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ABSTRACT 

The Illinois group has made a partial wave analysis of the reaction 

up + (3n)p. We have modified the Illinois program to study the reaction 

Kp + (Kfln)p. In this paper a detailed description is given of the partial 

wave analysis of any reaction of the kind: meson + proton + proton + 

(3 mesons). It is also shown that, with little modification, the method 

can be applied to the study of special 4-meson systems like Kw. A dis— 

cussion is given of the physical assumptions used and of their implications. 

TWO questions are discussed: "Are there ambiguities like the well—known 

ambiguities encountered in dimeson studies?" and "how is it possible 

to measure imaginary parts of density matrix elements?" 
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1. INTRODUCTION 

Recently, a powerful method of performing a partial wave analysis 

of the (fliflifl;)-system was introduced by the Illinois group and applied, 

by that group, to the reaction n-p + (3n)_p at various energies[1,2] 

The authors have, more recently, been involved in applying a modified 
— - + 

version of the Illinois program to the (K n n )-system [3], 

The program divides naturally into two parts. The first part 

calculates amplitudes and special normalization integrals of these 

amplitudes over relevant regions of phase space, and prepares all the 

necessary quantities needed by the second part of the program. This 

latter part is a very fast fitting program designed.by G. Ascoli for fitting 

density matrix elements 5 and certain "density parameters" 5 , imposing 

the constraint that the density matrix must be positive definite. 

There is no easily available, detailed, discussion of the analysis. 

Although most of the relevant formulae are in D.V. Brockway's Ph.D. 

thesis [4] , there is nowhere an adequate discussion of the assumptions 

made or of the method of analysis. 

Since it appears that there will be a great deal of time spent on 

the study of three-particle systems with this program, it is felt that 

it is worthwhile presenting the formalism in more detail than is 

customary [5—10] with the following aims in mind: 

(1) to state clearly what assumptions are made and to discuss 

their implication and validity; 

(2) to try to give a presentation which will be of use to future 

users of the Illinois program. 

No attempt is made to describe the detailed workings of the program. 

It is stressed that this presentation is intended for experimentalists. 
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2. PLAN 

The presentation of the formalism is given in sections 3, 4 and 5. 

Section 3 gives a derivation of the formula for the cross—section for 

a reaction of the type a + b + l + 2 + 3 + 4. Section 4 presents and 

discusses the assumptions made to reduce the nnlhpt of parameters to a 

workable number. Section 5 describes the method of analysis. Section 6 

extends the formalism to reactions other than K-p + K-fl-fl+p which is the 

reaction in terms of which the formalism is presented. In Appendix A 

there is a detailed discussion of what can be learnt about the (K-n-n+) 

system from a study of one-dimensional angular distributions alone. 

Appendix B contains the definition of all angles and reference systems 

used. Appendix C discusses the question of interferences between different 

states. Finally, in Appendix D, two important questions are discussed: 

firstly, "are the solutions to the Illinois partial wave analysis of 

3-particle systems unique ?" and, secondly, "how is it possible to 

measure imaginary parts of density matrix elements ?" 
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3. THE FORMALISM 

The state of a free particle of mass M and spin j can be completely 

specified by |3A[Mj]> where 3 is its 3-momentum and A its helicity. 

The quantities M and j(invariants offithe Poincaréfgroup).are-put:in brackets 

because they are often omitted. 

Now consider the reaction K—p + K_w_fl+p to be a special case of 
the general reaction ab + l + 2 + 3 + 4 where particles a, l, 2 and 3 

are spinless while b and 4 are fermions. In the helicity representation 

just described, the amplitude for this reaction can be written as 

in, =-= GEEJEM um: 37>: a.) 
where the momenta and helicities are taken in the overall centre of mass 

system. The spinless particles in the final state are separated off 
'— — + 

because this analysis is a study of the (K n n )—system. 

The aim now is to derive equation 3.19 for the cross-section 

in terms of variables in which the analysis of the (K-fi_fi+)—system can 

be described conveniently. This procedure involves five changes of basis 

or of variables. At each step, an attempt is made not only to present 

the necessary formulae, but also, to motivate and describe in a simple 

way what physics is in that particular step. 

From the experimental point of view the basis 313233> is very 

natural because the momenta are what one normally measures. However, 

theoretical results are usually more clearly presented in terms of an 

angular momentum basis. 

Before introducing such a basis, it is convenient to define an 

intermediate one. The set of variables {$15233[M1M2M3]}-is completely 
. -. 

equivalent to the set! [inflmi 9'15"?t here 
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+ —)- . + + 
P = p + p + p = momentum of (123)—system in overall centre 
123 l 2 3 

of mass; 

M123 = invariant (effective) mass of particles 1, 2 and 3; 

¢ and 9 are the azimuthal and polar angles of the (l3)-system in the (123)  

rest frame; either the helicit system (x(s),y(s),z(s)) or the Gottfried- 
Jackson system (x‘t), y(t),z(t ) can be used, (see Appendix B); 
M13 = invariant mass of particles 1 and 3; 

w and x are the azimuthal and polar angles of particle 3 in the 

(l3)—rest frame; see Appendix B. 

Instead of coupling particles 1 and 3, one could just as well have 

coupled 1 and 2 or 2 and 3, in which case 1:; and x would have been angles 

defined in the (12 ) -  or (23)-rest frames, while ¢ and 0 would have 

described the position of the ( 1 2 ) —  and (23)-systems, respectively, in 

the (123)-rest frame. 

It is stressed that these couplings give three different but 

completely general descriptions of the (123)-system; It is not assumed 

that the (123)—system decays via a two—step process. "Direct decay" 

into three bodies is included in each of the descriptions. 

In terms of this new basis equation 3.1 can be written 

fl 
Now, in an attempt to provide some "feel" for the link between the _. . 

