nonvanishing result for the spectrum of hE · Bi for sub-
horizon modes; however, it is suppressed compared to the
spectra of ρE and ρB.

D. Truncation of the chain of equations

As we already mentioned above, the system of equa-
tions (20)–(22) in general consists of infinitely many
equations which form a chain of coupled equations because
the equation for the quantity of nth order contains quantities
of order ðnþ 1Þ. However, there is a physical argument
which allows us to truncate this chain at some finite order. It
can be deduced by considering the spectral decomposition
(36)–(38). Any quantity XðnÞ (X ∈ fE;G;Bg) can be rep-
resented in the following form

XðnÞ ¼
X
λ¼�

λn
Z

kh

0

�
k
a

�
nþ4

X λðt; kÞdk; ð59Þ

where spectral density function X λðt; kÞ does not depend on
n. For a sufficiently large n, the ultraviolet part of the

spectrum in vicinity of the horizon scale kh gives the
dominant contribution to the integral. In this region, we
can approximate

X λðt; kÞ ≈
X λðtÞ
aðtÞ

�
k
a

�
p
; ð60Þ

where the factor 1=a was added for convenience and p is a
spectral index typically of order unity (we take it to be the
same for both polarizations because, for the modes which
have just crossed the horizon, mode functions behave
similarly to the corresponding vacuum solutions which are
the same for both polarizations; however, this is not
essential for the following discussion). Then, we can
approximately write

XðnÞ ≈
ðkh=aÞnþpþ5

nþ pþ 5
×
X
λ¼�

λnX λðtÞ: ð61Þ

This expression implies that increasing n by two does not
change the second multiplier. Therefore, we have

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Spectral densities of the electric (blue solid lines) and magnetic (red dashed lines) energy densities as well as of the scalar
product 1

2
jhE · Bij (green dashed-dotted lines) at ΔNe ¼ 5 (top row), ΔNe ¼ 2.5 (middle row), and ΔNe ¼ 0 (bottom row) e-foldings

before the end of inflation. Gauge fields are generated in the axial-coupling model with the coupling function IðϕÞ ¼ βϕ=MP in the three
different cases: (left column) β ¼ 10 in the absence of the Schwinger effect; (middle column) β ¼ 20 in the absence of the Schwinger
effect; and (right column) β ¼ 20 including the Schwinger effect. Spectra of unperturbed vacuum fluctuations (Bunch-Davies vacuum)
are shown by the purple dotted lines. In the presence of the Schwinger effect, subhorizon vacuum fluctuations undergo damping due to
the finite conductivity of the medium. The damped Bunch-Davies vacuum spectrum, given by Eq. (46) is shown by the black dotted
lines in panels (c), (f), and (i). The gray vertical lines show the cutoff momenta kh at the corresponding moments of time.
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Xðnþ2Þ ¼ nþ pþ 5

nþ pþ 7

�
kh
a

�
2

XðnÞ ≈
�
kh
a

�
2

XðnÞ; ð62Þ

where we assumed n ≫ p ¼ Oð1Þ. This gives us an
opportunity to express higher-order quantities in terms
of the lower-order ones and, thus, to truncate the chain.
Indeed, if we truncate the system of equations at some
nmax, then the equations of motion for EðnÞ, BðnÞ, and GðnÞ
with 0 ≤ n ≤ ðnmax − 1Þ retain the form of Eqs. (20)–(22)
and the last three equations for EðnmaxÞ, BðnmaxÞ, and GðnmaxÞ
take the following form

_EðnmaxÞ þ ½ðnmax þ 4ÞH þ 2σ�EðnmaxÞ − 2I0ðϕÞ _ϕGðnmaxÞ

þ 2

�
kh
a

�
2

Gðnmax−1Þ ¼ ½ _EðnmaxÞ�b; ð63Þ

_GðnmaxÞ þ ½ðnmax þ 4ÞH þ σ�GðnmaxÞ

−
�
kh
a

�
2

½Eðnmax−1Þ − Bðnmax−1Þ�

− I0ðϕÞ _ϕBðnmaxÞ ¼ ½ _GðnmaxÞ�b; ð64Þ

_BðnmaxÞ þ ðnmax þ 4ÞHBðnmaxÞ

− 2

�
kh
a

�
2

Gðnmax−1Þ ¼ ½ _BðnmaxÞ�b: ð65Þ

IV. NUMERICAL RESULTS

The full system of equations describing the generation of
gauge fields during axion inflation in the gradient expan-
sion formalism consists of the Friedmann equation (9) for
the scale factor, the Klein-Gordon equation (12) for the
inflaton, the system of equations (20)–(22) for bilinear
electromagnetic quantities, which must be truncated at
some order nmax, and the equation for the energy density
of charged particles produced by the Schwinger effect (32).
In this section, we present our numerical solutions to this
system of equations, analyze their accuracy, and compare
them to existing results in the literature.
We consider the generation of the Standard Model

hypercharge gauge field axially coupled to the pseudoscalar
inflaton field. The axial-coupling function is taken in the
simplest linear form

