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Abstract 

The acquisition of two-dimensional (2D) channeling patterns is gaining increased popularity 
within the ion beam community. However, with the exception of emission channeling 
experiments for the lattice location of radioactive impurities, quantitative analysis of such 
patterns is rarely found. We present a general description of the statistical data analysis 
methodology for 2D channeling patterns, which consists of comparing experimental data by 
means of a fit procedure to theoretical yield distributions. The developed software allows for 
chi-square or maximum likelihood-based fits, optimizing the orientation of the theoretical vs 
the experimental pattern, as well as the best choice of random level, and providing fractions 
for the contributions from several theoretical patterns related to different lattice sites. 
Optionally also the angular resolution can be used as a fit parameter. Use of the software is 
illustrated by examples of electron emission channeling from 27Mg in GaN, as well as 4He 
RBS channeling from Ge. 

Keywords: Two-dimensional channeling pattern, blocking pattern, image scan, position-
sensitive detector, fitting software, RBS/C, emission channeling 

 

1. Motivation: the use of two-dimensional patterns in channeling measurements 

The channeling effect of highly energetic charged particles in single crystals is a well-
established phenomenon that finds it applications in a variety of ion beam techniques, e.g. for 
characterizing the quality of single crystals, assessment of ion implantation damage and its 
annealing, epitaxial relationships of thin films and substrates, or for lattice location studies of 
impurities [1-3]. In one way or another, channeling experiments always involve the 
measurement of particle yields as a function of angle towards major crystallographic 
directions, either as a function of the angle of an incoming beam, or as a function of particle 
exit angle. In most cases, particle yields are recorded in the form of so-called angular scans, 
i.e. one-dimensional (1D) functions of polar angle from major crystallographic directions at a 
fixed azimuth, or of azimuthal angle while keeping the polar angle fixed. However, there are 



Postprint from Nuclear Inst. and Methods in Physics Research B 462 (2020) 102–113 
 

2 
 

increasingly more reports that supply complete two-dimensional (2D) data arrays of the 
quantity, so-called channeling or blocking patterns, which provide considerably more detailed 
information than simple 1D angular scans. The methods to obtain 2D channeling patterns 
vary depending on whether channeling effects occur for an incident particle beam or for 
outgoing particles. For instance, in Rutherford Backscattering Spectrometry/Channeling 
(RBS/C) [1-2] experiments a beam of protons or helium ions, which impacts on a single 
crystal, is used as the source of channeled particles. In most RBS/C applications, the ion 
beam is directed towards the single crystal under small angles to or aligned with major 
crystallographic directions, so that the channeling effect occurs on the inward path of the 
particles. Particles which were backscattered in close collisions with lattice or impurity atoms 
are then detected by conventional non position-sensitive detectors, either in point-like 
geometry or with a large solid angle, depending on whether kinematic accuracy (and related 
depth resolution) or detection efficiency need to be optimized. For 2D channeling patterns to 
be obtained by using this experimental approach, the ingoing beam angle is generally varied 
in equidistant x- and y-steps ( and  angles) around the channeling direction, a procedure 
which unfortunately has been given various names in the literature, e.g. “image scan” [4-6], 
“angular resolved channeling image” [7], “three-dimensional visualization of ion 
channeling ” [8], “two-dimensional channeling pattern” [9], “angular scan image” [10], 
“angular yield maps” [11], “angular dependent ion channeling” [12], “angle-resolved scan” 
[13], “full scan maps” [14], “RBS-C maps” [15], “channeling crystal image” [16], 
“channeling image” [17], “angular resolved RBS data” [18], “2D ion channeling image” [19], 
“channeling/blocking pattern” [20], and “angular scan mapping” [21]. While such type of 2D 
scans are used by numerous groups, e.g. in order to precisely orient samples along channeling 
directions or to powerfully visualize the channeling effect, detailed quantitative data analyses 
based on the acquired patterns are only rarely found in the literature, e.g. in Refs. [5, 12, 14, 
18]. Despite the fact that 2D scans contain a wealth of information and take quite some effort 
to record, one of the reasons that their detailed analysis is not more widespread may be that 
suitable computer programs which allow quantitative analysis of 2D channeling data are not 
commonly available. 

In a different approach, the ion beam is sent into the crystal in a non-channeling, “random” 
direction, and the channeling and blocking effects of the emerging particles on their way out 
of the crystal are detected. In this case, while the ingoing angle is kept fixed, the 2D patterns 
of outgoing particles can be conveniently recorded with the help of position-sensitive 
detectors (PSDs). While this approach is also not common, applications have been reported in 
the literature using RBS/C [22-25], Medium Energy Ion Scattering (MEIS) [26-30] or Elastic 
Recoil Detection Analysis (ERDA) [31-32]. 

An example outside the field of RBS/C but where routinely 2D channeling patterns from 
PSDs are used, and which motivated the work presented here, are emission channeling (EC) 
lattice location studies. EC uses implanted radioactive isotopes and the channeling effects are 
measured from the charged particles emitted during nuclear decay [33-37]. Most commonly 
 particles or conversion electrons (CEs) are used due to the wide choice of suited isotopes 
but applying  [35, 38] or  emitters [33] is also possible. In EC experiments 2D channeling 
patterns of outgoing particles are recorded with the use of various types of PSDs [36, 39-41]. 
The obtained information on impurity lattice sites and possible site changes, e.g. with sample 
annealing temperature, is of interest for the understanding of electronic, magnetic and optical 
properties of materials that depend on the lattice site of dopants. The key advantages of EC in 
comparison to RBS/C lattice location techniques are roughly four orders of magnitude higher 
efficiency and the ability to study also elements lighter than the host atoms; the major 
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limitation is that a production facility for radioactive ion beams is needed, while RBS/C 
experiments can be performed at more commonly available stable ion beam facilities.  

