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Abstract 
In experimental physics, computer algorithms are used 

to make decisions to perform measurements and different 
types of operations. To create a useful algorithm, the 
optimization parameters should be based on real time data. 
However, parameter optimization is a time consuming 
task, due to the large search space. In order to cut down the 
runtime of optimization we propose an algorithm inspired 
by the numerical method Nelder-Mead. This paper 
presents details of our method and selected experimental 
results from high-energy (CERN accelerators) to low-
energy (Penning-trap systems) experiments as to 
demonstrate its efficiency. We also show simulations 
performed on standard test functions for optimization. 

INTRODUCTION 
Particle accelerators are, together with detectors, 

essential components for any experiment in nuclear and 
sub nuclear physics. Big accelerators are complex devices 
or machines that may serve many experiments at the same 
time. 

Nowadays accelerator physics is a complex research 
field with applications far beyond subatomic physics. In 
order to deliver the best particle beams many adjustments 
are necessary. Controls plays a key role in all the 
technologies needed to run particle accelerators properly. 
All accelerator parameters should be controlled and 
adapted to the requested experiments. In this jungle of 
different setting configurations, algorithms for automated 
optimization can make a big difference on the time needed 
for setting up the machine. This saving of time is 
automatically translated into gain of operation time for the 
user. 

Optimization is the discipline that deals with formulating 
useful models in applications, using efficient methods to 
identify the best possible solution. In mathematics, 
optimizing means finding the values which maximize or 
minimize a function. 

Different approaches of finding optimal designs for a 
system are summarised in Table 1.  

It is clear that the main advantages using optimization 
algorithms is due to the fast modelling and design process.  

All processes in the accelerators are modelled and 
adjustments are made according to or with the help of these 
models. However, these models do not 100% represent the 
reality and therefore “intelligent” optimisation algorithms 
are vital to replace the often time consuming and handmade 
scans. The direct results are of course a gain in time and 
the enhanced performance of the machine, but we should 

not forget that the outcome of these scan can help us to 
refine the models. 

Researchers have developed many different algorithms 
using the most disparate methods like linear and gradient 
search methods, machine learning tools, genetic algorithm 
and many others. The algorithm we have developed and 
successfully tested is derived from the numerical method 
Nelder-Mead. 

Table 1: Optimization Approaches Design for a System 

BEAM OPTIMIZATION ALGORITHM 
Direct-search methods do not use any information about 

derivatives and are therefore very robust with respect to 
small perturbations in the function’s values. Nelder-Mead 
[1] is the most known method within this group and the 
popularity of its practical applications is based on its 
simplicity. 

The Nelder-Mead technique was invented by J. Nelder 
and R. Mead in 1965 as an evolution of the method of 
Spendley et al. [2]. From an initial suitable solution, the 
algorithm tries, at each iteration, to build an improved 
solution until the optimum is reached. 

The idea is to define a simplex  (polytope in n-
dimensional space with  𝑛 + 1   vertices), each of which 
are connected to all other vertices (e.g. a triangle in ℝଶ, a 
tetrahedron in ℝଷ, etc.). 

The initial simplex 𝐒 is formed by 𝑛 + 1  vertices 𝑥଴ሬሬሬሬ⃗ , 𝑥ଵሬሬሬ⃗ , … , 𝑥௡ሬሬሬሬ⃗  around an initial point 𝑥଴ሬሬሬሬ⃗ ∈ ℝ௡. The other 
vertices are created in order to get a full starting 
configuration: 
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𝑥௞ሬሬሬሬ⃗ ൌ 𝑥଴ሬሬሬሬ⃗ + ℎ௞ ∙ 𝑒పሬሬ⃗       ∀𝑘 ∈ ሾ1, 𝑛ሿ 
where ℎ௞ is the step dimension in the direction of the unit 
vector 𝑒௞ሬሬሬ⃗ . 𝐒 is a regular simplex where the length of all the 
sides of the geometric figure are equal. 