IðϕÞ ¼ β

MP
ϕ ð66Þ

with one dimensionless coupling parameter β. Note that the
coefficient in front of ϕ in the axial coupling function
Eq. (66) is often parametrized as α=f, where f is the axion
decay constant and α is another dimensionless parameter.
However, we consider a generic axionlike inflaton field and

do not specify its decay constant f; therefore, parametriza-
tion (66) is more convenient.
For numerical analysis, we take the inflaton effective

potential in a simple parabolic form

VðϕÞ ¼ M2ϕ2

2
ð67Þ

withM ¼ 6 × 10−6MP. Although such a potential is already
discarded by the CMB observations because it predicts very
large magnitude of the tensor-to-scalar power ratio [98], it is
still worth considering because many other inflaton potentials
can be approximated by Eq. (67) close to their minima. This
region appears to be the most important for magnetogenesis.
Indeed, the most intensive generation of gauge fields occurs
during the last few e-foldings of inflation (this is because the
generation is determined by the parameter ξ ∝ _ϕ and the
inflaton velocity _ϕ typically is the largest close to the end of
inflation).
The initial condition for the inflaton field ϕð0Þ ¼

15.55MP was chosen to provide at least 60 e-foldings
of inflation; the initial value of the inflaton velocity was
determined from the slow-roll approximation, _ϕð0Þ ¼
−

ffiffiffiffiffiffiffiffi
2=3

p
MMP. Zero initial values for all electromagnetic

quantities EðnÞ, BðnÞ, and GðnÞ as well as for the energy
density ρχ of charged fermions were assumed. Moreover,
we suppose that the gauge field was also absent before the
initial moment of time; consequently, the initial value of
the damping parameter Δ [see Eq. (47)] equals unity. We
evolve our system of equations from the initial time deep
in the inflation stage until its end, where preheating starts
and the approximation of a homogeneous inflaton back-
ground breaks down. For definiteness, we assume that
inflation terminates when the accelerated expansion of
the Universe ends, i.e., when the condition ä ¼ 0 is
satisfied for the first time.
Numerical values of the parameter β typically consid-

ered in the literature are of order 10–100. The lower
bound is rarely taken to be less than ten because the gauge
field production is very weak in this case. Concerning the
upper bound, it is constrained from the requirement that
the generated fields do not modify significantly the
primordial power spectra at the scales relevant for
CMB. The most stringent limit follows from the non-
Gaussianity in the scalar power spectrum which results in
jξj < 2.5 at the time when the modes relevant for CMB
cross the horizon during inflation, i.e., δNe ¼ 50–60 e-
foldings before the end of inflation (see, e.g., Ref. [99]).
For the m2ϕ2=2 inflationary model in the slow-roll
approximation, jξj ≃ β=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4δNe

p
that immediately

implies βmax ¼ jξmaxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4δNe

p ¼ 25 – 27 for δNe ¼
50 – 60, respectively. Consequently, in our numerical
analysis we will restrict ourselves to the values of β in
the range 10 ≤ β ≤ 25.
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A. Small coupling and no Schwinger effect

We begin our analysis with the case of small coupling
parameter β ¼ 10 in the absence of the Schwinger effect. In
such a case, the energy density of the generated gauge field is
much less than that of the inflaton; i.e., the gauge field does
not backreact on the inflaton evolution and the Universe
expansion. This fact allows us to compute the energy
densities of the generated gauge fields by an alternative
method by using the spectra of generated fields. Indeed, in
the absence of the backreaction and Schwinger effect, all
Fourier modes of the gauge field evolve independently.
Knowing the time dependences of the background inflaton
field and the scale factor, we can solve the mode equa-
tion (40) for all physically relevant modes and get the power
spectra of the generated fields at any moment of time t [see,
e.g., panels (a), (d), and (g) in Fig. 1]. Then, integrating these
spectra over the range of modes which crossed the horizon
before the moment of time t during inflation, we get the time
dependences of all electromagnetic quantities. These results
are obtained without any approximation and, therefore, we
use them as reference solutions in order to estimate the
accuracy of the results of our gradient expansion formalism.
Figure 2 illustrates the convergence of the solutions of

the system of equations (20)–(22) truncated at a certain
order nmax to the exact mode by mode solution with an
increase of nmax. Panels (a), (b), and (c) depict the evolution

of the electric, magnetic energy densities, and the scalar
product jhE · Bij, respectively, during a few last e-foldings
of inflation (its end is marked by the gray vertical lines on
each panel). The dashed curves of different colors show the
results for six lowest values of nmax while the black solid
lines correspond to the reference solution. Panel (d) shows
maximal relative errors of the approximate results com-
pared to the mode-by-mode solutions as functions of nmax.
For any electromagnetic quantity X, the error is defined in a
usual way:

εX ¼ X − Xref

Xref
× 100%; ð68Þ

where Xref is the corresponding reference value. The
maximal absolute values of these quantities for X ¼ ρE,
ρB, and hE · Bi achieved during inflation are shown in
Fig. 2(d).
First of all, we should mention that there is a general

tendency for the error to decrease with increasing nmax.
However, this decrease is nonmonotonic; for some specific
values of nmax (e.g., 9, 17, 19) the error is less than for both
neighboring orders; for some other values (e.g., 8, 18, 20)
the situation is opposite. Finally, for nmax ≳ 25 the error
ceases to decrease and stabilizes at the level of 0.6%–0.8%.
This irremovable error is not caused by the truncation

(a) (b)

(c) (d)

