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Abstract 
The CERN accelerator controls infrastructure spans sev-

eral thousands of computers and devices used for Acceler-
ator control and data acquisition. In 2009, a fully in-house, 
CERN-specific solution was developed (DIAMON) to 
monitor and diagnose the complete controls infrastructure. 
The adoption of the solution by a large community of users, 
followed by its rapid expansion, led to a final product that 
became increasingly difficult to operate and maintain. This 
was predominantly due to the multiplicity and redundancy 
of services, centralized management of data acquisition 
and visualization software, its complex configuration and 
its intrinsic scalability limits. At the end of 2017, a com-
pletely new monitoring system for the beam controls infra-
structure was launched. The new "COSMOS" system was 
developed with two main objectives in mind: firstly, de-
tecting instabilities and preventing breakdowns of the con-
trol system infrastructure. Secondly, providing users with 
a more coherent and efficient solution for development of 
their specific data monitoring agents and related dash-
boards. This paper describes the overall architecture of 
COSMOS, focusing on the conceptual and technological 
choices for the system. 

INTRODUCTION 
The CERN Accelerator Control System [1] relies on 

many components and a substantial infrastructure, which 
must be available 24 hours a day, 7 days a week. This hard-
ware and software infrastructure needs to be monitored in 
order to anticipate or detect failures and fix them as quickly 
as possible. The Controls Open-Source Monitoring System 
(COSMOS) project was launched in 2017 to renovate the 
existing in-house solution [2] [3], which was suffering 
from its hyper-centralized model, the multiplicity of the so-
lution, service overlap and scalability issues. 

THE CONTEXT 
In monitoring, the term ‘host’ refers to a device with an 

IP address (responsive to ping) while ‘service’ refers to any 
application, resource or hardware component (network de-
vice, module, sensor, etc.) providing a particular function 
on the host. 

The accelerator control system has just under 7000 hosts 
(Fig. 1), mainly Linux CentOS CERN 7 computers (the use 
of Windows is declining in the domain of accelerator con-
trols) and specific Ethernet devices (BMCs1, PLCs2, etc.). 
The number of Linux computers is constantly increasing, 
by 5 to 8% per year, while disk space has increased by a 
factor of 500 in a decade. 

 
Figure 1: Main types of control system hosts. 

OBJECTIVES AND SCOPE 
Reviewing the existing system and evaluating major 

products in the monitoring field (collectd, Icinga2, Zabbix, 
Prometheus) helped us to define the main objectives of the 
COSMOS project and laid the foundations for the future 
solution. 

Preliminary Study Recommendation 
Recommendations emerging from the preliminary study 

were the following: 
 Align the new monitoring system with CERN IT 

services (e.g. the central “DB on Demand” service) 
and industry standards in order to allow us to focus 
on our core business. 

 Use de-facto standard technologies and open-source 
software as far as possible. 

 Propose a new paradigm where specific aspects of 
the monitoring are delegated to experts who become 
responsible for collecting their metrics, define alerts 
and setup their own dashboards. 

Scope of the COSMOS Monitoring System 
When designing a monitoring system, it is important to 

consider the origin and the nature of data we want to mon-
itor. We can distinguish at least two types of information 
intended for users with different objectives:  

 Functional monitoring to detect infrastructure re-
lated failures, to alert the system administration 
team or equipment experts and to assist in taking 
technical decisions.  

 Business monitoring focused on operational data 
and providing support for controlling the accelera-
tor. 
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Figure 2: Integration and interconnection of the software component.collectd: acquisition of OS Metrics.

Table 1: Selected Open-Source Software 

Product Motivation 
Collectd 

(5.8.1) 
MIT License, easy to install, file-based 
configuration, modular layout, large 
plugin collection, CERN support 

Prometheus 
(1.7.1) 

Apache License 2.0, easy to install/run, 
rich data model, functional query lan-
guage, powerful rule processing, graphing 
and alerting, HTTP API 

Icinga2 
(2.10.4) 

GPLv2, file-based configuration, ~75% 
of needs covered, extensive features, col-
lectd support, scalability, availability, 
multi-tenancy, large user community, sup-
port, complete documentation 

InfluxDB 
(1.6.3) 

MIT License, write and query perfor-
mance, on-disk compression, scalability 

Grafana 
(5.4.2) 

Apache License 2.0, easy to install, file-
based configuration, dashboard flexibil-
ity, data-sources support (Influx, Elastic 
Search), large user community 

Experience shows that it is very difficult to combine both 
aspects and to provide simple and efficient tools that take 
the different needs into account. Therefore, COSMOS is 
exclusively dedicated to the functional monitoring of the 
controls infrastructure. 