While the theoretical approaches for describing the channeling of  or  particles are quite 
different, the final step for the analysis of experimental channeling data, both from RBS/C 
and EC, is similar and consists in fitting the experimental 1D scans or 2D patterns by a linear 
combination of theoretical angular yield distributions calculated for impurities on different 
lattice sites, under assumptions that match the experimental conditions as closely as possible. 
For the quantitative analysis of 2D emission channeling patterns, chi-square fit routines 
called FDD (short for “Fit in 2 dimensions”) have been briefly reported first in 1996 [38], 
followed by further remarks in Refs. [36, 39-40]; they were, however, never documented in 
the literature in detail. With the recent exploration of Timepix detectors [42] (a highly 
pixelized PSD developed by the Medipix collaboration [43]) for emission channeling 
experiments, it was necessary to review the fitting methods used in order to fully take 
advantage of the spatial resolution of the detector and overcome the problem of having a 
reduced number of counts per pixel in the chi-square fit. For that purpose, new software 
called PyFDD (short for “Python FDD”) has been developed. As an improvement over the 
predecessor FDD, it is optimized for measurements with a low number of counts per pixel, 
which is a common situation when using modern PSDs with a high pixel density. At the same 
time PyFDD is also adequate for the analysis of measurements with PSDs consisting of large 
pixels, where the pixel yield needs to be modelled as the integral of the simulation over the 
pixel area. 

This paper is intended as a general description of the statistical data analysis methodology for 
lattice location experiments using two-dimensional channeling patterns. We will describe 
both the approach chosen in our older software FDD, as well as the one implemented in the 
new PyFDD. Although the methods and software presented were developed for the emission 
channeling technique, they can, with due care, also be applied e.g. to the analysis of 2D 
RBS/C patterns. Providing the newly developed PyFDD as an open source software [44] 
makes it directly available to potential other users. 

2. Emission channeling methodology 

In an electron emission channeling experiment, a single crystal is implanted with a 
radioactive isotope that emits beta particles or conversion electrons. Depending on the lattice 
site of the emitting atom, the emitted particles experience channeling or blocking effects that 
are prominently visible along the major crystallographic axes and planes. The effects are 
measured as the anisotropy of the electron emission yield along different angular directions 
using a PSD (Fig. 1). Various key aspects of the technique have been described in detail 
previously: ISOLDE/CERN as the radioactive beam facility [45-46], the implantation and 
measurement chamber [47], the position sensitive electron detectors [36, 40-41], and the 
“manybeam” simulation software for electron channeling [33, 36]. The fitting software 
makes the connection between the data from the detector and the results of many-beam 
simulations: the angular anisotropy is measured as a 2D histogram of counts, where each bin 
represents the counts in a pixel which covers an area of specific angular range with respect to 
the crystal axis; for quantitative analysis, the 2D histograms, also called patterns, are then 
compared to simulated data using a fitting routine. 

The major types of PSDs that have been used so far in ion beam and emission channeling 
experiments, are Si resistive charge division detectors [22, 24, 34-35], ionization chambers 
[31-32], Si pad detectors [39-40], multi-channel plates [23, 26-30], as well as Timepix pixel 
detectors [25]. Each detector system has specific characteristics that influence the observed 
channeling patterns and need to be accounted for in the data analysis procedures. 
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Characteristics to keep in mind are the energy resolution, which is especially important for 
experiments that require the selection of an energy region of interest (ROI), e.g. for ion 
channeling or conversion electron emission channeling; the energy threshold of particle 
detection that is commonly related to electronic noise; and the detection efficiency, which 
should be uniform over the whole area of the detector. Since X-rays or gammas form an 
undesired source of background, low detection efficiency for photons is highly desirable. The 
maximum achievable count rate is also an important aspect as high throughput allows 
reducing experimental time while keeping detector dead time (and corresponding additional 
radiation damage to the sample) and pile-up artefacts to a minimum. However, the most 
crucial feature of a PSD is its position resolution, as will become clear by the following 
considerations. 

One of the main characteristics of any channeling experiment is the angular resolution, which 
depends on the measurement geometry. When using a PSD the emission angle assigned to a 
detected particle is derived from the angle between the crystallographic direction and the 
straight line that connects the beam spot with the position where the particle was registered in 
the detector. The angular resolution is then intrinsically limited by the uncertainty in the 
particle origin related to the beam spot dimension (often ~1 mm diameter) and the uncertainty 
in the hit location on the detector due to its limited position resolution. If these two 
contributions to the angular resolution are considered as Gaussian distributions, the total 

 
 
Fig. 1. Schematic illustration of the emission channeling method. The channeling effects of 
charged particles emitted from radioactive probe atoms inside a single crystal are measured 
using a position-sensitive detector. In this image the brighter yellow regions of the detector 
represent a higher electron emission yield along crystallographic axes and planes. The shape 
and intensities that describe the pattern reflect the crystallographic symmetry of the crystal as 
well as the lattice sites occupied by the emitter atoms and the respective site fractions. 
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effect on the pattern can be simplified as the convolution with a single Gaussian of standard 
deviation total (in units °) 

𝜎total ≈
ටఙdetector

మ ାఙbeamspot
మ

ௗ
×

ଷ଺଴°

ଶగ
        (1) 

where detector and beamspot (in units of length) are the standard deviations related to the 
position resolution of the detector and the beam spot distribution, and d is the distance 
between sample and detector. The values for each contribution are usually known only 
approximately: the PSD position resolution depends on particle species and energy; the 
distribution of the beam spot on the sample depends on the beam profile after collimation and 
the angle of implantation. Moreover the projection of the beam spot on the sample changes 
with angle of measurement. Additional uncertainty can be caused by imperfections of the 
crystallographic structure of the sample itself, e.g. if crystallographic directions show angular 
spread due to mosaicity [48], i.e. the crystal has domains that are slightly tilted or rotated 
from each other, the measured channeling effects may consist of a superposition from various 
domains. 

Taking into account the position resolution of a specific detector, different choices can be 
made on how to bin the angular yield data into a histogram during data taking and/or 
analysis. For example, while the position signal from a resistive charge division detector is a 
continuous variable, after digitalization it is often sorted into 6464 or 128128 bins since 
spatial resolution is usually around several per cent [22, 24, 35]. This provides the advantage 
of having a high number of counts per bin without significantly losing position resolution. 
For the Si pad detectors so far used in electron emission channeling [39-40], which have 
2222 pixels of size 1.31.3 mm2, the resolution limit is given by the large pad size, so each 
detector pad corresponds to a histogram bin. With the introduction of the Timepix PSD [42] 
and its good position resolution due to the 5122 pixels of size 5555 m2, the data 
binning had to be re-assessed, taking into account a trade-off between the number of counts 
per bin necessary for a chi-square fit, and the position resolution. High angular resolution 
should be beneficial for cases of lattice location of radioactive probes with high-energy beta 
spectra and for increased sensitivity on changes in crystal quality during the course of the 
experiment. Particular benefit is expected for short-lived isotopes with mean beta energies 
<E> above 1.5 MeV, e.g 11Be (t1/2=13.8 s, <E>=4.65 MeV), 19O (26 s, 1.74 MeV), or 6He 
(807 ms, 1.57 MeV). In this paper, examples using the isotope 27Mg (9.46 min, 0.70 MeV) 
will be addressed. 