FIG. 2. The solutions of the truncated system of equations (20)–(22) for a few lowest values of the truncation order nmax (the colored
dashed lines) compared to exact mode-by-mode solutions of Eq. (40) shown by the black solid lines. The dependences of (a) the electric
energy density ρE, (b) the magnetic energy density ρB, and (c) the scalar product jhE · Bij on the number of e-foldings Ne from the
beginning of inflation in the axial coupling model with β ¼ 10 in the absence of the Schwinger effect. The gray vertical lines mark the
end of inflation. (d) The maximal relative error of the approximate results of the gradient expansion formalism for different nmax
compared to the exact mode-by-mode solution of Eq. (40) during inflation.
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procedure as it does not depend on the truncation order. It
comes from other approximations used in the derivation of
the boundary terms; e.g., from assumptions of constant ξ
and exact de Sitter universe expansion in Eq. (44). This can
be confirmed by the fact that the residual error increases
during the last e-foldings of inflation (see, the bottom plot
in Fig. 3) when the above mentioned approximations
become less justified. Nevertheless, the achieved accuracy
is absolutely satisfactory for all physical applications of the
results.
The energy densities of the generated gauge field during

the last few e-foldings of inflation compared to the total
energy density of the Universe are shown in the top plot of
Fig. 3. They were calculated in the gradient expansion
formalism with nmax ¼ 30, and are in good accordance with
the exact results during the whole inflation stage (see the
bottom plot of Fig. 3 for the corresponding relative error of
the result). This figure confirms that the generated fields are
weak (the corresponding energy density is 4–5 orders of
magnitude less than that of the inflaton) and cannot back-
react on the Universe expansion. Close to the end of
inflation, the electric and magnetic fields become almost
collinear. This follows from the relative position of the
curves for ρE (blue solid line), ρB (red dashed line), and
1
2
jhE · Bij (green dashed-dotted line). In the logarithmic

scale, the third one is located almost in the middle between
the first two; i.e., jhE · Bij ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2ihB2i

p
(more precisely,

cos θ grows from 0.86 to 0.96 during the last two e-foldings
of inflation). This is a consequence of the fact that in the

process of enhancement the gauge field becomes more
helical and estimate (26) becomes valid.

B. Large coupling and no Schwinger effect

Let us now consider larger values of the coupling
parameter, β ¼ 20 and 25, still in the absence of the
Schwinger effect. In this case, the generated gauge field
backreacts on the background evolution. First of all, the
term on the right-hand side of Eq. (12) becomes important
and slows down the inflaton rolling. Second, the energy
density of the gauge field becomes comparable to that of
the inflaton and impacts the expansion rate of the Universe.
Consequently, we cannot apply the standard spectral
approach and find the solution of the mode equation (40)
for each separate mode on a given inflaton background
because this background itself depends on the resulting
gauge field. Thus, all modes of the gauge field become
coupled due to backreaction. One possible solution to this
problem is to apply the iterative procedure which converges
to a self-consistent configuration of the gauge field and the
inflaton [60].
Another possibility is to use the gradient expansion

formalism since it takes into account all relevant modes of
the gauge field at once. As already emphasized, its main
advantage is that it does not require any iterative pro-
cedure and allows us to get the results after a single
numerical run. First, we find numerically the truncation
order nmax starting from which the solution of the
truncated system of equations (20)–(22) does not change
with increasing nmax. Thus, we minimize the error caused
by the truncation procedure. As a result, we obtain time
dependences of all electromagnetic bilinear functions as
well as the inflaton and scale factor. Second, we use the
last two quantities to solve the mode equation (40) and get
the gauge field power spectra [for β ¼ 20 see, e.g., panels
(b), (e), and (h) in Fig. 1]. Finally, integrating these spectra
over the momenta of all relevant modes, we compute the
electromagnetic bilinear functions. These solutions cannot
be considered as the exact ones because they are based on
the background values of the inflaton and scale factor
which have been found by an approximate method.
Nevertheless, we can use them as reference solutions in
order to check the consistency of the gradient expansion
formalism. Quantitatively it can be characterized by the
relative deviation between the two solutions given by
Eq. (68), where X is the solution found from the gradient-
expansion approach and Xref is the corresponding result
calculated from the gauge-field spectrum.
Figure 4 demonstrates the evolution of the electric (blue

solid lines) and magnetic (red dashed lines) energy densities
as well as the scalar product 1

2
jhE · Bij (green dashed-dotted

lines) during the last few e-foldings of inflation for β ¼ 20
[panel (a)] and β ¼ 25 [panel (b)]. The total energy density
of the Universe is shown by the purple dotted lines. The
bottom plots show the relative deviation of the obtained

FIG. 3. The evolution of the electric (blue solid line) and
magnetic (red dashed line) energy densities as well as the scalar
product 1

2
jhE · Bij (green dashed-dotted lines) during the last few

e-foldings of inflation in the axial coupling model with β ¼ 10 in
the absence of the Schwinger effect. The top plot presents the
numerical results obtained form the system of equations (20)–(22)
truncated at nmax ¼ 30 while the bottom plot shows the relative
error of this solution compared to the exact mode-by-mode
solution of Eq. (40). The purple dotted line shows the total energy
density of the Universe. The gray vertical line marks the end of the
inflation stage.
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solutions from the reference ones. For β ¼ 20, this deviation
is always less than 0.6%. This is also true for β ¼ 25 until
the last e-folding of inflation where the deviation increases to
∼2%. For the majority of physical applications such an
accuracy of the solution should be absolutely sufficient.
However, it can be further increased applying the iterative
procedure of Ref. [60].
In order to analyze the evolution of the system in more