We wanted to avoid the pitfall of a Unified Monitoring 
Infrastructure (UMI) solution, which does not fit the size 
and diversity of our infrastructure. As discussed later, it has 
been possible to propose a perfectly customized and com-
pact solution, based on a limited number of targeted open-
source software (OSS) components, see Table 1 for details. 

Finally, with a more modular approach, we wanted to 
share development between teams and thus clarify the re-
sponsibilities of each stakeholder (system administrators, 
application experts, operation, etc.). 

THE SOLUTION 
Overall Architecture 

Figure 2 shows the COSMOS architecture. At its heart, 
one finds an open-source product called Icinga2 [4]. Icinga 
covers most of our needs out of the box and perfectly fits 
the collaborative and distributed model that we need to 
monitor our heterogeneous infrastructure (from the hard-
ware, software and human point of view). 

Icinga2, which started as a fork of Nagios, introduces the 
‘plugin’ concept, a standalone extension to the Icinga2 
core. Each plugin instance (commonly called ‘check’) ex-
ecutes a specific logic and produces a health report of the 
related component (see Table 2 for details). The result of 
the check is made of a functional status report of the com-
ponent and optional additional metrics (“performance 
data”) that are sent to the Icinga2 server. The server then 
generates a notification (by email or SMS) according to the 
user configuration, and sends status and performance data 
to the IDO1 (MySQL) or time series (InfluxDB) database 
as appropriate. 

In parallel, COSMOS uses collectd [5] agents to gather 
system metrics from hosts, related devices (disks, memory, 
etc.) and the network. collectd makes this information 
available over the network to the central server, where data 
is stored into the InfluxDB database as well. 

 
 _________________________________________  
1 Icinga Data Output 
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Table 2: Common Host and Services Checks  

Check Mode Source 
basic connectivity (host 
alive: ping, ssh) 

active system 

boot diagnostic (reboot 
count., Eth. speed, etc. ) 

passive system, REST 

Crate and BMC1 metrics 
(fan speed, power sup., 
temp., batt., bus, led, etc.) 

active IPMI 

Timing network, specific 
devices and sensors 

active SNMP 

Real-time fieldbus and 
sub-network agents 

passive REST (proxy) 

Disk partition usage, 
CPU load, std. and 
EDAC2 memory, etc. 

active collectd-
unixsock 

PLC3 active JMX [6] 
(proxy) 

Process status (up/down) 
and diagnostics (CPU, 
memory, etc.) 

passive systemd, sys-
tem, REST 

Application status and 
functional metrics 

active JMX, CMX, 
NGINX [7] 

Whenever it is not possible to compute the status of a 
service from a single Icinga2 check, or in order to detect 
trends, COSMOS uses Prometheus as an intermediate 
agent. Prometheus [8] then generates the service status us-
ing its functional expression language (see ‘Prometheus’ 
chapter below for details). 

The central IDO database is used by expert tools such as 
IcingaWeb, to establish, in real time, a complete diagnostic 
of each component, to manage notifications and downtime, 
and to provide detailed statistics and event histories. 

Finally, data can be visualized and analyzed by expert 
users thanks to a dedicated Grafana [9] instance. 

An Open-Source Software Based Solution 
In accelerator control, as in other fields, the network 

size, the number and complexity of deployed equipment 
and the rate of change are constantly increasing. It makes 
monitoring a vital part of system administration activities. 
At the same time fortunately, some extremely powerful, 
open source monitoring tools, have appeared on the mar-
ket. By selecting and integrating several of these tools, we 
have built a lightweight and efficient solution that best met 
our objectives (Fig. 3). 