3. Channeling simulations 

In order to quantitatively analyze 2D channeling patterns, these need to be compared to 
theoretical yield distributions by means of a fit procedure. Since the required channeling 
simulations are rather time-consuming (several months of computation may be required), 
performing them in advance prior to data fitting is indispensable. The details on the 
formalisms for channeling simulations can be found in Ref. [34, 36] for electron EC, in Ref. 
[49] for RBS/C, and in Ref. [35] for  EC. Aspects such as the choice of interaction 
potentials, the crystallographic structure, the displacement of host atoms due to thermal 
vibration, and appropriate models for dechanneling need to be chosen carefully. Simulations 
usually start from beams of particles entering into the crystal from the outside under a small 
angle or aligned with a channeling direction. While this corresponds to the real experimental 
situation for RBS/C 2D image scans, it is not the case when measuring the channeling of 
outgoing particles by means of PSDs. However, due to the Lindhard reciprocity theorem [50], 
which is based on the time reversal of trajectories, the channeling of outgoing particles is 
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equivalent to the computational approach with an ingoing beam of particles (as long as 
energy losses are small) [33, 35-36]; however, for programming purposes the latter is much 
simpler to realize. Depending on the nature of the projectiles, different theoretical approaches 
are used to describe the movement of charged particles inside a crystal. Ion channeling is 
modeled by Monte Carlo simulations based on trajectories derived from classical mechanics 
see e.g. [49], while electron channeling is treated by the quantum-mechanical “many beam” 
model [33, 36], which involves finding the solution to a Schrödinger equation in a periodic 
potential by means of Bloch waves. Both approaches allow calculating the flux density of 
channeled particles at given lattice sites as a function of depth, which is the most time 
consuming part of the simulations and needs to be performed up to the maximum expected 
depth of probe atoms. Results are then convoluted with the probe atom depth profile, which 
in case of implanted probes is estimated from SRIM simulations [51]. In case of  EC, due 
to the continuous nature of  spectra, the simulations are performed for a wide range of 
electron energies and the results weighted according to the energy distribution of the  
spectra. Simulations typically cover an angular range of 3° around the channeling axis in a 
mesh of 0.050° or 0.025° bins, so that each lattice site is characterized by a 2D angular yield 
pattern of 121121 or 241241 bins. Nowadays it is common practice to simulate patterns for 
all substitutional as well as the major interstitial sites in the crystal, plus vector displacements 
in between them in steps of ~0.05 Å. In a cubic crystal, this corresponds to displacements 
from the substitutional sites along <111>, <100> or <110> directions. Presently, several 
hundred patterns corresponding to simulations for all desired lattice sites are packed in a 
library file for subsequent use by the fitting software. 

The patterns in the library are given in terms of “normalized yield” , which is a key concept 
for how the channeling effect is treated theoretically. Normalized yields are defined relative 
to the yields that would be measured from a sample devoid of any channeling effects, which 
is straightforward to implement in the theoretical approaches while experimentally this would 
correspond to measuring the yield from an amorphous sample under exactly the same 
conditions as the single crystal, which is never feasible. As an example, let us assume a 
situation where we have three fractions f1, f2, f3 of emitter atoms on lattice sites 1, 2, 3. If 
1(,), 2(,), 3(,) are the theoretically calculated normalized yields for these sites 
under angles , from the channeling axis, the expected number of counts N(,) measured is 
then given by the basic relation 

ே(ఏ,ఝ)

ேR
− 1 = 𝑓ଵ[𝜒ଵ(𝜃, 𝜑) − 1] + 𝑓ଶ[𝜒ଶ(𝜃, 𝜑) − 1] + 𝑓ଷ[𝜒ଷ(𝜃, 𝜑) − 1]   (2) 

where NR is the number of events that would be measured in case of an amorphous sample 
and in channeling terminology is called the “random level”. Note that due to the way the 
theoretical yields are defined, there is no way to analyze experimental channeling data 
without making a choice, either explicit or implicit, for NR. When analyzing 2D channeling 
patterns, it is usually chosen to obtain the normalization from the fit procedure which 
compares experimental and theoretical patterns, as will be outlined below. 

4. Data fitting software and methodologies 

This section will go through the data analysis processes of building statistical estimators for 
lattice site occupancy fractions in the FDD software and its new python alternative PyFDD. 
Most of the methods described are applications of well-documented fit concepts, cf for 
instance Ref. [52], and it will be specifically mentioned when non-standard approaches were 
implemented. 
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The initial fit software, called FDD was programmed in FORTRAN in the 1990s by Wahl 
[36, 38-40] and ran under DOS but used already a graphical user interface. Later the same 
methodology and mathematical routines were transferred to Java by De Vries [53]; a major 
upgrade by Amorim [54] added functionalities that allow the execution of macros and 
conveniently perform fits for a whole series of site combinations. Both the older FDD 
versions and PyFDD have a similar overall approach to data fitting, illustrated in Fig. 2, 
although the specifics of the methods are different. In the analysis it is necessary that the 
fitting methods provide estimates for the model parameters, and if possible also confidence 
intervals for these parameters and feedback on goodness of fit. 

 The first step when building a fit function from the simulated patterns is to decide which 
sites to include in the fit. Although the software can handle more sites, in practice it is found 
that usually only the two most frequently occupied sites can be identified, while statistically 
meaningful three-site analyses were possible only in some special cases. Once sites are 
chosen, their corresponding angular yield patterns 1, 2, 3… are linearly combined, 
together with a flat pattern (a matrix of ones) representing so-called “random” sites, an 
approach that becomes obvious once eq. (1) is rearranged as follows: 

𝑁(𝜃, 𝜑) = 𝑁R × [𝑓ଵ𝜒ଵ(𝜃, 𝜑) + 𝑓ଶ𝜒ଶ(𝜃, 𝜑) + 𝑓ଷ𝜒ଷ(𝜃, 𝜑) + 1 − 𝑓ଵ − 𝑓ଶ − 𝑓ଷ]  (3) 
The “random fraction” fR=1f1f2f3 corresponds to the fraction of emitter atoms not causing 
any anisotropy in the patterns because they are located in amorphous regions of the sample or 
on low-symmetry lattice sites. However, any flat background in the pattern from other 
sources, e.g. from backscattered electrons or gamma background in the detector, will also be 
forced into the random fraction which then has to be appropriately corrected. Note that the fi 
are not equivalent to estimating the fraction of measured particles that originated from each 
site. For example, assuming identical occupancy fractions, a pattern that shows a strong 
channeling peak will contribute with more particles to the measured pattern than one showing 
a blocking dip.  