detail, we show the total electromagnetic energy density
(red line), the scalar product jhE · Bij (blue line) and the
parameter ξ, which is responsible for the gauge field
generation, in Fig. 5. The dashed lines of the same colors
represent the corresponding quantities in the absence of
backreaction (when the inflaton background remains unper-
turbed). At first, the gauge field energy density monoton-
ically increases in time because the parameter ξ constantly
grows during inflation in the absence of the backreaction.
However, when the impact of generated fields on the inflaton
dynamics becomes important, the growth of the energy
densities abruptly stops and the gauge field evolution enters
the nonlinear stage. In this strong backreaction regime,
the energy densities, the scalar product hE · Bi, as well as
the parameter ξ exhibit oscillatory features previously
reported in the literature [51,60,100] (for easier comparison
with the previously reported results, we plotted Fig. 5 for the
same values of the parameters and in the same style as Fig. 6
in Ref. [60]). Moreover, since the inflaton rolls much slower,
the inflation stage becomes a few e-foldings longer, which is
clearly seen from Figs. 4 and 5, where the actual end of
inflation [determined from the condition äðtÞ ¼ 0] is shown
by the pink vertical lines and the end of inflation without the
backreaction is marked by the gray vertical lines. Our
gradient expansion formalism allows to recover all features

of the backreaction regime previously reported in the
literature.

C. Small and large coupling with the Schwinger
effect included

Finally, let us consider the full physical system which
includes also charged fermions produced due to the
Schwinger effect during axion inflation. In such a case,
even in the absence of backreaction the gauge field
evolves in the nonlinear regime, because the Schwinger
conductivity entering the mode equation (40) depends on
the total electromagnetic field; i.e., it couples all relevant
modes to each other. This does not allow us to determine
the exact solution for the generated gauge field by solving
the mode equation (40) separately for each mode as we did
in Sec. IVA. This can be done, e.g., by using the iterative
approach which still has not been realized in the literature.
Instead, we perform the same procedure as discussed in
Sec. IV B; i.e., we take the stable solution obtained from
the gradient expansion approach and use it to solve the
mode equation (40). Electromagnetic bilinear quantities
then can be found from the spectra and compared to the
results of the gradient expansion formalism. The relative
deviation between them, given by Eq. (68), characterizes
the consistency of our approach.
We present the results of our gradient expansion

approach in Figs. 6 and 7 for β ¼ 10 and 25, respectively.
Panels (a) show the dependences of the electric (blue solid
lines), magnetic (red dashed lines) energy densities, and
the scalar product 1

2
jhE · Bij (green dashed-dotted line) on

the number of e-foldings close to the end of axion inflation.
Bottom plots show relative deviations from the reference
solutions found from the spectra. As in the previous

(a) (b)

FIG. 4. The dependences of the electric energy density (blue solid lines), magnetic energy density (red dashed lines), and the scalar
product 1

2
jhE · Bij (green dashed-dotted lines) on the number of e-foldings close to the end of inflation in the axial coupling model with

(a) β ¼ 20 and (b) β ¼ 25 in the absence of the Schwinger effect. The purple dotted lines show the total energy density of the Universe.
The energy density of the generated gauge field is large enough to cause the backreaction which slows the rolling of the inflaton and
extends the inflation stage. The gray vertical lines show the end of inflation in the absence of backreaction while the pink vertical lines
mark the actual end of inflation in each case. The top plots show the numerical results obtained from the system of equations (20)–(22)
truncated at (a) nmax ¼ 80 and (b) nmax ¼ 115while the bottom plots show the relative deviation of this solution from the mode by mode
solution of Eq. (40) on the inflaton background modified by the backreaction.
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subsections, these deviations are of order 1% meaning that
our gradient expansion formalism allows to get a highly
self-consistent result even in the most complicated case
when both backreaction and Schwinger effect are taken into
account. Moreover, such an accuracy is achieved in a single
run of the code without iterative procedure.
The top plots in Figs. 6(b) and 7(b) represent different

components of the energy density of the Universe: electric
(blue lines), magnetic (red lines), charged particles (green
lines), and the total energy density (purple lines). Dashed
lines of the respective color show similar dependences in the

absence of the Schwinger effect (considered in more detail in
previous subsections). Comparing the solid and dashed lines
it is easy to conclude that the Schwinger effect significantly
suppresses magnetogenesis. In the case of large coupling
parameter β ¼ 25, the gauge-field energy density becomes
three orders of magnitude less than in the absence of the
Schwinger effect and does not cause the backreaction any
more. As a result, the inflation stage has the same duration as
in the unperturbed case. Therefore, for typical values of the
coupling parameter β considered in the literature, the back-
reaction does not occur in the presence of the Schwinger

(a) (b)

FIG. 5. Top plots: the total electromagnetic energy density (red solid lines) and the scalar product jhE · Bij (blue solid lines) as
functions of Ne generated in the axial coupling model with (a) β ¼ 20 and (b) β ¼ 25 in the absence of the Schwinger effect. Bottom
plots show the absolute value of the parameter ξ. The corresponding dashed lines show the same dependences in the absence of
backreaction. The pink vertical lines mark the end of inflation in each case while the gray vertical lines show the end of inflation in the
absence of backreaction. These solutions obtained from the gradient expansion formalism are in good accordance with the results of the
iterative solution of the mode equation (40), presented in Ref. [60], cf. Fig. 6 there.

