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Abstract 
The Vacuum Controls Configurator (vacCC) is an 

application developed at CERN for the management of 
large-scale vacuum control systems. The application was 
developed to facilitate the management of the 
configuration of the vacuum control system at CERN, the 
largest vacuum system in operation in the world, with over 
15,000 vacuum devices spread over 128 km of vacuum 
chambers. It allows non-experts in software to easily 
integrate or modify vacuum devices within the control 
system via a web browser. It automatically generates 
configuration data that enables the communication 
between vacuum devices and the supervision system, the 
generation of SCADA synoptics, long and short term 
archiving, and the publishing of vacuum data to external 
systems. VacCC is a web application built for the cloud, 
dockerized, and based on a microservice architecture. In 
this paper, we unveil the application's main aspects 
concerning its architecture, data flow, data validation, and 
generation of configuration for SCADA/PLC. 

INTRODUCTION 
In the early 2000’s, during the construction of the LHC 

and anticipating a considerable increase in the number of 
vacuum devices to be controlled, a software application 
(vacDB-Editor) and a set of databases (vacDB) were 
developed to homogenize and automate the configuration 
of the SCADA and PLCs for CERN’s vacuum systems. 
Figure 1 shows a simplified overview of this application 
with its main building blocks.  

Export Module

SCADA Configuration Files

PLC Configuration Files

SCADA server

PLCs

User Consoles

Controllers

LayoutDB Synchronizer

Data Validation and 
vacDB CRUD

vacDB

Layout DB

Survey DB

UI

vacDB Editor

 
Figure 1: vacDB-Editor overview. 

Users interact with the vacDB-Editor user interface, 
where they can modify the configuration of the control 
system (adding/removing equipment, modifying 
equipment attributes, configuring vacuum sectors, alarms). 
After validating user input, data is persisted in vacDB, and 
from it, an export functionality generates the configuration 
files that are used by both the SCADA (WinCC-OA) and 
PLCs (Siemens S7/TIA). These files allow PLCs to 
communicate with device controllers, enable the 

communication between the SCADA and PLCs, and 
configure all SCADA functionalities such as 
automatically-generated graphical interfaces, archiving, 
alarms, and sharing of data with external systems.   

In addition, the vacDB-Editor provides a functionality to 
import equipment and sectorization data from CERN’s 
Layout database. All of the described functionalities (user 
interface, configuration exporter, Layout DB synchronizer, 
and data validation & persistence) are packaged into a 
single monolithic application, which runs on each user’s 
desktop computer.  

The Need for Upgrading the vacDB-Editor 
Over the past years it has become increasingly difficult 

to maintain and upgrade the existing vacDB-Editor 
application. This is due to its obsolete technology stack, 
written in Java 6, using an old version of Oracle‘s ADF 
framework, whose development is dependent on a no 
longer supported IDE, JDeveloper 10g, released in 2007 
[1]. Because of mandatory upgrades of the Java runtime 
environment at CERN, the vacDB-Editor, using older 
versions of Java, became more and more unstable, with 
frequent bugs and crashes reported by the users.  

In late 2018 it was announced at CERN that a mandatory 
update had to be performed to upgrade Oracle databases 
[2], from version 11g to 18c, on all of CERN’s production 
instances, affecting vacDB. Since Oracle 18c requires a 
more recent JDBC driver, not available in JDeveloper 10g, 
an unsupported migration of the vacDB-Editor was 
performed to support the new driver. While this migration 
was extremely difficult to perform, it appears to have been 
successful. It is however impossible to be sure that it will 
continue working as new Java runtime environments get 
deployed at CERN. Combining the technical reasons above 
with the scarce user base of ADF and JDeveloper, it was 
decided to rewrite the vacDB-Editor application using 
modern technologies, on a micro-service architecture, 
allowing us to be more resilient to technological 
advancements in the future. The new version of the vacDB-
Editor is called vacCC, short for Vacuum Controls 
Configurator.  

HIGH LEVEL ARCHITECTURE 
vacCC is based on a microservice architecture, where 

each functionality is handled by an independently 
deployable application [3]. Although more complex to 
implement due to the increasing number of software parts, 
interactions, and underlying infrastructure, the usage of 
microservice architectures has been shown to bring 
important advantages over monolithic applications. We 
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consider the following advantages to be the most relevant 
for our case:  

• Allows for individual upgrades of each microservice,
as opposed to monolithic applications, where the entire 
application needs to be upgraded at once.

• Improved service resilience as the failure of a
microservice will not affect the behaviour of other
functionalities.