4.1. FDD fitting method 

FDD is the software traditionally used for fitting EC patterns and will be shortly described 
here, also as an introduction to PyFDD. FDD estimates the model parameters by using a 
Levenberg-Marquardt routine [55] to iteratively minimize a chi-square function. Since the 
concept of FDD dates back to the early 1990s, when computer power was rather limited, a 
number of features were implemented in a way that traded statistical accuracy for simplicity, 
still resulting in a code that is both fast and robust in estimating model parameters from 
channeling patterns. 

The first step in FDD is to divide the integer number of observed counts Ni measured in each 
bin i by a first guess NRguess for the number of counts NR that would be measured without any 
channeling effects, i.e. in a totally random direction of the sample. NRguess is estimated from 
the measured data by the user by averaging the number of counts over a range of pixels that 
do not contain major channeling effects. At this point each bin corresponds to a detector 
pixel. The data bin values become thus real numbers 𝜒௜

experiment, representing relative yields 
for each angular position 

𝜒௜
experiment

=
ே೔

ேRguess
          (4) 

The standard deviation i for the yield in each data bin is calculated as the square root of the 
observed value Ni scaled by NRguess 
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𝜎௜ =
ඥே೔

ேRguess
           (5) 

Calculating the standard deviation from the square root of detected counts means that areas 
with a high count rate, as from axial or planar channeling effects, are statistically somewhat 
more relevant for the fit results than e.g. blocking dips, and also that pixels with zero counts 
have to be excluded from the fit. Using the variances 𝜎௜

ଶ of experimental data results in the 
Neyman chi-square method which has an increased bias over the Pearson least square where 
the yield of the theoretical model is used as expected variance. The fact is that both Pearson’s 
and Neyman’s chi-square approaches are biased, as the first will over-estimate the volume 
under the curve and the latter will underestimate it [56-57]. However, the difference between 
both methods is only significant in cases where the number of counts per pixel is low, as is 
the case when using high pixel density detectors like Timepix. 

Since for the pad detectors typically used in EC, the detector pixel size of 1.3 mm 
corresponds to an angular range of ~0.25°, which is much larger than the simulation steps of 
0.025°-0.05°, the fit procedure needs to average over the range of simulated yields. In order 
to approximate this by a fast computational procedure, it is usually chosen during FDD fitting 
of pad detector data to divide each pad in a finer mesh of 66 bins with equal 𝜒௜

exp and i 
values. While this guarantees a fast averaging process, it has the disadvantage that the 
significance of the resulting chi-square as a statistical indicator for goodness of fit is 
distorted. We will come back to this point later. 

In order to account for the angular resolution resulting from the size of the beam spot, FDD 
uses simulation libraries with patterns that have been smoothed by convoluting with 
Gaussians of standard deviation conv; usually values for conv are chosen as integer multiples 
(0, 1, 2, 3…) of the simulation bin size of 0.025° or 0.05°. As the smoothing is done prior to 
fitting, only the available discrete values for conv may be applied and a fine variation of conv 
during fitting is not possible. 

A linear combination of the selected smoothed patterns is used to create the model function 
that is to be optimized by the fit routine, where the expected pattern 𝜒௜

expected is defined as 

𝜒௜
expected

= 𝑆 × [𝑓ଵ𝜒ଵ௜(𝜎conv) + 𝑓ଶ𝜒ଶ௜(𝜎conv) + 𝑓ଷ𝜒ଷ௜(𝜎conv) + (1 − 𝑓ଵ − 𝑓ଶ − 𝑓ଷ)] (6) 

S=NR/NRguess is a scaling parameter that fine tunes the initial normalization and thus accounts 
for the fact that the guessed number of events per pixel in a random part of the pattern NRguess 
deviates (usually by only a few %) from the number NR=SNRguess that the fit finds best. Note 
that chi-square fitting of histograms with a common scaling factor as fit parameter is known 
to introduce a bias on the results, meaning that the sum of the fit residues does not average to 
zero [56-57]. While this problem is negligible when the number of counts is high (above a 
few hundred per bin), for fitting patterns with low statistics in FDD it can only be 
circumvented by keeping S at a carefully chosen fixed value. 

For the next step the expected pattern is rotated by an azimuthal angle 0 and translated by 
(x0,y0) as indicated in Fig. 2 in order to match the measurement orientation. As this is done in 
a similar way in PyFDD the description can be found in the next section. The fitting process 
then minimizes a reduced chi-square function defined as 

𝜒red
ଶ =

ଵ

ேdof
∑

ቀఞ೔
experiment

ିఞ೔
expected

ቁ
మ

ఙ೔
మ

ேbins
௜ୀଵ         (7) 

where Nbins is the total number of bins or pixels used in the fit, and the number of degrees of 
freedom Ndof is equal to Nbins minus the number of fit parameters. Dividing the chi-square by 
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Ndof is commonly thought as a rule of thumb method for estimating the goodness of fit with 
the value approaching unity for good fits. However, when fitting pad detector data with the 
procedure described above, due to the fact that Nbins has been multiplied by 36 when dividing 
the large pixels into smaller bins, reduced chi-square values are even for high-quality fits 
several times larger than one. While the fit results are still meaningful, the ability to use the 
resulting chi-square for further statistical inference is lost. 

4.2. PyFDD fitting methods 

This section explains how the new software PyFDD builds the model function, calculates the 
cost function and provides tools for error estimation. PyFDD uses standard methods building 
the model function as a probability density function (p.d.f.) and using unmodified formulas 
for the cost functions. The software provides two choices for the cost function, chi-square and 
maximum likelihood; both use the p.d.f. defined in the same way. The minimization 
algorithm for both cost functions is the L-BFGS-B from the Scipy python library [58] which 
uses a limited memory (L) and bounded (B) version of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. This algorithm allows setting limits to parameters that are bound 
by physical constraints, thus preventing, e.g. that lattice site occupancy fractions become 
negative or excessively large. 