collectd is the piece of software that we use to gather 
operating system metrics on every host covered by COS-
MOS. This tool, dating back to 2005, still receives regular 
commits and is released under the MIT License: this is a 

very stable product that was successfully adopted before-
hand by CERN's IT department. We use both sides of col-
lectd’s client-server model. The client is a daemon running 
on every host within the scope of accelerator controls, 
whether diskless (front-end computers) or disk-based 
(servers) and technical consoles). Every five minutes a pre-
defined set of metrics is collected through the daemon. The 
typical amount of system-related metrics per host is be-
tween 60 and 90. Covered areas are – non-exhaustively – 
CPU usage and statistics, RAM usage, disk status (with 
S.M.A.R.T. attributes when applicable) and partition us-
age, as well as network measurements. Metrics are tailored 
to the hardware that collectd is running on: for instance, we 
automatically detect if extra partitions are present on the 
system, or if SSDs of a particular brand are physically pre-
sent, in order to get relevant information about their depre-
ciation. Once collected locally on a host, metrics are sent 
to an instance of collectd acting as a server and running on 
the COSMOS server. This instance plays three roles: 

 Transferring metrics to Icinga2 that will determine 
whether measurements are within an acceptable 
range. 

 Pushing metrics to the Influx database, which is the 
main source of data for Grafana, COSMOS’s graph-
ical visualization layer. 

 Writing metrics into RRD files (Round-Robin data-
base), one for each metric. RRD files provide a low-
level data visualization alternative to Grafana, 
mostly used as a fallback method by system admin-
istrators. 

 
Figure 3: An OSS solution fitting each kind of metrics. 

 Icinga2: Hosts and Services Checks 
An Icinga2 check is a piece of code running on moni-

tored nodes or directly on the Icinga2 central server. In the 
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latter case, it uses custom or dedicated protocols such IPMI 
or SNMP to gather raw data from which it computes the 
final status of the service, based on pre-configured thresh-
olds. A check can be as simple as a few lines of Bash, C or 
Python. It can be active or passive. An active check is trig-
gered by the central server in polling mode and takes met-
rics from the nodes on a periodic basis. A passive check is 
a standalone agent (usually running on the monitored node 
or proxy), pushing data to the central server asynchro-
nously. With COSMOS, it is used in particular to reach 
hosts deployed on Ethernet subnets like White-Rabbit, 
CERN’s Control timing system. The Icinga2 REST API is 
then used to send the result to the Icinga2 server. In the case 
of systems for which it is critical to fork processes and al-
locate resources at any moment, passive checks are also 
recommended. For the same reason, it is suggested to use 
high-performance languages such as C or C++ for real-
time systems. For instance, acquisition of metrics for low-
level processes is performed with C++ Management Ex-
tension (CMX [10]) agents, as described later in this docu-
ment. 

In addition to custom plugins developed by users, there 
are over 3,000 third-party Nagios plugins [11] we can use 
to easily enhance the monitoring system. 

Prometheus: Application Metrics Acquisition 
In many cases, application monitoring is based on obser-

vation over time, instead of a single indicator such as a 
counter. Basic service checks turn into complex, stateful 
agents. Instead of designing, implementing and maintain-
ing such agents, the idea is to use Prometheus and let it act 
as an agent for Icinga2, using its embedded data storage 
and powerful query language (Fig. 4). 

The Prometheus language allows the definition of any 
kind of rule, from a simple comparison of a single metric, 
to a complex check against an aggregation of metrics over 
time. This provides a lot of flexibility, whilst hiding the im-
plementation details from the upper layer. An Icinga2 ac-
tive check (prom-check) queries alerts and metrics from 
Prometheus in order to expose them as performance data. 
To ease aggregation and classification inside the higher 
layer, a set of standard labels has been defined: hostname, 
application and service. Besides the rules, which are man-
ually defined, the Prometheus configuration is automati-
cally derived from the Icinga2 configuration. 

It is trivial to integrate Prometheus with Java applica-
tions through the standard JMX protocol [6]. However, for 
native applications that are monitored through the C++ 
CMX interface [10], custom development was needed. 
Such native applications run on soft real-time, diskless 
computers called Front-Ends (FECs). As Prometheus per-
forms HTTP GET calls to scrap the raw metrics, it is nec-
essary to run a HTTP server directly on the FEC. Several 
solutions were evaluated: Boost Beast, Apache, Lighttpd 
and NGINX [7]. Due to its stable memory usage, small 
footprint and low CPU usage, NGINX became the web-
server of choice. A native module was developed to read 
CMX metrics from the shared memory and publish them 
through HTTP via a heap buffer [12]. The module is real-

time compliant: everything is done in-memory, without 
disk access. 