For maximization, once the initial settings are defined, 
the Nelder-Mead loop follows these simple steps: 
1. Ordering: 

Find indexes of the best, the second best and the worst 
vertex in 𝐒, respectively ℎ, 𝑠, 𝑙: 

o 𝑓௛ ൌ 𝑚𝑎𝑥௞ሺ𝑓௞ሻ   
o 𝑓௦ ൌ 𝑚𝑎𝑥௞ஷ௛ሺ𝑓௞ሻ 
o 𝑓௟ ൌ 𝑚𝑖𝑛௞ஷ௛ሺ𝑓௞ሻ                     ∀𝑘 ∈ ሾ0, 𝑛ሿ 

2. Centroid: 
Centroid calculation opposite to 𝑥௛ሬሬሬሬ⃗ : 𝑥௖ሬሬሬ⃗ ൌ ∑ ௫ೖሬሬሬሬሬ⃗ೖಯ೓௡    

3. Transformation: 
New simplex is calculated using one of the four different 
operations according to continuous estimation of the 
function to optimise: 

• Reflection: 
Reflection point 𝑥௥ሬሬሬሬ⃗ ൌ 2 ∙ 𝑥௖ሬሬሬ⃗ െ 𝑥௛ሬሬሬሬ⃗    
• Expansion: 
Expansion point 𝑥௘ሬሬሬሬ⃗ ൌ 2 ∙ 𝑥௥ሬሬሬሬ⃗ െ 𝑥௖ሬሬሬ⃗      
• Contraction 
Contraction point 𝑥௖௢௡௧ሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝑥௖ሬሬሬ⃗ േ ଵଶ ∙ ሺ𝑥௖ሬሬሬ⃗ െ 𝑥௛ሬሬሬሬ⃗ ሻ     
• Shrinkage 
New points set 𝑥௞ሬሬሬሬ⃗ ൌ 𝑥௛ሬሬሬሬ⃗ + ଵଶ ∙ ሺ𝑥௞ሬሬሬሬ⃗ െ 𝑥௛ሬሬሬሬ⃗ ሻ ∀𝑘 ∈ ሾ0, 𝑛ሿ and k് ℎ 

 
The flow diagram of the Nelder-Mead algorithm for 

maximization is shown in Fig. 1. 
 

 
Figure 1: Nelder-Mead algorithm flow diagram for 
maximization. 

The original algorithm [3], already tested at ISOLDE in 
2012 [4], is used for unconstrained optimizations (an 
objective function that depends on real variables with no 
restrictions on their values). This was modified in order to 
fulfil our needs. 

In the algorithm developed here, we have practically 
replaced the simplex points by the set of values of the 𝑛 

beam parameters to be optimized and the function by beam 
observables. 

Beam parameters (variables) have to be defined in order 
to avoid scanning outside the region of interest. It is 
important to get proper limit settings for each parameter: 𝑥௠ప௡ሬሬሬሬሬሬሬሬ⃗ ൑ 𝑥௞ሬሬሬሬ⃗ ൑ 𝑥௠௔௫ሬሬሬሬሬሬሬሬሬ⃗         ∀𝑘 ∈ ሾ1, 𝑛ሿ. 

Practically speaking, limits can be imposed through 
hardware if given by the device’s working range or through 
software to limit the region of interest on a smaller range. 

Once defined, the limit (variable constraints) the 
modifications carried out on our algorithm were the 
following:  

1- Initial settings: 
For each optimization scan, there is one starting 
simplex  𝑥଴ሬሬሬሬ⃗ ∈ ℝ௡. The others 𝑥ଵሬሬሬ⃗ , … , 𝑥௡ሬሬሬሬ⃗   vertices 
used for the first attempt are set to 𝑛 െ 1 possible 
combinations of 𝑥௠ప௡ሬሬሬሬሬሬሬሬ⃗  and 𝑥௠௔௫ሬሬሬሬሬሬሬሬሬ⃗  limit vectors. 

2- Constraints: 
If during the optimization, the loop finds variable 
settings “outside” the box constraints, it retrieves a 
function estimation that is worse than the worst 
value found so far.  
In this way, we try to “move” the simplex away 
from that parameters space region. 

3- Convergence options: 
In order to converge either to a target maximum or 
minimum 𝑓௠ we need to define five parameters as 
inputs of the algorithm:  

• The minimum number of continuous iterations 
before convergence: 𝑖𝑡_𝑐. 

• The stability ratio: 𝑠_𝑟 (in %). 
• The max convergence size: 𝑠_𝑐. 
• The automatic restart iteration number: 𝑖𝑡_𝑟. 
• The max number of iterations: 𝑖𝑡_𝑚𝑎𝑥. 
 