• Allows different programming languages to coexist in
the same application, enabling us to choose the right
tool for the job.

• Provides a logical separation of concerns, making
software better organized, and therefore easier for
software developers to master, develop,  test and
maintain their code.

vacCC

Front End
Validation 

and 
Persistence

Exporter Synchronizer

vacDB

Figure 2: vacCC microservices. 

According to Figure 2, the application logic was divided 
into 4 microservices: 

• Front end: the web graphical interface that allows
users to edit the configuration of the control system.

• Validation & persistence: exposes RESTful APIs [4]
for other services to interact with vacDB, ensuring the
validity of data used in CRUD operations.

• Exporter: generates SCADA and PLC configuration
files from vacDB data.

• Synchronizer: synchronizes CERN’s accelerator
equipment database (Layout DB) with vacDB.

All vacCC microservices are containerized and 
orchestrated in Openshift [5], a Kubernetes [6] application 
platform.  
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Figure 3: Deployment architecture. 

Figure 3 illustrates the architecture of vacCC in 
production and development environments. An Openshift 
router exposes the application to CERN’s General Purpose 
Network (GPN). Based on the request URL, the router will 
forward HTTPs requests to the appropriate load balancer, 
which will in turn forward the request to a microservice 
Pod [7] in a round-robin fashion. In addition to forwarding 
requests to Pods, load balancers provide a service 
discovery feature. Every time a new Pod of a certain 
microservice is created, the load balancer will 
automatically detect it and will start forwarding requests 
once it becomes available. This feature, combined with the 
stateless nature of all microservices, allows vacCC 
microservices to scale horizontally and to perform zero-
downtime updates.   

The following sections explain with a greater detail the 
implementation of the front end, validation & persistence, 
exporter, and synchronizer microservices.  

FRONT END 
The front end microservice provides the user interface of 

the application. It allows users to be abstracted from the 
complexity of vacDB, enabling them to modify vacuum 
machine parameters (e.g. equipment and their attributes, 
sectors, archiving, data sharing, etc.) that are required for 
the export of the SCADA and PLC configuration for the 
control system. The application is built as a single page 
application, implemented using the React Framework [8]. 
The graphical styling is provided by the Ant Design 
framework [9], which includes pre-made enterprise-class 
UI design components that can be added to the application 
with minimal configuration, enabling significant time-
savings during development, while ensuring a consistent 
look and feel of the application. 

Figure 4 illustrates the architecture of the front end 
application. The application is organized following the 
React model, where web elements such as pages and their 
elements (buttons, tables, forms, etc.) are hierarchically 
organized into components. Components interact with 
backend services (validation & persistence, exporter, and 
synchronizer microservices) using REST and WebSockets 
[10], the latter being used in special cases of long lasting 
requests with intermediate steps that need to provide 
feedback to the UI. Request data is stored in the application 
store, using Redux [11], that components can access 
directly.  

Figure 4: Architecture of front end application. 
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VALIDATION & PERSISTENCE 
The validation & persistence microservice is responsible 

for providing the interface between other microservices 
and vacDB. It achieves that by exposing RESTful APIs that 
allow other microservices to indirectly perform CRUD 
operations on the database. It is implemented with Spring 
Boot [12], a widely used framework for building web and 
enterprise applications, with an extensive user base, a rich 
set of features, with a convention-over-configuration 
approach that fosters simplicity and standard coding 
practises. Prior to any create, update, or delete operation on 
vacDB, data validation is performed to ensure that user 
intentions will result in a valid configuration, aiming to 
reduce the possibility of errors during subsequent vacDB 
SCADA and PLC exports. While vacDB itself provides a 
form of validation by the usage of constraints on the 
database level, this microservice makes use of attribute 
boundaries defined in MasterDB (the metadata source of 
vacDB) to improve the detection of user input errors.  

Architecture 
The architecture of the validation & persistence 

microservice is composed of 3 layers, as illustrated in Fig-
ure 5 below:  

API

Service Layer

Data Access 
Objects

Auditing

Security

vacDB

Figure 5: Architecture of validation & persistence 
mcroservice. 

• API: exposes REST endpoints for other services to
interact with vacDB.

• Service Layer: handles requests from the API layer,
performs data validation, and when necessary,
combines results from multiple Data Access Object
(DAO) operations to serve API requests.

• Data Access Objects: provides objects that allow
direct access to vacDB. This layer is implemented with 
Spring Data and Hibernate.

• Auditing: records modifications in the configuration
of the vacuum control system.

• Security: provides authentication and authorization
services for the entire application, ensuring that only
users with the required priviledges are able to perform
database operations.