4.2.1. Building the probability density function 

For fitting channeling patterns the model is represented by a 2D p.d.f. that depends on various 
parameters, including those that are actively optimized by the fit. By definition the p.d.f. is 
normalized to a sum of one, thus representing for each given (x,y) bin position the probability 
that a particle is measured at that location when the detector registers one event. Its 
parameters are, as defined by the physical model, the lattice sites, the occupancy fractions fi, 

 
 
Fig. 2. Schematic illustration of the fit approach used to most accurately describe the patterns 
seen by the measurement. First, a number of lattice sites are chosen, usually not more than 
two, as is shown in this figure. A linear combination of their simulated angular yield patterns 
is then formed using site fractions f1 and f2, plus the contribution 1f1f2 from a flat pattern 
(not shown). The resulting combined pattern is rotated by an angle 0 and translated to (x0,y0) 
in order to match the orientation of the crystallographic axis with respect to the detector. The 
fractions f1 and f2 as well as the geometrical adjustments through rotation and translation are 
iteratively optimized by the fit routine. 
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the Gaussian convolution sigma conv that takes into account the effects expressed in eq. (1), 
and experimental conditions such as the (x0,y0) position of the channeling axis center and the 
azimuthal rotation angle 0. To simplify the following formulae, we will use the variables P 
to symbolize theoretical patterns, and E as expected and O as observed experimental results.  

First, the calculated patterns for all chosen sites are added with the corresponding fractions in 
order to obtain Pideal, the theoretical pattern combining several sites with ideal angular 
resolution 

𝑃ideal(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) = 𝑓ଵ𝑃ଵ + 𝑓ଶ𝑃ଶ + 𝑓ଷ𝑃ଷ + (1 − 𝑓ଵ − 𝑓ଶ − 𝑓ଷ) × 𝑃୰ୟ୬ୢ  (8) 

where Prand is a matrix of ones. The next step is to apply a Gaussian convolution 

𝑃(𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝜎conv) = GaussConv[𝑃ideal(𝑓ଵ, 𝑓ଶ, 𝑓ଷ), 𝜎conv]     (9) 

The strategy of finding the best conv may be either to fix it based on a geometrical estimate 
or to consider it as a parameter to be optimized during the fit. The pattern is then azimuthally 
rotated by an angle 0 and translated with variables (x0,y0) to match the orientation of the 
experiment. The next step is to interpolate the simulation values at the coordinates of the 
detector pixels. For detectors that have large pixels, it is chosen to interpolate a grid of points 
equally spaced inside each pixel (66 for pad detectors) and average the results. 

Finally the p.d.f. is built by normalizing the resulting pattern P in order to yield an integral 
equal to one 

𝑝. 𝑑. 𝑓. (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑥଴, 𝑦଴, 𝜑଴, 𝜎conv) =
௉(௙భ,௙మ,௙య,௫బ,௬బ,ఝబ,ఙconv)

∑ ௉೔೔
     (10) 

where ∑ 𝑃௜௜  is the sum over all bins used in the fit, excluding e.g. masked pixels that are 
known to have a bad response. 

4.2.2. Chi-square fit 

PyFDD follows the principle of not modifying at all the experimental data to be fitted. Thus, 
instead of scaling the observation to the model, a p.d.f. is built which is then scaled by 
multiplying it with the sum of all events Ncts included in the experimental pattern 

𝐸(𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑥଴, 𝑦଴, 𝜑଴, 𝜎conv, 𝑁cts) = 𝑁cts × 𝑝. 𝑑. 𝑓. (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑥଴, 𝑦଴, 𝜑଴, 𝜎conv) (11) 

Comparing eq. (11) to eq. (3) one sees that in this case the relation 

𝑁R =
ேcts

∑ ௉೔೔
          (12) 

holds, i.e. the random level NR is implicitly defined from the particular site distribution and 
the related theoretical patterns used in the fit. Note that since in typical channeling patterns an 
increase in yield within a peak is compensated by a decrease in nearby valleys, the quantity 
∑ 𝑃௜

ேbins
௜ୀଵ  is therefore usually quite close to Nbins and approximately 𝑁R ≈ 𝑁cts 𝑁bins⁄ . 

Since the fit function has been scaled to the number of events, it is directly usable for 
calculating the variances i to be used in the Pearson chi-square as 

𝜎௜
ଶ = 𝐸௜          (13) 

The Pearson chi-square is then calculated as 

𝜒ଶ = ∑
(ை೔ିா೔)మ

ா೔

ேbins
௜ୀଵ          (14) 

Note that this procedure decouples the variance used in the fits from the number of measured 
counts in a pixel, i.e. it does not a priori treat pixels that have measured a low number or zero 
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counts as being statistically less relevant. Also, fitting without a scaling factor S reduces 
biasing of the fit, especially when the overall number of events is low. Both aspects hence 
make this approach more appropriate to handle patterns with a low number of counts per bin.  

 

4.2.3. Fit with maximum likelihood 

Chi-square has been the default method for the fit of channeling patterns. Its easy 
implementation and quick feedback over goodness of fit have made it a popular tool. 
However, as was mentioned already it is significantly biased when the number of counts per 
bin is low and especially when many bins contain zero events, which is not uncommon when 
performing emission channeling experiments with high density pixel detectors, such as the 
Timepix. Since the Timepix pixel size of 55 m is small compared to the beam spot size of 
~1 mm, it is acceptable to use bins that are formed by the sum of several neighbouring pixels. 
However, while rebinning increases the number of counts per bin, thus allowing the use of 
the chi-square method, it progressively worsens the angular resolution. If chi-square is still 
not feasible after rebinning, the solution is to use the maximum likelihood method since it is 
unbiased. The maximum likelihood method finds the parameter model values for the p.d.f. 
that maximizes the probability of having sampled a distribution equal to the acquired data. 
Considering that the probability of an event occurring in bin i is given by the p.d.f. value at 
the bin location, p.d.f.(f1,f2,f3,x0,y0,,conv)i, the total probability for the data set, called the 
likelihood, is given by 

𝐿 = ∏ [𝑝. 𝑑. 𝑓. (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑥଴, 𝑦଴, 𝜑଴, 𝜎conv)௜]
ை೔

ேbins
௜ୀଵ      (15) 

where Oi is the number of counts measured in bin i. In order to simplify the computational 
optimization, instead of maximizing the likelihood function the negative of its logarithm is 
minimized. The used cost function is therefore the negative log likelihood function LL, 
calculated as 

−𝐿𝐿 = −log(𝐿) = − ∑ 𝑂௜log[𝑝. 𝑑. 𝑓. (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑥଴, 𝑦଴, 𝜑଴, 𝜎conv)௜]
ேbins
௜ୀଵ   (16) 

The random level NR in the experimental pattern is during maximum likelihood fitting also 
implicitly defined by eq. (12). As mentioned already, an advantage of parameter estimation 
using maximum likelihood is its robustness when bins have zero counts due to low statistics. 
While the terms relative to these bins in eq. (16) will be zero, the theoretical value Pi still 
contributes to the normalization and hence influences the random level through eq. (12). The 
disadvantage of the method is that the determination of the goodness of fit is not as direct as 
with the chi-square. For this reason chi-square is still a wise choice when counts per bin are 
high, typically above 50. 