(a) (b)

0.9

FIG. 6. (a) The electric energy density (blue solid line), magnetic energy density (red dashed line) and the scalar product 1
2
jhE · Bij

(green dashed-dotted line) generated in the axial coupling model with β ¼ 10 taking into account the Schwinger production of all
species of the massless Standard Model fermions. The top plot shows the results obtained from the system of equations (20)–(22)
truncated at nmax ¼ 70 while the bottom plot shows their relative error compared to the results of mode-by-mode solution of Eq. (40) on
the background of the inflaton and the Schwinger conductivity determined from the gradient expansion formalism. (b) The components
of the energy density of the Universe during the last few e-foldings of inflation: the electric energy density (blue solid line), magnetic
energy density (red solid line), energy density of charged fermions produced by the Schwinger effect (green solid line), and the total
energy density of the Universe (purple solid line). The bottom plot shows the cosine of the angle θ between the electric and magnetic
fields. The dashed lines show the corresponding dependences in the absence of the Schwinger effect. The gray vertical lines in both
panels mark the end of inflation.
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effect. Unless we take extremely large values of β or larger
values of H, we do not expect any backreaction.
Especially strong suppression occurs for the electric

component of the energy density, because it is directly
affected by the conductivity, see Eq. (20). Although it
dominates over the magnetic one during almost the whole
inflation stage, at the end of inflation it rapidly decreases
and becomes subdominant. This can also be seen from the
evolution of spectra in Fig. 1(c), (f), and (i). The electric
energy density is transferred to charged fermions produced
by the Schwinger effect. Indeed, the green curve corre-
sponding to charged particles looks like a continuation of
the blue curve representing the electric energy density.
Already from Figs. 6(a) and 7(a) we can notice that

1
2
jhE · Bij ≈ ffiffiffiffiffiffiffiffiffiffi

ρEρB
p

which is a signature of the fact that the
electric and magnetic fields are nearly collinear. In order to
check this more precisely, we plot the cosine of the angle
between the electric and magnetic fields in the bottom plots
in Figs. 6(b) and 7(b). They show that during the final part
of inflation when the most significant generation of gauge
fields occurs the cosine is greater than 0.8 and approaches
unity at the end of inflation. This means that the angle
between E and B is typically smaller than 35o and
decreases in time. This justifies our use of Eq. (23) for
the Schwinger conductivity which was derived in the case
of collinear electric and magnetic fields.

V. CONCLUSION

The explosive production of gauge fields during axion
inflation is a complicated nonperturbative process. Its
theoretical description becomes particularly challenging
in the presence of nonlinear effects such as (i) the back-
reaction of the produced gauge fields on the evolution of
the inflaton field and (ii) the Schwinger pair production
of charged particles in the strong gauge-field background.
In this paper, we have presented a novel gradient expan-
sion formalism that is capable of successfully tackling this
theoretical challenge, putting us in the position to quali-
tatively study and quantitatively describe the dynamics of

gauge-field production during axion inflation at an
unprecedented accuracy.
The typical approach to particle production during axion

inflation, as it can be commonly found in the literature,
consists in analyzing the gauge-field mode functions in
Fourier space. This approach works well in the absence of
backreaction or Schwinger pair production, in which case
all Fourier modes evolve independently in time. However,
as soon as at least one of these two nonlinear effects
becomes relevant, the evolution of the individual Fourier
modes can no longer be disentangled. All modes are
coupled to each other, which complicates the theoretical
and, in particular, numerical description of the system. In
this case, backreaction can be accounted for by an iterative
procedure that needs to be repeated until the numerical
solutions for the gauge-field mode functions converge to a
self-consistent result [51,60,100]. The Schwinger effect,
possibly in combination with backreaction, can in principle
be treated in the same way, although to the best of our
knowledge no such self-consistent iterative analysis in
Fourier space has thus far appeared in the literature. In
contrast to this approach in Fourier space, the main idea
behind our gradient expansion formalism is to study the
evolution of a set of bilinear electromagnetic functions in
position space. These functions are defined in terms of
scalar products of two electric or magnetic field vectors
with an arbitrary power of the curl operator. Thus by
construction, they automatically include all physically
relevant gauge-field modes that experience a tachyonic
instability and are hence excited above the vacuum level
during axion inflation. This characteristic property is
extremely helpful in the presence of mode coupling
because of nonlinear effects such as backreaction and
Schwinger pair production. In this case, our bilinear
functions allow us to capture the dynamics of the entire
system, without the need for explicitly disentangling the
evolution of the individual Fourier modes.
In this paper, we derived and solved a set of evolution

equations for the bilinear electromagnetic functions in the

(a) (b)

0.95

0.9

FIG. 7. The same quantities as shown in Fig. 6(a) and 6(b), respectively, for the case of β ¼ 25, nmax ¼ 115.
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gradient expansion formalism. These equations are
coupled into an infinite chain, which, however, can be
truncated at some point based on well-justified physical
arguments. During inflation, the number of modes that
leave the horizon, undergo the quantum to classical
transition and become tachyonically unstable, constantly
grows. This effect is accounted for in our evolution
equations by nontrival boundary terms. We derived
new explicit expressions for them in terms of the
Whittaker function and its derivative as well as accurate
approximate expressions that are convenient for numeri-
cal applications. A novel feature of the boundary terms,
which can be regarded as vacuum source terms in our
evolution equations, is the fact that they are proportional
to a new parameter Δ. This parameter is related to the time
integral over the time-dependent conductivity and
describes the exponential damping of gauge fields deep
inside the horizon caused by the presence of the con-
ductive plasma. The state of the vacuum fluctuations
inside the horizon thus depends on the evolution history
at all earlier times, which renders the description of the
system nonlocal in time and which led us to the notion of
a time-dependent damped Bunch-Davies vacuum. As we
were able to demonstrate, our gradient expansion for-
malism results in highly accurate and self-consistent
solutions with a remaining numerical uncertainty of at
most one to two percent. Moreover, it does not require an
iterative procedure; all results can be generated in a single
numerical integration of our differential equations.
While our formalism does not rely on any kind of spectral