{R0 Magie HG‘PX7} -basis and an equivalent angular momentum basis, 

one is reminded of the fact that the state of a quantum-mechanical 

= (7?; mg em.,\Px,'fiA.)u lama») 3.2 
W.- 

rigid rotator (two spinless particles "going round each other“) can be 

expressed in terms of 16¢>-states or I£m>-states and also, that 

n X 
(afllm) =Y¢ (9;?) = ’a‘fil 3:? (99,0) 3543‘. 
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The 3-particle state la, "MIG n.3+x>can be pictured loOsely as two 

such systems — with particles 1 and 3 going round each other as well 

as (13)  and 2 going round each other. It seems not unreasonable, then, 

and is rigorously demonstrated in ref.[9] , that the variables @, e 

w and x can be replaced, by J, A, j and A where 

J = spin of (123)Tsystem, 

A = helicity of (123)—system in overall centre of mass, 

j = spin of (13)-system, 

A = helicity of (13)—system in the (123)-rest system. 

Notice that, if the z axis of the (123)-coordinate system is chosen to be 

the direction of motion of the (123)—system in the overall centre of 

mass,then A is the same as M, the z—component of angular momentum in 

the (123)—coordinate system. 

The link betweenlirnnusée ".3 W 'X> and’aal‘IJMnJ "'31 )‘> is 

N ’ ‘ ¥  

(is "It! I B ”'9‘” ‘ZgALIflflJ ”nsj A> —J%?j:r vitrified 3:: 0,1,0
) 3 . 4 

Expanding in terms of these 3-partic1e states of definite angular momentum, 

equation 3;2 becomes 

{AC Eff; Dfihaomfi‘frm) (ELALJNnimjmuIE ,EA.) 
'0 

. , " I ,- 5? Pg; [2% 33cm») 41,00 3’ (s,t,n,,,Jn.,) 3-5 
A 

~ - - + 
In terms of the reaction K p + K n n p,the function g is the 

- - - + 
amplitude for producing, from an initial K p state, a K n n p state 

- — + 
whose (K W W )-system has spin J, mass M and helicity A in the 

123 

overall centre of mass system while, at the same time, particles 1 

. . . . . . - - + 
and 3 have an invariant mass M13, spin 3 and heliCity A in the (K n w )— 

system; the function g also depends on s, t,Ab and A4. 
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1' 

The product 49') a J 
Allele 

general, is also a function of s and t. Notice that, for fixed M and 

is the Dalitz plot amplitude, which, in 

2 2 123 
, ' ' “:1 . M13,cos x is linearly r. atedto M23 or M12 

The angles @, O and w describe the orientation of the plane of 

the (123) —system. 

At this point, a further change of basis is made - to states of 

definite relative orbital angular momentum £ of the (13)-system and 

particle 2. This is motivated by the fact that, near threshold, only 

small fi-values contribute, a point which will be discussed later. The 

amplitude g is now replaced by h, whose meaning differs only in that 

A is replaced by 2.. Explicitly 

II gill ( 'A -' fl - .* fl 4 

3am», ‘ 11+: 4 0" [TDZEHAD’M ’7”GJQ/fl)‘+IUlf.fihAb> 
r: 

C 
79" 

E Pill ((DJAIJ'D a J C2¢',”fl!;"1u) . 3.6 13?! AA‘A# 

where <l°JA IT A) is a Clebsch-Gordon coefficient. 
It is worth mentioning that expressing the amplitude in terms of 

these orbital angular momentum states 'E,A[TP1,1JH,SJ'Q> yields a bonus 

because, in the (123)—rest system, these states are eigenstates of 

parity P ,  see ref. [ 9 ] ;  

i.e. 

—, ‘ 0 '9 
p “313:0 ALI711293H1359> = ”L‘L'IJFU‘H IF,” =9 A [7711”]n e) 3 '7 

where n. is the intrinsic parity of the i’th particle. The product 
'+£ 

PE 111112713(-l)j is then the parity of the (123)-system. From now on the 

quantity P is included in the state vector. 

That'as'oAD'nnJMuJQ> should be an eigenstate of parity is not 

surprising in View of the fact that if a state of—spin J is decomposed 
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into two parts of definite spin and parity, then a particular z-value 

for their angular momentum corresponds to a definite value for the 

parity of the original system. 

For reasons of symmetry which will become apparent later when the 

(3fi)—system is discussed, the coordinate system is changed.The old angles 

0, ¢ and w are so defined that the situation 0 = ¢ = w = 0 corresponds 

to the (l3)—system going along 2(5) with the direction of 
(S)Z(S) 

particle 3 being in the x -plane. For this situation, define 6 
23 

to be the angle between the directions of particles 2 and 3 in the 

(123)—rest frame, (see Appendix B L  

The new angles ¢ and 6 are the azimuthal and polar angles of particle 

3 (the n+) in the (x(s), y(s), 2(5) )-system (the first two Euler angles), 

while the third Euler angleY is defined by the direction of the 

projection of particle l (the K.) onto the plane perpendicular to the 

direction of particle 3. The configuration ¢ = 6 = Y = 0 corresponds to 

particle 3 going along the z(S)-axis, particle 1 being in the x(s)z(s)— 

plane. 

To go from the situation a = ¢ = w = O to the situation 6 = ¢ = Y = 0 

it is necessary to rotate by (n—623) about y(s) and then by w about the 

direction in which the (l3)-system is moving after the rotation by 

(“-62 ). 
3 

To change the variables in equation 3.5 from Q, 0 and w to ¢, 6 and Y 

one can make use of the observation that a state of definite Q, 9 and ¢ 

can be obtained from a state ¢ = 9 = w = O in two different ways: either 

a rotation R(¢, 0, w) or two successive rotations R(O, “-623, n) and £3 

R(¢, e, y). In terms of the irreducible representations of the rotation 

J . 
group. - DAA - one obtains 

at- a: 
322’: §, GAP) = Dfi‘é 9T6) 3$;G(O,TF-%3, rr) 3.8.1 

1 
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1' 
The product.di$¥)3’ is the Dalitz plot amplitude, which, in 

44*539 
general, is also a function of s and t. Notice that, for fixed M123 and 

2 2 
‘ ' "“1 M . M13,cos x is linearly r- atedto M23 or 12 

The angles ¢, 0 and w describe the orientation of the plane of 

the (123)—system. 