4.3. Background correction in electron emission channeling 

Since electrons moving in matter are subject to pronounced scattering, it is impossible to 
measure electron emission channeling effects free from background of scattered electrons, in 
particular free from electrons that are backscattered from inside the sample or from the walls 
of the vacuum chamber. In addition, there is always a background from gammas emitted by 
the sample or from natural sources. All types of background usually contribute with a rather 
homogeneous count rate to the measured patterns, and will thus be contained in the random 
fraction fR during a fit. The non-random fractions fi therefore need to be multiplied by a 
correction factor, which is equivalent to subtracting a flat baseline from the measured 
patterns. 
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The contribution of backscattered electrons is usually estimated by performing GEANT4 [59] 
Monte Carlo simulations of electron trajectories that take into account the main geometrical 
features and elemental composition of the sample, the sample holder, and the vacuum 
chamber, as well as the energy distribution of emitted  particles or conversion electrons. 
With De and Se denoting the number of direct and scattered electrons in the GEANT4 
simulations, the background correction factor Fe for electron backscattering is obtained as 

𝐹e =
஽eାௌe

஽e
          (17) 

The background caused by gamma radiation emitted by the radioactive sample, as well as 
from natural radioactive sources and cosmic radiation, is usually experimentally estimated by 
closing a shutter in front of the detector, which stops all electrons from the sample while 
allowing through most of the  particles. With Ctotal and C denoting count rates measured 
with shutter open and closed, the  background correction factor F amounts to 

𝐹γ =
஼total

஼totalି஼γ
          (18) 

The overall corrected site fractions fi,corrected are then given by 

𝑓௜, corrected = 𝐹γ × 𝐹e × 𝑓௜        (19) 

The absolute error in performing the background corrections as outlined above is estimated at 
10%. 

5. Statistical errors and systematic effects 

The statistical errors for the fit parameters are obtained from the Hessian matrix H of the 
second partial derivatives of the cost function. In PyFDD, H is not explicitly calculated 
during the cost function minimization routine, but by a separate routine after parameter 
optimization. The covariance matrix C is then calculated from the Hessian as 

𝐶 = 2𝑞𝐻ିଵ          (20) 

where q is a constant that is q=1 for chi-square and q=1/2 for maximum likelihood fitting 
[60]. The symmetric errors xi are obtained from the diagonal of the covariance matrix as 

∆𝑥௜ = ඥ𝐶௜௜          (21) 

It must be pointed out that this procedure only allows quantifying the statistical errors of the 
fit parameters under the assumption that the model used is correct, which in particular means 
that the theoretical patterns used in the fit procedure correspond to actual emission patterns 
from the lattice sites that the probes are occupying. This, however, cannot be guaranteed. On 
the one hand, the assumptions underlying the calculation of the theoretical patterns may not 
be accurate. A known problem here is the effective depth distribution of probe atoms, which 
influences the intensity of channeling effects since electrons that are emitted from deeper 
inside the sample suffer more severe dechanneling. While dechanneling is implemented in 
the manybeam simulations, the procedure is approximate since it is based on a quantum-
mechanical first-order perturbation theory. In addition, the assumed depth profile of probe 
atoms, which is usually taken from SRIM simulations [51] may be inaccurate, e.g. due to the 
fact that implanted probe atom depth profiles have channeling tails in the single crystal 
sample or are widened by diffusion during sample annealing. Dechanneling and insufficient 
knowledge of the probe atom depth profile are among the major sources of uncertainty which 
limit the quantitative analysis of electron channeling patterns. Another possible source of 
error are the root mean square (rms) displacements of the crystal host atoms which are an 
input to the manybeam simulations and influence both the crystal potential and the 
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dechanneling. While rms displacements determined by X-ray or neutron diffraction at room 
temperature can be found for many materials in the literature, extrapolations to other 
temperatures usually involve approximations by means of a Debye model. Finally, the site 
combinations used in the fit may not correspond exactly to the sites that the probe atoms are 
occupying in the sample, meaning the used site model is not accurate or incomplete. As a 
rule, in EC experiments (and also in RBS/C) usually the statistical uncertainty in the fit 
parameters resulting from the fit is small compared to systematic effects. The best way to 
deal with this situation is to perform measurements for different crystallographic directions of 
the sample, in cubic samples commonly <111>, <100>, <110> and <211> directions, analyze 
them separately and use the spread of the fitted site fractions and site locations in order to 
estimate systematic errors. 

6. Software 

PyFDD is an open source python library [44] and it is meant to be used in scripts. The 
structure of the program is illustrated by the dependency chart in Fig. 3 and described in more 
detail in the following. 

The DataPattern class holds the measured data, orientation, mask for dead pixels and can 
perform some simple operations such as rotation, mirroring and cropping, it can also be saved 
in a Java Script Object Notation (JSON) file. The simulated patterns are handled by the 
PatternCreator class that uses the Lib2dl class to read the libraries and also produces the p.d.f. 
given the parameters (f1,f2,f3,x0,y0,,conv) for the required data bin locations. PatternCreator 

 
 
Fig. 3. Dependency chart of PyFDD modules and their description. In routine use the 
FitManager fits a range of lattice sites and exports the results in a table. While the other 
modules are called by FitManager they can also be used independently for specific cases. 
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can also produce Monte Carlo generated patterns for testing. The Fit class handles the 
calculation and optimization of the cost function as well as statistical error estimation. The 
FitManager class calls a fit object for a given range of lattice sites and saves the results in a 
comma-separated value (.csv) file. A typical data analysis procedure starts by creating a 
DataPattern that is used to manually orient the sample and mask the necessary pixels. The 
DataPattern object is then saved into a JSON file. From FitManager one loads the 
DataPattern file and performs all the necessary fits with a chosen range of lattice sites. 
Results are saved in a .csv file which can be analyzed by any spreadsheet and plotting 
software. 