Security 
For user authentication and authorization, the Spring 

Security module is used and customized to obtain user 
authentication from CERN’s active directory database. 
Upon a successful authentication, a JSON Web Token 
(JWT) [13] is issued to the client application. On every 
request, the client sends back the token, which is decoded, 
analysed, and matched against current authorization 
permissions in vacDB: this allows the microservice to 
confirm the identity of the client without the need of 
sharing credentials on every request. A great advantage of 
JWT is its stateless nature. With its usage, no sessions are 
maintained between the microservice and its clients, 
enabling any Pod to serve a particular request. 
Authorization for a particular operation (create, update, 
delete) on a specific entity (equipment, equipment 
attributes, sectors, etc.) is configured to use method-level 
security. DAO persistence methods are annotated with the 
role required to execute the method operation and matched 
against the requestor’s granted roles.  

Data Auditing 
The validation & persistence microservice maintains 

audit logs for every change made in the configuration of 
the vacuum control system. Every time a configuration 
parameter changes, on any entity (e.g. equipment, 
equipment attributes, sectors, etc.), a log is added to an 
audit table containing a description of what changed (e.g. 
“timeout value changed from 10s to 30s”), when it was 
changed, and which user performed the change. Given that 
this functionality was common to all DAO objects, it was 
implemented using Spring’s AOP (Aspect Oriented 
Programming) paradigm [14]. Each create, update, or 
delete operation in any DAO object is captured by an AOP 
advice (which is essentially a trigger function) that 
compares the current version of the object to be modified 
to its future version, and stores a change log result in the 
audit table. AOP allows the DAO classes to be completely 
unaware of the data auditing mechanism.  

vacDB 
In order to ensure that the configuration of the vacuum 

control system is always possible during CERN’s Long 
Shutdown 2, where the configuration of the control system 
is changing on a daily basis, one of the project 
requirements was to make vacCC compatible with the 
database used by the vacDB-Editor. This provides users 
with the possibility of using the vacDB-Editor in case of 
problems in the new application, especially important 
during the validation stage of the application. The easiest 
approach for this problem was to make both applications 
share vacDB, avoiding the need of creating custom 
software to keep vacDB and a new database consistent.  

As illustrated in Figure 6, vacDB has 2 types of 
databases.    
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Master DB

LHC DB SPS DB CPS DB

Metadata

Machine Instances

Figure 6: High level overview of database interactions. 

Master Database The Master DB is a metadata database 
that defines information common to all accelerators. 
Examples of metadata found in Master DB are the 
attributes that define each control equipment type, default 
values for attributes, datapoint definitions, and the types of 
data for each datapoint element (uint, float, etc.). A single 
instance of Master DB is shared amongst all Machine 
databases.  

Machine Databases Machine databases contain data 
concerning a particular vacuum installation (LHC, SPS and 
ComplexPS). These databases share definitions from the 
Master DB in read-only mode. In Machine databases, we 
find definitions of vacuum sectors, equipment and their 
attributes, archiving, alarm settings, and all other data 
needed to generate all of the export files required for the 
configuration of the vacuum control system.  

Control System Configuration Versioning Machine 
databases contain several versions of data for a given 
accelerator and, as illustrated in Figure 7, all database 
entities point to a version. This feature is necessary to allow 
future versions of the control system to be edited without 
affecting the current production versions, and also to 
maintain history of previous configurations of the control 
system.  

...

VDB_EQP

VDB_SECTOR

ID
VERSION_ID
-------------------------------
Other fields...

VDB_VERSION

ID
-------------------------------
Other fields...

Figure 7: Versioning in Machines databases. 

When a new database version is required, it is usually 
copied from an existing version – typically from the 
production version. A new database version ID entry is 
created on the versions’ table and all database entities that 
point to the source version ID are duplicated with the new 
version ID field.  

EXPORTER 
The Exporter microservice is responsible for generating 

the configuration files for both the PLCs and for the 
SCADA.  

For each PLC, the exporter generates function block 
calls for each vacuum device connected to it, along with 

device datablocks; these contain all relevant information 
that will allow PLCs to connect and interact with device 
controllers. Two special datablocks are generated to enable 
bilateral communication with the SCADA: the Read 
Register, for the SCADA to read from the PLC, and the 
Write Register, for the SCADA to send data – commands 
or configuration - to the PLC. PLC functions copy data 
from device datablocks to the Read and Write registers on 
specific memory positions specified in the PLC 
configuration files.   