At this point, a further change of basis is made — to states of 

definite relative orbital angular momentum l of the (13)—system and 

particle 2. This is motivated by the fact that, near threshold, only 

small Z-values contribute, a point which will be discussed later. The 

amplitude g is now replaced by h, whose meaning differs only in that 

A is replaced by 2. Explicitly 

7i " * 4 q 
.. M i e m ln e ALTMFIH 'Q. A u A 

alum» ‘ 1.1+: J >4 ’3 n ”J 13. 'vl ”3’5: 5) 
2 

1'!" 
E ’19.! ((DJAIJ'A) g. (saws/‘1”) 3 6 13%! ‘ ’ 

where (to!) 'T A) is a Clebsch-Gordon coefficient. 
It is worth mentioning that expressing the amplitude in terms of 

these orbital angular momentum states l€,/\[Iflngjfi.sig> yields a bonus 

because, in the (123)—rest system, these states are eigenstates of 

parity P, see ref. [9]} 

i.e. 

p 'fi :3=0 A [I71115JH13‘3 0> = 1'q’136'054’9 ”31:3 :0 A ”21'4”“ e) 3 .7 

where n. is the intrinsic parity of the fEh particle. The product 

PEn1n2n3(-l)j+£ is then the parity of the (123)-system.From now on the 

quantity P is included in the state vector. 

That [gn‘oAEJNgn-IMQJQ) should be an eigenstate of parity is not 

surprising in view of the fact that if a state of spin J is decomposed 
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into two parts of definite spin and parity, then a particular 2-value 

for their angular momentum corresponds to a definite value for the 

parity of the original system. 

For reasons of symmetry which will become apparent later when the 

(3n)—system is discussed, the coordinate system is changed.The old angles 

0, ¢ and w are so defined that the situation 9 = Q = w = 0 corresponds 

to the (l3)-system going along 2(3) with the direction of 

(S)Z(S) 
particle 3 being in the x -plane. For this situation, define 62 

3 
to be the angle between the directions of particles 2 and 3 in the 

(123)—rest frame, (see Appendix B L  

The new angles ¢ and 6 are the azimuthal and polar angles of particle 

3 (the w+) in the (x(s), y(s), 2(5) )-system (the first two Euler angles), 

while the third Euler angley' is defined by the direction of the 

projection of particle 1 (the K-) onto the plane perpendicular to the 

direction of particle 3. The configuration ¢ = 6 = Y = 0 corresponds to 

particle 3 going along the z(s)-axis, particle 1 being in the x(s)z(s)- 

plane. 

To go from the situation 0 = Q = w = O to the situation 0 = ¢ = y = 0 

it is necessary to rotate by (fl-623) about y(s) and then by N about the 

direction in which the (l3)-system is moving after the rotation by 

(n-623). 

To change the variables in equation 3.5 from @, 6 and w to ¢, 9 and Y 

one can make use of the observation that a state of definite @, O and w 

can be obtained from a state Q = O = w = O in two different ways: either 

a rotation R(@, 9, w) or two successive rotations R(O, “-623, n) and 

R(¢, e, y). In terms of the irreducible representations of the rotation 

group. - DiA - one obtains 

¥' *. ¥ 
Digéé', G,\l’) = D21, (4’, 93“) fishy-0.” 11') 3.8.1 

'9 
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where v is the helicity of the (12)-system, and where, for clarity, A 

is temporarily replaced by 113 

If particles 2 and 3 are coupled, rather than 1 and 3, a similar 

relation holds, specifically. 

D::Q'.B,W'=)~Z_3$:QM)3;:(1r1r-9m1
r) 

where 613 is the angle between particles 1 and 3 in the (123)-rest system 

A23 is the helicity of the (23)-system in the (123)-rest system and where 

¢', 9' and w are the counterparts for the (23)-coupling of @, 6 and ¢ 

in the (13)-coupling. 

Combining equations 3.5, 3.6 and 3.8.1, (or 3.8.2 for the (23)- 

coupling) the amplitude f can now be written AbA4 
P! 

{f gal-2144 3"” C4: 9 ,3); Q‘ZA “A 0956931.”:u) 3.9.1 
“A“. ram 

31%!» 3:2-373— r—t', (I °J *n175'3)3?,;:CoIr-9;3'V) 61°“) 
3.9.2 

_(.-.) ((Afflré 1:?“)y,)«ojl‘,,m.,){?fll do (”+669 Angled} 
“flu-.7 

5" a1+l 
6'1'¢u'(z)=ZfT__~:__.1—_ 25+ ___.<205A2317A1913m61, 1:59.513 055:. (X) 

.3 3 . 
=“Wff —,.‘A}7ZS., .Xujhzslnafiyi, Qc-‘fiafiffa 

J+2+j 
where e = (— 1) 

Not" th t ‘ ice a x ,  623 and 613 are functions oi Slfi 2 and M123. 

In equations 3.9.2 and 3.9.3 the quantities j, 2. and x are understood 

to have suffixes (13) and (23) respectively. 

Notice that in the case of the (23)—coupling there is an extra 

elv“ E (--l)v which arises because the particle, whose y is used, does not 

change. 
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If the (lZ)-coupling were being used, corresponding to expanding 

the (K-n_n+)—system in terms of (K_n_)-states of definite angular momentum, 

the (because the direction of the n+ analyses is opposite to that of the 

(K-fl-)-system) equation 3 . 9 . 2  is particularly simple, explicitly: 

92. 

£1.c2) :Q—Iy’eé-Df “00"“) (90.1%)]??? as: (X) 3.9.4 
‘9 Mr 3.7+: 

Use will be made of this in section 6, where the analysis is extended to 
-0 _ ' 

systems such as (K flow )-system where one expects to require resonances 

in all three two-particle systems. 