7. Examples 

In this section, first two real case examples of the use of the PyFDD software for emission 
channeling are presented, followed by the analysis of an RBS/C pattern from a Ge single 
crystal. Both EC examples are for the analysis of [-1101]  emission channeling patterns 
from radioactive 27Mg (t1/2=9.46 min) in p-type GaN:Mg, however, one with the Timepix and 
the other with the pad detector. In case of the Timepix example, the 55 m sized pixels 
received typically only ~4-5 electrons for each measurement and therefore require a 
maximum likelihood approach in fitting. For the pad detector with its 1.3 mm-sized pads, 
several thousand events per pad were recorded, consequently a chi-square approach is 
appropriate. The two experiments were performed with different samples and under different 
measurement geometries, which implies possible scatter in the results that is not due to 
effects of the detectors or analysis procedures. 

 
 
Fig. 4. Major substitutional and interstitial sites in the GaN wurtzite lattice. SA and SB 
represent the substitutional sites for Ga and N, BC-c and BC-a are bond-centered sites along 
and off the c axis, ABA and ABB are antibonding sites, DSA, ADSA, DSB, ADSB are 
displaced from SA or SB along [-1101] directions. T and O are the wide open interstitial 
positions along and parallel to the c-axis, while HA, HB and HAB are “hexagonal” sites 
obtained by displacements from O sites parallel to the c-axis. The interstitial position of Mg 
identified in Ref. [60-Wahl 17] is indicated by the yellow circles. 
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The lattice location of 27Mg in GaN is a well-known case which has been studied before [61], 
based on pad detector results analyzed with the older FDD software. While 27Mg was found 
to occupy mainly substitutional Ga sites, a minority fraction on interstitial sites could be 
clearly identified. Based on analysis of [-1102], [-1101] and [-2113] patterns it was found that 
the interstitial Mg exhibits a displacement of (+0.600.14) Å from the ideal octahedral O 
position, i.e. it is located in between HA and HAB sites (Fig. 4). If only the [-1101] patterns 
were used for the analysis, the derived 27Mg displacement was slightly smaller, +0.37-0.57 Å. 

7.1. Example 1: 27Mg in p-GaN with the Timepix detector 

In this experiment 40 keV 27Mg was implanted into a GaN single crystalline film at 
temperatures of 200°C, 600°C and 800°C while simultaneously measuring  emission 
channeling effects along the [-1101] direction. The experiment was performed for two 
different beam intensities, corresponding to implantation currents of 0.20 pA and 1.4 pA into 
a 1 mm diameter beam spot, acquiring about 106 events per angular pattern (related implanted 
27Mg fluence 1.61011 cm2). The PSD used was a 33 cm2 Timepix quad, which is an 
assembly of 22 Timepix chips, with a total of 512512 pixels, mounted at a distance of 30 
cm from the sample. The detector was operated with the pixelman software [62] in medipix 
mode with a frame rate of 0.2 s. For the analysis by the maximum likelihood method the full 
pixel matrix of 512512 pixels was used without summing over adjacent pixels. The conv 
value for the Gaussian smoothing was fixed at 0.05° during the fit. Two sites were allowed in 
the fits: while the first site was kept fixed on the substitutional Ga position, the second, 
interstitial site was varied in small steps parallel to the c-axis. An  example comparing 
measured and best fit patterns is shown in Fig. 5.  

Fig. 6 shows for all implantation temperatures and currents the variation in absolute values of 

Fig. 5. Timepix [-1101]  emission pattern from 27Mg in p-GaN and corresponding best fit. 
The measurement was performed for 0.20 pA implantation at 200°C with the Timepix at 30 
cm from the sample. The fitted pattern corresponds to 78% of 27Mg on SGa sites plus 22% on 
interstitial sites displaced by +0.16 Å from ideal O sites. Note that in the experimental pattern 
the white cross-shaped region represents the area along the edges of the four chips where no 
data are available. The colour bar titled “Counts” indicates the absolute number of counts per 
pixel, which was converted to the normalized yield according to eq. (12). Since the number of 
counts per pixel is very low (980000 events in the whole measurement, ~3.7/pixel), the 
original experimental data pattern has been slightly smoothed before displaying for better 
visualization as a pixel plot; the theoretical pattern is shown as a contour plot. 
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the cost function (negative log likelihood) when the position of the minority interstitial site is 
moved parallel to the c-axis, keeping the first site fixed at the substitutional Ga position. The 
best fits were achieved for interstitial positions close to the HA site, with the distances from 
O sites spreading from +0.16 Å to + 0.47Å. 

7.2. Example 2: 27Mg in p-GaN with the pad detector 

In this case 27Mg was implanted into p-GaN with 30 keV at 27 °C, 300 °C and 450°C with a 
beam current of 1.4 pA into a 1 mm diameter spot. The measurements (Fig. 7) used a 33 
cm2 pad PSD with 2222 pixels, i.e. with the same surface area as the Timepix but mounted 
at twice the distance from the sample (60 cm). The fit procedure used was chi square 
minimization with conv for the Gaussian smoothing fixed at 0.05° during the fit. Due to the 
large pixel size, the theoretically expected pixel yield was calculated as the average of an 
array of 66 simulated points inside the pixel, as explained in section 4.2.1. The pattern 
measured during implantation at 300 °C and the corresponding best fit can be seen in Fig. 7.  

As in the first example, all patterns were fitted with the first site fixed at SGa while moving 
the second, interstitial site parallel to the c-axis. The reduction in chi-square as a function of 
the position of the interstitial site is shown in Fig. 8. Best fits were obtained for displacements 
from the O site of +0.37 to +0.48 Å, i.e. also close to the HA site. Compared to the Timepix 
results, in these pad measurements a narrower spread of the positions of the interstitial site 
was obtained. However, this is probably not related to the different types of detectors and 
fitting procedures being used, but more likely due to the fact that, for these measurements, the  

 
Fig. 6. Timepix fit results: change in the negative log likelihood (LL) vs position of the second, 
interstitial 27Mg site while keeping the first site fixed at the SGa position. The cost function has 
two minima around the HA and HB site, with better results near HA. At higher implantation 
temperatures systematically less reductions in the LL are observed due to the fact that the 
interstitial fraction of 27Mg decreases (substitutional Ga fSGa and interstitial fI fractions at the –
LL minima are included in the legend). 
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Fig. 7. Pad PSD [-1101]  emission pattern from 27Mg in p-GaN and corresponding best 
fit as contour plots. The measurement was performed for 1.4 pA implantation at 300°C 
with the PSD at 60 cm from the sample. The fitted pattern corresponds to 71% of 27Mg on 
SGa sites plus 29% on interstitial sites displaced by +0.42 Å from ideal O sites. The colour 
bar titled “Counts” represents the absolute number of counts per pixel (1400000 events in 
the whole pattern), which was converted to the normalized yield according to eq. (12). 
Note the smaller angular range of the pattern compared to the Timepix data in Fig. 5, due 
to twice the distance between detector and sample. 