Therefore, the convergence is obtained if the 
algorithm satisfies one of these criteria: 

• Last 𝑖𝑡_𝑐 evaluations are within a certain 
“envelope” with 𝑓௠: |𝑓௞ െ 𝑓௠| ൑ 𝑠_𝑐        ∀𝑘 ∈ ሾ𝑛, 𝑛 + 𝑖𝑡_𝑐ሿ 

• Last 𝑖𝑡_𝑐 evaluations are stable within a defined 
stability ratio 𝑠_𝑟: |𝑓௞ െ 𝑓௞ିଵ| ൑  ௙ೖ∙௦_௥ଵ଴଴         ∀𝑘 ∈ ሾ𝑛, 𝑛 + 𝑖𝑡_𝑐ሿ 

It is clear that in the second criteria the algorithm 
may converge to a value, which is not always the 
value 𝑓௠. 

4- Automatic restart: 
After 𝑖𝑡_𝑟 iteration if the optimization sequence 
does not converge to 𝑓௠, the algorithm restarts 
automatically using the last iteration value as 
starting point  𝑥଴ሬሬሬሬ⃗ . 
This automatic restart is performed not more than  ௜௧_௠௔௫௜௧_௥  times. 

SIMULATIONS 
Different simulations have been performed in order to 

validate the robustness of the algorithm. 
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One of the analytic function used is the Rosenbrock 
function [5], which is defined as: 𝑓ሺ𝑥⃗ሻ ൌ ෍ 100 ∙ ሺ𝑥௞ାଵ െ 𝑥௞ଶሻଶ + ሺ𝑥௞ െ 1ሻଶ௡ିଵ

௞ୀଵ  

This function has a global minimum 𝑓ሺ𝑥⃗ሻ ൌ 0 in a 
narrow parabolic valley 𝑥⃗ ൌ ሺ1, 1, … , 1ሻ. 

We have tested the optimization algorithm with this 
function with a different number of variables and the same 
value range ([-10, 10]) for each parameter. We have 
applied random initial settings within the range. 

Table 2 summarises some of the simulations performed 
with this function. 

Table 2: Rosenbrock Simulation Results 

 
Figure 2 shows Rosenbrock function in 2D and Fig. 3 

shows the variables trend in this dimension. 
 

 
Figure 2: Rosenbrock 2D function [5]. 

 

 
Figure 3: Rosenbrock 2D function variables optimization. 

 
We have then tested the algorithm in the same condition 

as previously explained, but adding Gaussian noise with 
different 𝜎. The results still showed good response, even 
though it did not converge to the minimum as shown in 
Table 3. 

 
 
 

Table 3: Rosenbrock Simulation with Gaussian Noise 
Applied 

USE CASES 
ISOLDE 

The ISOLDE Facility is dedicated to the production of a 
large variety of radioactive ion beams for different 
experiments in the fields of nuclear, atomic and solid-state 
physics, materials and life sciences. The facility belongs to 
CERN’s accelerator complex. 

Several automatic beam optimizations have been 
performed, especially in the low energy beam lines with 
particle energies up to 60 keV.  

The aim of these optimizations was always to maximise 
the ion beam transmission through the machine, tuning 
electrostatic devices such as quadrupoles, steerers and 
deflectors. 

Two examples are shown in Fig. 4 and Fig. 5, where we 
have simultaneously optimized 13 parameters and we 
measured a transmission gain of +225% and +16%, 
respectively. 

 
Figure 4: ISOLDE beam optimization with +225% gain 
(top: beam current intensity vs iterations bottom: devices 
values vs iterations). 

 
Both optimizations required around 300 iterations (1.2 s 

interval, 6 min. total). Note that at each iteration all the 
values of the 13 devices have been changed at the same 
time.  

Variables 𝑛 Evaluations for convergence 
2 ≅80 
4 ≅400 
8 ≅1000 

Variables 𝑛 𝜎 Convergence values 
4 0.001 ≅ [0, 0.1] ∀ variable 
4 0.01 ≅ [0, 0.4] ∀ variable 
8 0.001 ≅ [0, 0.2] ∀ variable 
8 0.01 ≅ [0, 0.5] ∀ variable 

Noise, not 
real value 
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Figure 5: ISOLDE beam optimization with +16% gain 
(top: beam current intensity vs iterations bottom: devices 
values vs iterations). 

 
Bottom pictures of Fig. 4 and 5 show the convergence of 

the devices values over time. 
At ISOLDE, in 2018, we have run successfully about 

300 automatic optimizations; the statistics are summarized 
in Fig. 6, 7 and 8.  

 

 
 

Figure 6: ISOLDE optimization statistics: devices 
optimised vs total optimizations. 