It is pointed out in ref. [9] that the constraints imposed by parity 

conservation in the production process reduce the number of independent 

amplitudes L, The explicit formula is 

715 )‘J-Mi-lfihr 19;, 
£1. —’=-P(") K 3.10. 

where P is defined in equation 3.7. 

Before presenting a final formula for the amplitude fA A one further 
b 4 

change of basis is made. The new representation efficiently incorporates 

into the formalism the fact that parity is conserved in the production 
J 

process. The statesle§9A[3'H.nJ N539) are replaced by the states ~ 
IP53 0 AW” ”I“ 1'1'3J".> where n(=il) is the eigenvalue of the reflection 

operator in the (xz)-(production) plane, Y = exp(—iy)P; see ref. [7]. 

It is shown in ref. [9] that 

Y 'F‘T;0/\DPN.13]H“397=Pé-UJMIP'O'” Mbflmjfla J0) 3.11 

Defining 

IE5." Ab "aim 101) =¢a{’e‘§a "\[3 H”“$]"¢i”>*1*" ‘m‘ “H”"J""ip 3'12 
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J+l ' 
where e = P(— l) , =  (— W)J+J+£ 
equations 3.11 and 3. 7 snow thatA 

Y‘P .13 =° a t  “151m” 01) ‘7'““5' .130 “[3!" n] "0») Q1) 3.13 

6’ I P“;- oA[T I1'1“] FL; 301).? 4m 1 {-1) ”[5; oab'qaangy?) 3,135, 

A = / —  for A # O and CA = 5 for A = 

In other words, the new states (Pa, "O 4 [alpha-1'16 J 217 

are eigenstates of Y and of the parity operator 0. Incidentally,‘ is 

minus the quantity which is often referred to as "naturality". 

For future reference, equation 3.12 is written in an abbreviated 

form: 

lTpMcsgq‘? [I39 ”0.941600“ ’9'? ' N m > ] 3  Cr103 

where A = helicity of (123)—system in overall centre of mass 

_ (s) _ (s) - M — z component of angular momentum of the (123)-system 

in the x(s)y(s)z(s)-coordinate system, which is the 

so—called s-channel system. 

(S) P 
To give an example, equation 3.12 says that the basic IJ M > states 

+ + + P 
l l>, [ l  0> and '1 -l> are replaced by the equivalent set of I J M  (S) n> 

st t 

a es lr"H-> = 3‘15““) - W47} 
“"00 = [ ( + 0 )  

lt“'l—-7 =fi$u+o + (fir-D} 
(S) (S) P 

Notice that lJ M n> states with M a O and n = :1 completely span 
s 

the space given by [J PM(S )> where —J S M( ) 5 J. 

This new representation turns out to have two advantages. Firstly, 

as will be discussed later, the density matrix of the (123)-system is 

diagonal with respect to n. And, secondly,for M(S) = O, 

-n = +1 corresponds to a (123)—state being formed by natural parity 

exchange while n = -1 corresponds to formation by unenatural parity 

exchange [11]. For M(S) # 0, this condition is true to leading order in ($3. 



.. 12 — .  

CERN/D.Ph.II/PHYS 73—34 

p 

(s ) ” “5 
In terms of these [JP M (or A)n> states, the amplitudes £2, 

q! I\AbA+ 
are replaced by «:11 where 

“a ‘r 

7’a ( 979% A 50.." 
62L “" (A I L‘. , 4"7[€?(;€) -E{ 

AApAl... “1539 -A “A“ 3.14 

where A 2 0 

Now, using the relation . ' “ , 
P f . 

a‘!‘ -9 a'fi c . =—- cc-o G J v ‘ . _.9 3 . 1 5  

which can be obtained from equation 3.9.2(or 3.9.3 or 3.9.4),the symmetry relation 

3}“? (3,3 x) =(- o ”1);“: c4>, 9,15) , 3.16 
and equation 3.14 it is straightforward'to show that 

EJ ( “fig 7994‘1 fig“: 213,451: $9,31t ‘:(%9.U)}E.G KAMM- 3.17 

Tuba)"; 
which, in turnlcan be re-written as 

7 Pt; a7"! ‘1“4'0 
£551.. —1 111+Ica(n¢+9x)d,‘j(fl); G RALM 

“(mm fl 
1!. 31(I-I) 3. L8 

+2q121+l SIM/wwfld‘: 39.32:; G ‘9‘ 
1w» M“ “’ 

Enuation 3.17 can be used to write 

the cross—section which is proportional to 
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Lila.» l 
L’Nr 

( "' ‘7) t ‘3 fl # 9 3 0 3  

,_ W W W w +.,D;:=‘o)<”‘ w v.9?)(r 1) :14 9 
P . 'nq,3"'5'; 

1' «0,0140; 
7"‘A‘Md «we . ,j' 

where the density matrix p is given by 

(12'5“ W‘gsit’n‘13’5flz (a 3’95... )* Ram'eh'q 3.20 

" .95 AM," A‘Abhu 
III/‘1’? All Ab AL, ' 

It should be noticed that ‘9 is diagonal with respect toil . The sum over Kb 
and k4 expresses the fact that the target is unpolari-sed and that one does not 

measure the polarization of the recoiling proton. 

Notice that the density matrix! depends, in general, on! at 'a j: j'. 
s, t, M123 and 82. The sz -dependence implies that the density matrix elements ' 
can vary ever the Dalitz plot. 