information in Fourier space, it can certainly be used as a
starting point for solving the equations of motion for the
gauge-field mode functions in Fourier space and hence
derive approximate solutions for the energy spectra of the
electric and magnetic fields. To this end, one only needs to
use the numerical output of our formalism, specifically, the
time evolution of the Hubble rate H, conductivity σ, and
inflaton field ϕ, as input in the gauge-field mode equa-
tion (40). As shown in the previous section, this procedure
results in highly accurate self-consistent energy spectra (see
Fig. 1), which one can use for further phenomenological
applications. This includes, e.g., an accurate calculation of
the primordial scalar and tensor power spectra generated
during axion inflation, notably, in the presence of nonlinear
effects such as backreaction and Schwinger pair production.
The first analysis along these lines, focusing on the scalar
power spectrum and neglecting the Schwinger effect, has
been carried out in Ref. [60]. An important outcome of this
analysis was that backreaction can cause nontrivial features
in the scalar power spectrum, which are related to the
nontrivial evolution that we see in Fig. 5. In this paper, on
the other hand, we were able to show that, at fixed
coupling strength β, backreaction effects can be suppressed
because of efficient Schwinger pair production, see Fig. 7.

An interesting open question therefore is whether back-
reaction effects ever have a chance to leave a noticeable
imprint in the primordial scalar and tensor power spectra
in the presence of efficient Schwinger pair production, if
one is willing to consider significantly larger values of β. A
numerical study of the strong-coupling regime, β ≫ Oð10Þ,
is, however, technically challenging, which is why we leave
it for future work.
Another possible application of our formalism consists

in a refined description of baryogenesis from hyper-
magnetic fields [52,59,101–103]. This baryogenesis
mechanism relies on the observation that helical hyper-
magnetic fields generated in the early Universe, possibly
during axion inflation, can source a primordial baryon
asymmetry around the time of the electroweak phase
transition by virtue of the chiral anomaly of baryon
number in the Standard Model (see also Ref. [104] for
an extended scenario, which in addition involves right-
handed neutrinos). The most important input quantity for
these baryogenesis scenarios is the amount of hyper-
magnetic helicity generated during primordial magneto-
genesis. Based on our formalism, this quantity can now be
accurately calculated as a function of the model param-
eters of axion inflation and in the presence of nonlinear
effects. Finally, our formalism is of course useful with
regard to the phenomenology of primordial magnetic
fields on their own, which we briefly discussed in the
Introduction. For a given model of axion inflation, our
formalism can be used to determine the electric and
magnetic power spectra towards the end of inflation,
which can then serve as the starting point for studying
the further evolution of these fields during reheating and
beyond. In particular, our formalism can generate input
spectra for magnetohydrodynamics simulations in the
radiation-dominated era, if the impact of reheating on
our spectra is assumed to be small.
In the numerical analysis in this paper, we mostly

considered a particular toy model in which axion inflation
towards the end of inflation can be described by a simple
quadratic mass term around the origin in field space. In the
next step, it will be interesting to extend this analysis
beyond this simple model and study the generation of
the electric and magnetic fields during axion inflation in a
model-independent way. In the literature, this is typically
done in terms of two effective parameters: the inflationary
Hubble rate H and the parameter ξ, which quantifies
the inflaton velocity during inflation in Hubble units. An
important lesson from our analysis, however, is that such
a description will no longer be possible in the presence of
the Schwinger effect. In this case, one will need to
consider the dependence on at least one more parameter,
namely, the parameter Δ, which describes the damping of
the Bunch-Davies vacuum inside the Hubble horizon. We
will return to this important question in future work.
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APPENDIX A: SCHWINGER CONDUCTIVITY IN
THE STANDARD MODEL

The contribution of fermions and scalars to the
Schwinger conductivity is given by Eqs. (23) and (24),
respectively. If there are several fermionic and scalar
species, then the conductivity takes the form

σfull ¼
e3

12π2

ffiffiffiffiffiffiffiffi
Bð0Þp

H

�X
f

Nf jQf j3 coth
�
π

ffiffiffiffiffiffiffiffi
Bð0Þ

Eð0Þ

s �
exp

�
−

πm2
f

jeQf j
ffiffiffiffiffiffiffiffi
Eð0Þp

�

þ
X
s

NsjQsj3cosech
�
π

ffiffiffiffiffiffiffiffi
Bð0Þ

Eð0Þ

s �
exp

�
−

πm2
s

jeQsj
ffiffiffiffiffiffiffiffi
Eð0Þp

��
; ðA1Þ

where Nf and Ns are numbers of degrees of freedom
(including spin) for fermions and scalars with charges Qf
and Qs and masses mf and ms.
As we discussed in Sec. II, we consider the hypercharge

Uð1ÞY group of the Standard Model in the symmetric
phase, therefore, e ¼ g0, Q ¼ Y. All fermions are massless,
mf ¼ 0, while the mass of the Higgs field mH is very large
which renders the Higgs vacuum expectation value close to

zero during inflation. We assume that mH ≫ g0
ffiffiffiffiffiffiffiffi
Eð0Þp

so
that the Higgs field does not contribute to the Schwinger
conductivity. Then Eq. (A1) reads as

σSM ¼ g03

12π2
X
f

Nf jYf j3
ffiffiffiffiffiffiffiffi
Bð0Þp

H
coth

�
π

ffiffiffiffiffiffiffiffi
Bð0Þ

Eð0Þ

s �
: ðA2Þ

In Table I we list all SM fermions with their hyper-
charges and calculate their contributions to the Schwinger
conductivity. Using this table, we obtain Eq. (27).