 
It is interesting to notice that many successful 

optimizations have been performed with more than 6 
devices and on average we needed 100-200 iterations to 
converge. 

 

 
 

Figure 7: ISOLDE optimization statistics: total 
optimizations vs number of iterations. 
 

 
 

Figure 8: ISOLDE optimization statistics: total 
optimizations vs optimization gain [in %]. 

GANDALPH 
The GANDALPH experiment [6] (Fig. 9) aims at 

measuring the reaction between singly charged negative 
ions and a laser beam. The optimum tune for the 
experiment is achieved, when the ion beam is perfectly 
overlapped with the laser beam. The alignment is by two 
apertures of 6 mm diameter placed at a distance of 500mm 
along the center of the beamline. 

In order to guide the ion beam through these apertures, a 
pair of horizontal kicker plates, and two x/y steerer boxes 
are used. These electrostatic elements are part of the 
experimental beam line and the applied voltages can be 
computer controlled through an independent suite of 
applications, implemented in LabVIEW. Previously, the 
Optimizer has been used to optimize the injection into the 
experimental beamline in an iterative manner; alternating 
between automatically tuning ISOLDE elements and 
manually tuning the experimental beamline. The signal on 
which one could optimize was previously limited to ion 
beam current via the ISOLDE Faraday cup acquisition. 

 

 
Figure 9: GANDALPH beamline layout (schematic). 
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We have now successfully demonstrated the 
simultaneous optimization of ISOLDE parameters and 
experiment parameters using a user-generated signal 
(event rate from an electron multiplier). For this, we have 
written an interface that enabled us to set parameters of the 
user’s electrostatic elements via a LabVIEW Common 
Middle Ware (CMW) wrapper [7]. We have created a 
virtual device in the CERN Controls Database, that 
contained eight control parameters and one device that 
represented the signal. 

This prove of concept was rather reliable and has been 
successfully used during the on-line campaigns of the 
GANDALPH detector. In Fig. 10 an example of the 
optimization is shown. 

The flexibility of CMW and the available wrappers will 
allow us in future to open the Optimizer software as a part 
of the infrastructure to the ISOLDE user community 
through interfaces using JAVA, Python or LabVIEW. 

 

 
Figure 10: Gandalph optimization, for details see text. 

Penning Trap 
Penning-trap experiments dependent on external ion 

sources with typically low energy ion beams (about a few 
keV). Specifically the usage of pulsed drift tubes for de- 
acceleration and the very small acceptance of the storage 
magnet pose difficulties during beam optimization. Pulsed 
drift tubes have to be optimized in timing and need 
subsequent optimizations with focusing lenses due to their 
negative effect on the beam emittance. In combination with 
the small acceptance of the trapping system in the 
superconducting magnets, the need for an optimization 
system capable of working with a very low signal in most 
of the parameter space is high. 

For on-line experiments with limited beam time a fast 
algorithm for beam optimization would directly contribute 
to better statistics for measurement data and also for offline 
measurements the Optimizer would spare time on 

preparation and could increase the number of 
measurements per time. 

At an example optimization at Pentatrap (Fig. 11) [8] 
with a 6.5 keV pulsed beam of highly charged ions, the 
potentials on the third electrostatic steerer/lens 
combination (einzel lens 3), electrostatic lenses 1-3 and the 
electrostatic quadrupole bender were optimized (in total 
eight device parameters) using the response signal of a 
Faraday cup at the end of the trapping system. The initial 
device parameters were chosen randomly inside a 
reasonable range. In order to get a representative signal for 
the given settings the trigger for the beamline was delayed 
by a few seconds after new parameters have been applied 
and the pulse intensity signal on the Faraday cup was 
averaged over multiple shots. 
 

 
Figure 11: Pentatrap system [8]. 

 
Using the Optimizer tool, the beam performance could 

be increased from 7.5 a.u. to 9.8 a.u., corresponding to 
+30 % in only 96 iteration steps. 

CONCLUSIONS AND PERSPECTIVES 
The algorithm has been fully tested and is now very 

robust. It showed important improvements in the 
operations of different experiments. The ongoing 
collaboration with Max Planck Institute for Nuclear 
Physics in Heidelberg and different CERN groups will 
significantly improve the functionality and usability of this 
tool from high-energy to low-energy physics experiments. 

We foresee to add noise reduction filtering, based on real 
time averaging and to improve the automatic loop 
restarting to be able to explore different regions of interest. 
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