The relationship between this f and the one in which the more conventional 
J P states are used is ‘ ' ' ‘ 

= 1c c . + €‘(- 0", 
€1'A1’1|PA|1 1‘ A far“; “A fl 1'nl1"’-fl‘ 

Formula 3.19 has been derived using the "s—channel" coordinate 

system (x(s), y(s), 2 ( 5 ) )  where 2 ( 5 )  is minus the direction of the recoil proton 

in the (K1T1T)-' ' centre of mass system. Exactly the same formula can be 

derived by using t—channel axes (x(t), y(t), z(t)) where z(t) is the 

direction of the incident K_ in the (K1T1r)- centre of mass. In this 

latter system, A gives the third component of angular momentum of the 

mum-system where the axis of quantisation is now 2“” . The density 

matrix elements in the two systems are related by a rotation, through the 

crossing angle, in the production plane. 

Usually the analysis is done in the t—channel because the dominance 

of certain states is more marked in it than in the s-channel. 
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Appendix B defines all referencs systems and angles used in the 

analysis of the (3n)—system [1,2] and the (K_n-w+)—system [3]. 

Before going on to discuss the‘assumptions in the next section, 

an important property of the density matrix is discussed. 

From equatiOns 3.10 and3.l3a it can be shown in a straightforward 

manner that 

A P 
a ‘ :1 11G!) e\ 3.21 

“AbAgf A ”Ab "‘lr 

‘Using equations 3 .20  and 3.21 it can further be shown that 

... r. 'l . .. , .  7m ”.1 ’ 

y‘all u )  =1 CI!” 2‘7‘9'1 +£111R7 I“ -3.22 
1’A1J";\'1 A 1‘ A 1‘ 1‘ A- 1" d. 

where +(+ )  corresponds to helicity 5(-%). 

Bearing in mind the mathematical fact that a matrix Aik formed from 

a vector ai according to the prescription Aik = aiagfi can only have onenon—zero 

eigenvalue, it can be seen that p can have two eigenvalues for each 

n-value, corresponding to helicity flip and helicity non-flip at the 

proton vertex, 

At this point attention is drawn to Appendix A_where there is a 

discussion of what can be learnt from studying the one—dimensional 

angular distributions alone. 
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4. ASSUMPTIONS 

(a) 

(b) 

pFrom the l-dimensional distributions it appears that the data 

can be fitted without introducing J—values above a certain 

Jmax' This has previously been found to be the case in the study 

of the (3w)—system produced in Np interactions . 

Assumption 1: assume J 5 J , where J is estimated from a 
max t max 

Fourier analysis of the l-dimensional angular 

distributions. 

To emphasize the fact that the amplitude fA A can be written in 
_ +  _ +  _ _  b 4  

terms of (K n ), (fl n ) or (K n )-couplings, let it be written 

symbolically as: 

0 on 00 

= Z. ‘5 Z Z- Z_ 4,1 
‘5‘» j(x‘u*)=o “(Who J(K’rr')=o 

- +  - +  -—- - +  
where j(K n ), j(n w ) and j(K fl ) are the spins of the (K N )-, 

— +  — _  

(w w )- and (K N )-systems respectively. Another description 

which will be useful for discussing assumption 2, is given by 

.9 40 ,7 .9 

.Mfé’ Z +2: +21 
mama J “117980 j(K‘w') =0 

, - + . — +  - —  
Assumption 2: assume that j(K fl ), j(n n ) and j(n K ) are 

— +  
restricted to be less than or equal to jmax(K n ), . _ + . _ _ . 
jmax(" n ) and Jmax(K n ) respectively, and that 

one can write 
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jflgp'v’] L5 1H1") Jnfk‘trj 

1; -- 2: +2: + '2: 
“‘4’ JCK'trflao J ("'11”) =0 3(K'rr') :0 

The fact that the 1/3 is missing in equation 4.3 reflects the 

assumption that the high partial waves in any one particular 

coupling are covered by the low partial waves in the other two 

couplings and the hope that there is not very much overlap 

between the truncated contributions. 

In the (K_fl-fl+)*case [3] it is assumed that jmax(K-W+) = 2: 

jmax(n_w+) = 2 and that the contribution of the third coupling can be ignored 

altogether. There can still, in principle, be overlaps between some or 

all of the j(K—n+) = 0,1 and 2 contributions and the j(n_u+) = 0,1 or 2 

contributions, resulting in "double counting".(To express things in terms 

which should not be used until after assumption 3,0verlap between, for 
- +  . — _ +  

example, j(K w ) = l and j(fl fl ) = 1 contributions would correspond to 
* 

interference between K (890) “  and Kp decay modes of the (Knn)—system). 

This assumption is motivated by the observation that the (K—w+)- 

and (w_n+)—effective mass distributions show K*(890), K*(1420), p and 

f signals and also, phase shift analyses[13,14] find that 8-, P— and D-waves 

are enough to describe (w+)— and (w_w+)-systems for masses up to those ' 

encountered in this analysis. The I = 3/2 phase shifts for the (K_1r-)-system 

are small and are neglected. 

(c) The amplitude K.is seen to depend on the masses M13 and M23 

for the (l3)- and (23)-couplings respectively. If one invokes 

the idea of a strong Watson final state 2-particle interaction [17], 

it is reasonable to factorize off this dependence. 

tion 3: assume 

f fi ‘ 1 fl j fi " ”  

K(‘mu;fl-)= E(s:t;r1,,)‘q3\l (”algae“) 1; (Mn, 71..) 4.4 
Mb 
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where the index n, introduced here, is 1, 2 or 3 depending on 

whether the (23)—, (l3)- or (12)-coupling is being used and 

where the incices 2 and j refer to the coupling in question. 

£ . 
The product p .BW.qj is a parametrization based on the picture 

of the (Kfifl)-System breaking up by a two-step decay. The barrier 
£ 

factors at the first and second decay vertices are p and q3 

respectively, where p is the momentum of the di—meson system 

of inLGL;St in the (Kwn)-rest frame, k is its orbital angular 

momentum relative to the lone meson, and q is the momentum of 

one of the decay products of the di-meson system in the di—meson 

rest frame. The function BW parametrises the mass dependence of the 

di-meson system either by a Breit—Wigner or by phase shifts [17]. 