For the SCADA, the exporter microservice generates 
configuration files with the data that will allow the 
configuration of all datapoints for every vacuum device. 
Each datapoint will be configured with the archiving 
settings defined in vacDB, and each datapoint element that 
requires communication with a PLC will be automatically 
configured to point to its corresponding memory location, 
within the appropriate PLC Read or Write register. In 
addition to the configuration required to enable the 
communication between SCADA and PLCs described in 
the previous paragraphs, other files are generated to 
configure the display of equipment in the SCADA 
synoptics, alarms, long term archiving, and data sharing 
through middleware protocols with other control systems. 

SYNCHRONIZER 
The Layout DB is a CERN-wide database that models 

the architecture of CERN’s accelerators. It contains data 
concerning most accelerator subsystems, including RF, 
beam instrumentation, magnets, cyogenics, and vacuum. 
The purpose of the synchronizer microservice is to 
automatically import vacuum data from the Layout DB 
into vacDB, ensuring that the official, approved layout of 
the vacuum system is reflected in vacDB. Fig. 8 shows the 
data-flow between the Layout DB, the synchronizer 
microservice, and vacDB.  

Master DB

LHC DB SPS DB CPS DB

Layout DB

Synchronizer

Figure 8: VacDB relation with Layout DB. 

Through vacCC’s user interface, users can trigger a dif-
ferential analysis between vacDB and the Layout DB. The 
differences detected in the analysis are based on the create, 
update, and delete operations made on the Layout DB that 
are not reflected in the Machine DB, concerning vacuum 
sectorizations, and equipment and their attributes (position, 
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type, and hierarchy). The analysis process provides users 
with a list of actions that need to be performed on vacDB 
to bring it up to date with the Layout DB. Users can use the 
synchronizer service to automatically perform the sug-
gested updates.  

CI/CD 
A continuous integration and continuous delivery 

(CI/CD) philosophy is used in all vacCC microservices. 
With continuous integration, developers push their code 
daily, if not multiple times per day, into the master 
repository of each microservice. Code is automatically 
compiled, and unit, integration, and linting tests are 
performed at each commit. This methodology allows 
compilation errors and non-conformities to be detected 
early, thus minimizing the risk of faulty code reaching 
production and staging environments. Continuous 
delivery, on the other hand, is the process of automating 
code deployment. By eliminating human intervention in 
the deployment, we can guarantee that code is always 
released in a standard manner, thus reducing risk and 
minimizing deployment times.  

push

Build Test Deploy

PROD

DEV

Lint

Figure 9: Continuous integration / continuous Delivery. 

As Figure 9 illustrates, every change made to the code 
repository passes through a pipeline that will build 
(compilation and creation of Docker images [15]), test, and 
lint the code. In case of errors, the pipeline will stop and 
the developer will be alerted. Commits pushed to the 
master branch of the repository that pass the build, test, and 
lint stages are automatically deployed to the staging 
environment, a replica of production, where developers 
can perform additional testing. After validation in the 
staging environment, a tag of the master branch is created, 
and developers can trigger an automatic deployment to 
production.  

CONCLUSION 
The front end and the validation & persistence 

microservices of vacCC are in production since March 
2019 and have completely replaced the vacDB-Editor as 
the tool for editing the configuration of the control system. 
Users have reported a significant increase in productivity 
using the new interface, which is especially important 
during the Long Shutdown 2 of the LHC, when tens of 
thousands of configuration changes are expected.  

We are currently in the validation phase of the exporter 
microservice and expect to complete the development 
stage of the synchronizer miroservice on late 2019, when 
the vacDB-Editor will be completely replaced by vacCC.  

The adoption of a microservices architecture in vacCC 
brought several advantages. It allowed to split a big 
problem into smaller, independent, and more easily 
manageable pieces of software, enabling developers to 
work simultaneously on the different system components. 
Future upgrades of vacCC to new technologies can now be 
carried on a service by service basis, without the need of a 
big team of software developers uniquely dedicated to 
upgrading the whole application at once.   

The usage of Openshift/Kubernetes to manage our 
application containers made our applications self-healing 
in case of hardware problems, brought zero-downtime 
deployments, and allows for dynamic horizontal scaling to 
ensure a consistent performance of the application.  

The development of continuous integration and delivery 
pipelines, with integration testing and automatic 
deployment to staging and production environments, 
allowed developers to be more confident on the changes 
they make. This is now the standard for all new 
applications developed for vacuum controls at CERN.  

In summary, we expect these architectural and 
technology choices to result in more agility to react to new 
user requirements and technological changes, making 
software in vacuum controls ready to face the upcoming 
years.  
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