APPENDIX B: SOLUTIONS OF THE MODE
EQUATION AND ASYMTOTIC EXPRESSIONS

FOR THE BOUNDARY TERMS

The differential equation

d2w
dy2

þ
�
−
1

4
þ κ

y
þ 1=4 − μ2

y2

�
w ¼ 0 ðB1Þ

is known as the Whittaker equation and has two linearly-
independent solutions, Mκ;μ and Wκ;μ. For the purposes of
this paper, however, only the function Wκ;μ is relevant. It
can be expressed in terms of the Tricomi confluent-hyper-
geometric function U as follows:

Wκ;μðyÞ ¼ e−y=2yμþ1=2Uðμ − κ þ 1=2; 1þ 2μ; yÞ: ðB2Þ

Using Eq. (13.5.2) in Ref. [105], one can derive the
following asymptotical expression of the Whittaker func-
tion at jyj → ∞,

Wκ;μðyÞ ¼ e−y=2yκ½1þOðy−1Þ�: ðB3Þ

The mode equation (44) has the form of the Whittaker
equation (B1) with κ ¼ −iλξ, μ ¼ 1=2þ s, and y ¼ 2iz.
Its solution must satisfy the Bunch-Davies vacuum boun-
dary condition (45). Comparing it with Eq. (B3), we
conclude that the W function indeed has the correct
asymptote. Therefore, the solution to the mode equation
has form (49).
In the derivation of boundary terms we used the

expression for the derivative of the Whittaker function
W which is given by {see Eq. (13.4.33) in Ref. [105]}

TABLE I. The SM fermions and their hypercharges.

Particle Nf Yf Nf jYf j3
eR 1 × 3gen ¼ 3 −1 3

lL ¼
� νL
eL

	
2 × 3gen ¼ 6 − 1

2
3
4

uR 1 × 3c × 3gen ¼ 9 2
3

8
3

dR 1 × 3c × 3gen ¼ 9 − 1
3

1
3

qL ¼
� uL
dL

	
2 × 3c × 3gen ¼ 18 1

6
1
12

Sum over all fermions: 41
6
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y
d
dy

Wκ;μðyÞ ¼ ðy=2 − κÞWκ;μðyÞ −Wκþ1;μðyÞ: ðB4Þ

Alternatively, the solution to Eq. (44) satisfying the
boundary condition (45) can be expressed in terms of the
Coulomb wave functions (see Sec. 14 in Ref. [105])

fλðz; kÞ ¼
1ffiffiffiffiffi
2k

p ½Gsðλξ;−zÞ þ iFsðλξ;−zÞ�: ðB5Þ

The boundary terms can also be expressed in terms of these
functions as follows:

Eλðξ; sÞ ¼ G02
s þ F02

s þ 2s
r
½GsG0

s þ FsF0
s� þ

s2

r2
½G2

s þ F2
s �;

ðB6Þ

Gλðξ; sÞ ¼ −½GsG0
s þ FsF0

s� −
s
r
½G2

s þ F2
s �; ðB7Þ

Bλðξ; sÞ ¼ G2
s þ F2

s ; ðB8Þ

where Fs ¼ Fsðλξ; rðξ; sÞÞ and all other functions have the
same arguments; rðξ; sÞ is defined after Eq. (58) and prime
denotes the derivative with respect to r, i.e., F0

s ¼∂Fsðλξ; rÞ=∂r.

The functions Eλ, Gλ, and Bλ which determine boun-
dary terms are expressed in terms of the Whittaker
functions and are given by Eqs. (56)–(58) [or by Eqs.
(B6)–(B8) in terms of the Coulomb wave functions].
These expressions, however, are inconvenient for numeri-
cal computations for big values of ξ because they require a
significant increase of the working precision. Therefore,
we found approximate expressions for these functions in
terms of elementary functions which provide the sufficient
accuracy for large values of jξj and all relevant values of
parameter s.
We start with the expressions for s ¼ 0. In such a

case, there exist power series for the Whittaker functions
(or the Coulomb wave functions) in inverse powers of jξj.
For λ ¼ signξ, it is convenient to work with the Coulomb
wave functions. The asymptotical expansions for
F0ðjξj; 2jξjÞ, G0ðjξj; 2jξjÞ, and the corresponding deriva-
tives can be found from the integral representations of
the Coulomb wave functions by the method discussed in
Ref. [106]—for a few first terms in these expansions,
see Eqs. (14.5.10) and (14.5.11) in Ref. [105] and also
Refs. [107,108]. Applying this method and using
Eqs. (B6)–(B8), we finally get the expansions which
reproduce the exact result with a relative error less than
10−4% for jξj ≥ 3,