:"Ij, 
AI'A“ 

matrix defined in equation 3.20 has many elements. For example, 

(d)Looking at the indices on it is clear that the density 

consider the (123)-system to decay only by the modes shown in 

table 4.1. This would correspond to a (5 x 5)-density matrix 

which is described by 25 real parameters. 

In an attempt to reduce the number of parameters a further assump- 

tion is made. (Appendix D discusses further imfilications of 

assumptions 3 and 4). 

s on 4: assume 

"T'lémp 7:1 799‘" 
'RCfitJ‘Ln) = 1—,.“ A (sot: nus) C ($,t,M..3) 4.5 

b 0» ~ MW.- 
Equation 4.5 assumes that C is independent of the (discrete) 

'variables Ab, A4, A and n and that T is independent of the 

discrete variables l, j and n. Notice that, if in a giVen JP state 

there were but one resonance, this assumption would be automatically 

Vsatisfied. Furthermore, C would be independent of s and.t, 
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making the amplitude split into production and decay parts. 

In this paper T and C will be loosely referred to as the 

production and decay parts of the amplitude despite the fact 

that C depends on s and t. 

It is now possible to define new "reduced matrix elements" by 

Catrina.) =26]. 7:14.,7“ TEL 4.6 
s; T "1' 3,. P‘nlq AbA‘Q' 

In accordance with custom, A will henceforth be replaced by M. 

The program tries to determine these density matrix elements 

and the (T3. fi n  . Notice that if one again considers only the 

states given in table 4.1, the number of parameters is, as a 

result of assumption 4, reduced to nine density matrix parameters 

plus four complex parameters C T  "I“ . In sect. 5 it is sham- 

that, by means of a suitable normalization convention, it is 

possible to put one Cfpfi'jn. equal to one for every JP 

state considered; in which case, only two of the (:t- remain 

in the example being considered. Thus, assumption 4 has reduced 

the number of parameters from 25 to 13. 

With sufficient statistics one would determine 0 and C'as 

functions of s, t and M123 by fitting in small intervals of 

these variablefi then the rest of this paragraph (e) would be 

redundant. 
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In reality, the intervals are quite wide and one has to average 

over each interval. One writes 3' 

;"I ~1Jwifia 3 “  "1J?jn 1'H1QEA 

M b  
and fits in each interval for the constants S and E, where 

35 (’r‘" * ti ' 'f’ . T M ,  . 9 )  "'Ahhh 4.8 

7.11:: M 1 _  ABA“.  

The “shape function" R is given by 
. f’ p F 9' 

RI "‘9's nus) = FT”r """(H F'- m‘ Hm”) 4.9 

and it contains the best knowledge available on the dependence 

of the amplitude on t and M (averaged over 5 if experiments of 
123 

different energies are being combined). The function FT can be 

different in different M123-intervals (in accordance with well- 

known experimental results) and the function F can be different 

in different t—intervals. 

The function F is given by 

FM M. dads. BWA" )(Hn ) um aggg'hp‘} u '4‘“ 3 5%,":ejfim 

Here 
Ujb'fl (4)0) -'l‘b 

Na=2vl ‘ G“ J“ (“J"M'rfl P2 BW 1 ‘ 
If BWA is kept constant the quantity F(b ) in equation 4.10 forces 

dc/dM for a given state to be independent of M in the 
123 123 

interval considered. However, the contribution to dO/dM123 from 

interference between different states can still be functions of 

M123 (see Appendix C); explicit calculation shows that this 

remaining dependence is weak. 
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The function BWA describes the mass-dependence. In the program 

there is a rOWtine BWA which enables one to put in explicit 

dependence on M when the dependence is believed to be 
123 

strong; for example, for large M intervals near thresholds. 
123 

The functions FT andBWA (and hence R) are normalised to one in 

each interval considered. The reason for doing this will be 

discvssed in sect. 5. 
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5. METHOD OF ANALYSIS 

(1) The likelihood function 

The partial wave analysis of the (Kfifi)-system is done by using the 

extended maximum likelihood method [15] to determine the quantities 
—- P _.- C ,  (3‘ 

and v . The function that is maximised IPVH1IUJPTGVI 

is 

Mum“ “kflflh 

L :  2 $1w(T)~lwt-:~)A(T)d’t +~ hAC‘tc, at.) 

ta: L=‘ 

where N = number of experimental events used; 
INPUT 

mpg.“ 30'1”) 
RH ! Jh‘ 

9 

¢ . 9 . Y ;  T represents the seven phase space variables t, M , s  , 5 
H3 1 w 

x represents the three spatial variables (x, y ,  z)5 

A(r,, Xi) is the acceptance of the ith event (every real event in the 

laboratory is characterised by T and x)5 

ACT) E fA(T, x)dx. 

The product “(Ti)ACTi, xi) is the probability of finding an event at 

the "point" (Ti, xi). The quantity fin A(Ti, xi) is a constant and is 

ignored in the fit. Notice then that to perform a fit it is only 

necessary to know the acceptance integrated over x, ACT) .  
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f 
I 

The "matrix element" an" o.“has the explicit form (see equations 

3.19, 4.4, to 4.9) ‘ " 
P :4 . P 1' m (3') > (‘4' Haydn) 

M = 2  c“(Dn9(¢’9’z) +q1(¢’&’a) H» 5.3.1 
”1951‘ v 

where 

wrung“) drawn) 2 "j a.) 5 FTc'a-pnqlsa) Furs-1‘05“) . 

=- . 1» 8w 4 H. 
To facilitate the discussion of normalization which comes later, it is 

id't =ZEXE 3’: Sm‘fiwfm A d'C 5g4 

where the indices which have been left out are as in equation 5.2 

BY 

H1
 

5d? ' Z Nifl dqdfme)d6 and.“ Q2113, d6 

5 ”PM" ”:13 

is meant integration over that region of phase space in which the fit 

is being formed (defined by the interval in M and t). The sum over s 
123 

is needed if events from more than one energy 5 are used. Then, N5 is 

= N .  the number of events of energy 5 and NINPUT I s 

One can, for convenience distinguish between two kinds of conditions 

when A # 1 over the whole of phase space. 