 
Fig. 8. Pad PSD fit results: absolute change in chi-square vs position of the second, 
interstitial 27Mg site while keeping the first site fixed at the SGa position. The greatest 
improvements in fit quality are obtained for interstitial sites near the HA position. Higher 
implantation temperatures result in smaller improvements of chi square since the 
interstitial fraction of 27Mg decreases, as is mentioned in the legend. The absolute chi-
square values corresponding to the three minima of the curves, as well as the number of 
degrees of freedom in the fits, are also shown. 
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pad detector was placed at twice the distance of the Timepix, thus providing a higher angular 
resolution that resolves more details around the axial effect. The chi-square obtained for the 
best fits (legend in Fig. 8) amounts to several times the number of degrees of freedom 
(number of pixels minus varied fit parameters). 

7.3. Example 3: RBS/C from Ge 

The experimental data used in the third example consist of a 4He RBS/C 2D image scan 
around the <100> surface direction of a Ge single crystal. For that purpose the sample, 
mounted in a 3-axis goniometer, was rotated in a matrix of 3737 equidistant angular steps of 
0.11° by means of the M1 and M3 axes. At each angle the amount of 1.57 MeV He particles 
backscattered under an angle of 167° were recorded by an annular detector for a fixed 
number of channels that correspond to the depth range 0-1000 Å at random incidence and for 
a beam charge of 300 nC (411 C in total). The He beam was collimated by two diaphragms 
of 3 mm and 1 mm spaced 260 cm apart, resulting in an angular beam spread of ~0.09°. The 
experimental pattern is displayed in Fig. 9 on the left. 

In order to produce theoretical patterns for the backscatter yield, FLUX simulations [49] were 
performed for an angular range of 3° at equidistant steps of 0.025° with 100000 projectiles 
per angle. A total of 11 simulations were run, each with a beam spread of 0° but varying the 
rms displacement of the Ge atoms from u1(Ge)=0.059 Å to 0.120 Å in steps of ~0.005 Å. The 
resulting patterns were then consecutively fitted to the experimental data by means of the 
PyFDD chi square approach, using in each case a fraction from the contribution of the perfect 
Ge crystal plus a fraction with a flat yield distribution (as from amorphous parts of the 
sample) and the angular beam spread conv as fit parameters. The simulated pattern which 
resulted in the best fit is displayed in Fig. 9 on the right and corresponds to a contribution of 
88.8% from the Ge pattern with rms displacement of u1(Ge)= 0.092 Å measured with a beam 
spread of conv=0.104°, plus an “amorphous” fraction of 11.2%. While the angular spread 

 
Fig. 9. RBS/C image scan of 1.57 MeV 4He backscattering from <100> Ge (left) and 
corresponding best fit of FLUX simulations (right). The fitted pattern corresponds to 88.8% 
contribution from a perfect Ge crystal with u1(Ge)= 0.092 Å measured with a beam of angular 
spread conv=0.104°and an amorphous fraction of 11.2%, which were used as fit parameters. 
The colour bar titled “Counts” represents the absolute number of counts per angular position 
(1554135 events in the whole pattern), which was converted to the normalized yield 
according to eq. (12), thus resulting in a minimum yield of 0.166 for the fitted pattern. 
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corresponds quite well to what is expected from the collimation characteristics of the He 
beam, the best fit Ge rms displacement is somewhat higher than literature values [63] which 
scatter from 0.062 Å to 0.087 Å. Together with the fact that the minimum yield around 0.166 
was considerably higher than expected from a good single crystal (the simulations for 
u1(Ge)= 0.092 Å yielded 0.054), this points towards the explanation that disorder was present 
in the Ge crystal. This is also reflected by the amorphous fraction of 11.2% and is a 
consequence of the prolonged exposure to the analyzing beam during the acquisition of the 
image scan, which resulted in a cumulative fluence of 2.51017 cm2. It is known that a 4He 
fluence of 31017 cm2 raises the minimum yield in Ge by a factor of 3-4 [64]. Thus, while 
the example shows how 2D channeling patterns can be used in order to characterize both the 
crystallographic rms displacements of host atoms and the angular resolution of an RBS/C 
setup, it also illustrates possible shortcomings of this approach due to effects from beam 
damage in radiation sensitive materials like Ge. 

8. Conclusions 

The use of two-dimensional channeling patterns is gaining more widespread use in many ion 
beam laboratories. However, except for emission channeling experiments, only in a small 
number of other cases such patterns have actually been used to extract quantitative 
information. We have described the theoretical framework for fitting 2D channeling patterns 
by the results of simulations, and its implementation in two software programs. The older, but 
fast FDD software is routinely used to analyze 2D patterns with high number of events per 
bin. For the newer software, called PyFDD, particular care was taken to make it better 
suitable for cases where the number of recorded events per bin is low, e.g. for measurements 
with high-resolution pixel detectors, or for RBS/C image scans for the location of small 
concentrations of foreign atoms. In order to fit such cases with the least possible bias, the chi 
square approach in PyFDD was improved, in particular by making the determination of the 
random level bias free. In addition, the possibility to perform maximum likelihood fits for 
extremely low numbers of events was implemented. As further development, PyFDD 
includes the option of performing an optimization of the Gaussian convolution of the 
theoretical patterns (which is related to the angular resolution) during the fit, which should be 
helpful in order to assess, e.g., changes in crystal quality in between various measurements 
(as a function of implantation fluence, annealing temperature etc). 

The chi square and maximum likelihood approaches were compared for emission channeling 
experiments on the lattice location of 27Mg in p-GaN, using measurements with a pad 
detector (several thousand counts per pad) and a Timepix high-resolution pixel detector (3-4 
counts/pixel), leading to quite similar results. Finally, the usefulness of the 2D fit technique 
was also demonstrated by the analysis of an RBS/C image scan of a Ge crystal, 
demonstrating that by such measurements it is possible to extract at the same time 
information on the crystal quality, the rms displacement of hosts atoms, as well as the angular 
resolution of the setup. 
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