Esignξðξ; 0Þ ¼
ð3
2
Þ1=3Γ2ð2

3
Þ

πjξj1=3 −
ffiffiffi
3

p

15jξj þ
ð2
3
Þ1=3Γ2ð1

3
Þ

100πjξj5=3 þ ð3
2
Þ1=3Γ2ð2

3
Þ

1575πjξj7=3 −
27

ffiffiffi
3

p

19250jξj3 þ
359ð2

3
Þ1=3Γ2ð1

3
Þ

866250πjξj11=3

þ 8209ð3
2
Þ1=3Γ2ð2

3
Þ

13162500πjξj13=3 −
690978

ffiffiffi
3

p

1861234375jξj5 þ
13943074ð2

3
Þ1=3Γ2ð1

3
Þ

127566140625πjξj17=3 þOðjξj−19=3Þ; ðB9Þ

Gsignξðξ; 0Þ ¼
1ffiffiffi
3

p −
ð2
3
Þ1=3Γ2ð1

3
Þ

10πjξj2=3 þ 3ð3
2
Þ1=3Γ2ð2

3
Þ

35πjξj4=3 −
ffiffiffi
3

p

175jξj2 −
41ð2

3
Þ1=3Γ2ð1

3
Þ

34650πjξj8=3 þ 10201ð3
2
Þ1=3Γ2ð2

3
Þ

2388750πjξj10=3 −
8787

ffiffiffi
3

p

21896875jξj4

−
1927529ð2

3
Þ1=3Γ2ð1

3
Þ

4638768750πjξj14=3 þ
585443081ð3

2
Þ1=3Γ2ð2

3
Þ

393158390625πjξj16=3 −
65977497

ffiffiffi
3

p

495088343750jξj6 þOðjξj−20=3Þ; ðB10Þ

Bsignξðξ; 0Þ ¼
ð2
3
Þ1=3Γ2ð1

3
Þjξj1=3

π
þ 2

ffiffiffi
3

p

35jξj −
4ð2

3
Þ1=3Γ2ð1

3
Þ

225πjξj5=3 þ 9ð3
2
Þ1=3Γ2ð2

3
Þ

1225πjξj7=3 þ 132
ffiffiffi
3

p

56875jξj3 −
9511ð2

3
Þ1=3Γ2ð1

3
Þ

5457375πjξj11=3

þ 1448ð3
2
Þ1=3Γ2ð2

3
Þ

1990625πjξj13=3 þ
1187163

ffiffiffi
3

p

1323765625jξj5 −
22862986ð2

3
Þ1=3Γ2ð1

3
Þ

28465171875πjξj17=3 þOðjξj−19=3Þ: ðB11Þ

For λ ¼ −signξ, asymptotical expansions for the Whittaker functions can be obtained by the method discussed in
Sec. 6.13.3 of Ref. [109] and Sec. 10 of Ref. [110]. Approximate expressions for the functions Eλ, Gλ, and Bλ with an error
less than 10−4% for jξj ≥ 3 have the form

E−sign ξðξ; 0Þ ¼
ffiffiffi
2

p �
1 −

9

210ξ2
þ 2059

221ξ4
−
448157

231ξ6
þOðjξj−8Þ

�
; ðB12Þ
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G−signξðξ; 0Þ ¼ −
ffiffiffi
2

p

32jξj
�
1 −

67

210ξ2
þ 21543

221ξ4
−
6003491

231ξ6
þOðjξj−8Þ

�
; ðB13Þ

B−signξðξ; 0Þ ¼
1ffiffiffi
2

p
�
1þ 11

210ξ2
−
2397

221ξ4
þ 508063

231ξ6
þOðjξj−8Þ

�
: ðB14Þ

For s ≠ 0, it is much more difficult to get similar expressions because the second parameter appears in the expansion. We
used the results of Ref. [111] and modified the first few terms of our previous expansions for s ¼ 0 in order to obtain the
approximate expressions reproducing exact results with an error of less than 0.5% for jξj ≥ 4 and all values of the parameter
s. For λ ¼ signξ, we obtain

Esignξðξ; sÞ ≈
ψ1=3

r1=3

�
31=3Γ2ð2

3
Þ

π
−

2

5
ffiffiffi
3

p
�
ψ

r2

�
1=3

�
1þ 5s

ψ2=3

�
þ Γ2ð1

3
Þ

31=325π

�
ψ

r2

�
2=3

�
1þ 5s

ψ2=3

�
2

þ 31=34Γ2ð2
3
Þ

1575π

�
ψ

r2

��
1 −

135s

ψ2=3

�
þ 4
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3

p

875

�
ψ

r2

�
4=3

�
−
27

11
þ 10s

ψ2=3 þ
25s2

ψ4=3

��
; ðB15Þ

Gsignξðξ; sÞ ≈
1ffiffiffi
3

p −
Γ2ð1

3
Þ

31=35π

�
ψ

r2

�
1=3

�
1þ 5s
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�
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3
Þ

35π

�
ψ

r2

�
2=3

−
4
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3

p
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�
ψ
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��
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ψ2=3

�
; ðB16Þ

Bsignξðξ; sÞ≈
r1=3

ψ1=3

�
Γ2ð1

3
Þ

31=3π
þ 4

ffiffiffi
3

p

35

�
ψ

r2

�
2=3

−
16Γ2ð1
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Þ

31=3225π

�
ψ
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��
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while for λ ¼ −signξ, we have

E−signξðξ; sÞ ≈ 2

�jξj
r

�
1=2

�
1þ s

16ξ2
3jξj − r

r
þ s2

4jξjr
�
;

ðB18Þ

G−signξðξ; sÞ ≈ −
1

16
ffiffiffiffiffiffiffijξjrp �

3jξj − r
jξj þ 8s

�
; ðB19Þ

B−signξðξ; sÞ ≈
1

2

�
r
jξj
�

1=2
; ðB20Þ

where

r ¼ rðξ; sÞ≡ jξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ s2 þ s

p
;

ψ ¼ ψðξ; sÞ≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ s2 þ s

p
jξj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ s2 þ s

p : ðB21Þ
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