(a) It might be decided to reject some events because they are felt to 

be unsatisfactorily measured; for example, if the reaction 

K-p + K_n_n+p is studied at 10 GeV/c in a bubble chamber, events 

with a fast K— and a fast n- often give fits to two reactions, 

corresponding to interchange of the K_ and the w_; in ref. [3L 
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such events are removed from the analysis - at the expense of 

increasing statistical errors - and are corrected for as if they had 

not been detected in the first place. 

When events are removed in this way, A is either 0 or 1, depending 

on the position in phase space. The region of phase space over which 

A = l is referred to as "cut phase space" and one could write 

wAcl‘t :— flad'f 

human (“T 
where "uncut phase space" is the whole of phase space over which a 

fit is being performed. It is for this reason thatuififdt is 

referred to as “cut integral" in the Illinois program, even when A 

varies over phase space. For the cases where A = O or 1 there are 

routines called CHRM 10 and CHRM 11 where the acceptance is applied 

to the experimental and Monte Carlo events (used for producing 

integrals) respectively. 

The detection efficiency of one's apparatus may not be 100% in which 

case A can vary over phase space. In this case there is a routine 

BOBK for applying to the Monte Carlo events that acceptance which is 

believed to exist for the experimental events. 

Now, since wA is the probability of finding an event 

This condition is maintained throughout the fitting procedure by 
u. a. 

n I I replaCing £"M..,=r"fl'-1 at every step by 3""1'T‘PH‘1/I9Adt . 

All this normalization condition says is that, if an event is being 

used in the fit, the probability of finding it somewhere must be one. 
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(2) Interpretation of density matrix elements and C's 

The normalization discussed at the end of sect. 4 ensures that 

ha! _— P - Jm‘mcd'c = 1  “={Tn1‘c‘lfl} 5.6 

This condition will be used later in this section. 

— r. "‘-f'¢"'n""' 
(10,") C ? n  3";1‘1 

"‘- 
Now the fit actually determines the products( 

(see equation 5.4) which are here called "full density matrix elements". 

P 
If there are more than one decay mode of a particular J : 

"zr'ljn . . . . . 
one C can be fixed to an arbitrary complex number. For Simplicty 

this is chosed to be one. 

At this stage one defines the "predicted number of events" to be 

the number of events in the whole of phase space for a detection efficiency 

A = 1; it is given by 

Nnemu-sn =5 “N'rjmdt 

_ a“. v' 
= Nubia-'fi‘IYCTPQ .9 f@n;;liimfl:1lgnd:t 5. 7 

7M1 T'rflo‘ 

I'M In. 
3QF4N1. 

Using equations 5.6 and 5.7 it is now possible to interpret the quantities 

S a n d a .  

P ' P' 
For the case when{J MnILjn} ‘ :{ J' M'nIL'j'n'} , equations 5.6 and 

5. 7 allow one to interpret""~P lE’Qi'r’pfl‘P 

number of events of the type {JP Mnkjn}. 

p . as the predicted 
"”W ."‘ {L 
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From equation 5.7 alone the quantity 

Mk 6",.) I‘CIJ'QI.'“I;W m NIP. #1: + “MOHIHIIHQQJK 

' "’ ' "1%) "'1‘1'” ' «pl-«J L31" [#19, 9"n‘ 

is interpreted as the predicted number of events which exhibit interference 
P - ' . 

betWeen combinations {J Mnmjn} and{J'P M'nSL'j'n'}. 

This interference, when integrated over the whole of phase space, (i) 
P l  

M'r. } and when n 74 n'; see Appendix C. P 
can only occur when { J Mn} E { J' 

Amongst other things, this means that it is not possible to have interferente 
* * _ . 

between K (890)17 and K (1420)“ decay modes of the same { JPMn}; and 
P 

also, that s- and d—wave decays of a given { J Mn} into a given mode do not 

interfere. It should be noted that the conditions derived here for the K_1r 1r 
system do not all carry over to the situation where one has identical particles. 
(ii) Imaginary parts of density matrix elements can only be determined 

by measuring interference terms between states of different 'n or j, see 

Appendix D. 

To illustrate the interpretations of (—3 and 5 one considers an example. 

Assume that the only‘JPMnljn} combinations used in the fits are 

[1+0 + O 115 andil+0 + 0 12}, corresponding to the dominant s-wave decays 
* 

of the Q via K (890)1T and Kp respectively. The fit determines 

N a paws mums}? (k’lr) - wed; z N uh) 
1mm 

*flP‘RTIEflOhl‘fi“ PM a PMd-Pdflmtgf (5:3)-wubg EN (K!) 

“won "'1" on- f( -'-_=:N 1m: F6 V 
N’"'“'1 N C )  C 31". 1, We 9 0”“) M03!) 4 T ( R “6”“) 

would be the If the last number were zero then the _rati°.'z...”l/IE "’ " 'I a 
can be written 

[Elofllll‘ a 
. ”Fm 

K*1r/Kp branching ratio. The quantitt' ‘" )t ‘ .“ 
* 

R exp (iA¢) where A¢ is the relative phase of the K 1! and Kp decay 

modes . 
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Remembering that one of the 6's can be put equal to one; in which case 

firm“ ,3' PH gives the number of predicted events decaying 

via that particular mode whose C is put equal to one. 

3. How the positivity constraint is applied. 

Next, the incorporation into the fit of the constraint that the 

density matrix of the (Knn)—system must be positive definite will be 

discussed. In this analysis, it is the "reduced" density matrix a which 

is kept positive definite. If 5 is positive then so is the "full" density 
_*-n-. 

matrix C C! 