 
Figure 4: Overview of the CMX monitoring stack. 

Graphical User Interfaces 
COSMOS presents monitoring data in various fashions. 

Firstly, operators can still use the previous DIAMON con-
sole, refactored to use COSMOS components as data pro-
viders (or backends), without modifying the overall ap-
pearance and behaviour of the GUI. From custom tree 
views, the user can quickly visualize failing systems and 
restart them if necessary. 

Secondly, Grafana (Fig. 5) is the main entry point for 
visualizing infrastructure metrics. As collectd ingests data 
and sends it to the Influx database, Grafana is used to query 
and display results in graphical manner. Teams can create 
their own dashboards, focusing on particular aspects of the 
infrastructure. For instance, displaying a chart of fan 
speeds for specific kinds of hardware or retrieving the 
amount of RAM used by a process over time, in order to 
spot potential memory leaks. 
 

 
Figure 5: Visualization of server metrics in Grafana. 

The final user interface is IcingaWeb (Fig. 6), the front-
end to Icinga2, which is very efficient at providing an over-
view of problems occurring in the infrastructure, as well as 
a detailed history of events. In addition to its powerful 
search tool and its integrated and customizable views, Ic-
ingaWeb offers a complete, multi-user interface to interact 
with the monitoring process (events control, downtime pe-
riod, checks scheduler, etc.). 
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Figure 6: IcingaWeb showing host groups. 

Checks Deployment and Configuration 
COSMOS includes an automatic configuration tool, de-

veloped in Python, to generate Icinga2 configuration files 
on a daily basis, from three different data sources: 

 The controls configuration database (Oracle) de-
scribing each host, service and their dependencies; 

 The list of hosts managed by Ansible and their pre-
defined variables; 

 The user-specific data (alarms setup, check argu-
ments, etc.). 

If we choose to delegate the development and mainte-
nance of checks to the users, it is also essential to provide 
adequate means to store and deploy these pieces of soft-
ware. COSMOS uses GitLab for this purpose and in par-
ticular its CI/CD module to build (when necessary) and de-
ploy checks whenever the user makes changes in his code. 

CONCLUSION AND FUTURE PLANS 
Less than one year (1.25 man-years) has been required 

to build the core part of COSMOS (Icinga2, collectd), cov-
ering 80% of the basic infrastructure monitoring. The sec-
ond phase of the project, which is ongoing, is dedicated to 
the monitoring of processes, application metrics (Prome-
theus) and to the integration of specific diagnostics and 
critical accelerator equipment (cryogenics, magnet protec-
tion, etc.). Today, a single Linux computer (2xCPU 
2.2GHz/10 Cores, 128Gb RAM) is hosting the COSMOS 
services (Icinga2, collectd and Grafana) and easily sup-
ports the load. 

It performs on average 30,000 checks every 5 minutes 
and generates a large number of metrics, as shown in Table 
3. 

System administrators and control experts quickly 
adopted the COSMOS tools for diagnosis and daily 
maintenance work. We must now provide the system with 
a framework dedicated to a wider audience (equipment 
groups, operation) and allow the configuration of custom 
checks (setup, notification, etc.) in a more autonomous 
way. The use of IcingaWeb may also be extended to all us-
ers. To do this we must guarantee that the system can sup-
port a large number of simultaneous connections, that it is 
secure, provides proper backup services and the required 
level of availability. We are considering implementing 

some of the high-availability features of Icinga2 to im-
prove overall reliability (clustering, failover mechanism, 
etc.) 

Table 3: Metric Statistics 

Item Source ~Number 
OS metric types collectd 250 
OS metric cardinality collectd 236,000 
Check types Icinga2 80 
Check cardinality Icinga2 29,600 
Perf. data types Icinga2 2,500 
Perf. data cardinality Icinga2 1,378,000 

The experience gained so far shows that the new collab-
orative model is being well-received by users and works 
perfectly. The project study also demonstrated that no sin-
gle monitoring tool on the market could cover 100% of our 
needs. However, it is relatively easy to build a complete 
system by integrating a small number of open-source soft-
ware tools, providing that the tools are properly selected 
according to their functionality, complementarity and in-
terconnectivity. 
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