A hermitian matrix (in this case the density matrix) can be described 
I) 

by its N eigenvalues AI and N normalized eigenvectors v( according to 

the re lati on 

R ¥ 1 h) (fl (‘3 CI.) . . .. u) (u) £- ._ AH”; v5 14‘ 1!“. V; + An”; 0‘. 5.8.1 
0 

H
 

"I
 

a 
(u) m Vm" m . . . . (N) cu) 

Vi V5 V5 *’ V 1  V3 5.8.2 

$153" P 
wherevf; A“: i and the suffices i and j refer to J Mn-values. This 

relation is just an unfamiliar way of expressing the fact that a hermitian 

matrix can be diagonalized by the unitary matrix formed from its eigenvectors. 

(For simplicity of presentation only, assume that only states with 

n. = + l are present. Exactly the same holds for the n = - 1 part of the 

density matrix) . 
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By transforming from "density-matrix—element-space" to "eigenvalue- 

and eigenvector-space" the non-linear positivity conditions on the 

density matrix elements become very simple, namely that AI 2 0. These 

are imposed at every step in the fits. In passing, the normalization of 

the eigenvectors is taken into account by using the angles which specify 

them. 

4. Implications of having a recoiling spin 1/2 particle. 

Now that the "eigenvalue-and eigenvector space" has been defined it 

is possible to discuss some very important implications of having a 

-recoiling spin l/2 proton (as opposed to a recoiling A or anything). 

Equation 3.22 or 4.8 shows that the existence of a recoiling proton 

means that an (NXN)-density matrix is defined by two N—vectors (4N real 

numbers) and has only two non—zero eigenvalues. (In the “reduced" density 

matrix 5 being determined, some deviation from this ideal situation is 

expected because approximations have been made. One possible example is 

that equation 4.7 assumes the same dependence on s, t and M123 for 

helicity-flip and helicity-non—flip amplitudes in the interval being 

fitted.) 

2 
The fitting program determines a density matrix which has N real 

parameters in it. 

It would then seem, at first sight, to be possible (for N a 4) to 

determine the 2N complex amplitudes of equation 4.8, i.e. to perform an 

amplitude analysis. This is not so and the reason for this will now be 

discussed. 
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Tne .density matrix being measured is of the form 

m" (5’ «3* q) 
. —  

= ‘  + 5.9 

is T? 1‘1‘ N. N 
The question is: "is it possible to determine uniquely the amplitudes f 

by measuring pij?". The fitted density matrix in the program is given 

by 

a)" * w ‘fifffflfln : V i  VJM + V?) vs 

see equation 5 . 8 . 2 .  It is tempting to identify these V with the amplitudes 

f. However, this cannot be done because if 5 can be formed from the 
(l) (2) (l) 

vectors V, and Vi it can also be formed from the vectors Wi and 

Wiz) (see ref. [16]), where 

I i i “ 0) A.“ rm? v; 
:- 5.10 

1) '. i - J (t f I‘A‘ es! A 2,, (tr-5P“ d.) ' V. ’ 
; E 

The matrix in equation 5.10 is the most general unitary matrix, with four 

free parameters (0 E A < l and G’B and Y can take any values). 

All that equation 5.10 says is that a rotation in the spin space 

of the proton does not change the density matrix, and it is therefore 

impossible to do an amplitude analysis if one sums over the spin projections 

of the recoiling proton. However, if, for example, one knew one particular 
TJPMn 

'M' 
hence an amplitude analysis performed. 

' M 
and'f:&rlthen the parameters A, a, B and Y could be determined and 

Q 
' I 
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However, bearing all this in mind one might still ask "Is it still 

possible to learn something from the eigenvalues of the density matrix?". 

It is. If the density matrix found in the fitting program has two non—zero 

eigenvalues then both spin-flip and spin-non—flip amplitudes are present. 

If, on the other hand, only one non—zero eigenvalue is found, it is not 

possible to say that only spin-flip OR spin-non—flip is present. This can be 

seen by considering the case when the ratio of the spin-flip amplitude to 
P . 

the spin-non-flip amplitude is the same for all J Mn states. This 

situation- normally called “spin coherence“ - is described by 

? ———‘ P 
ar- _ .  

T11 = a ”7'1 5.11 
n f l  ”T? 

P _ 
where a is an arbitrary complex number, independent of J M‘ and where T 

is defined in equation 4.8. In this case 

__, ——— ? "" I“ 

f .—..(I+|a\‘) 71:131. 1 1 5.12 
‘ V" '1“? Ipn1’1.vn\'\ 

which can only have one non-zero eigenvalue. Incidentally, a special case 

of this would be the complete absence of either helicity-flip or 

helicity-non-flip amplitudes.This situation implies maximal interference 

between all states. 

5. Brief Discussion of errors. 

Before going on to make a few remarks about how the errors are 

calculated it is worth saying that as a result of the density matrix 

having rank 2, the number of independent parameters in the problem is 

(for N a 4) reduced to 4N — 2. This makes the errors on the N2 (inter- 

dependent) parameters calculated by the fitvSmaller than might have been 

expected had they been independent. 
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A few remarks about the error calculation will be made. Let the 

log-likelihood function be written in the form of a Taylor expansion: 

3"— ( ' 0 - C ‘ ‘- . L = E: + (3.1) 9" P“) +-;-:.‘Rs"«3———3§ (9r 1'9 +-- 
“ h‘ko ‘ P‘ *P P‘BP: 

my; 
L6 1'2““. “giggi- gusty? ‘ 

where Pa are therparameters to be fitted and the superfix "0“ corresponds 

”
I
 

to the starting value of any particular iteration. 

Then, in the absence of constraints, the errors on the parameters 

Pa are given [15] by r 

5'; SP9 =(G 1'? 5.13 

where the (G_1) are evaluated at the final set of parameter values i.e. 
as 

the values of Pa which give the maximum likelihood. 

The same formula for calculating the errors is used in this analysis, 

BUT: 

(i) even if the maximum value of the likelihood function isfound to be 

in the physical region (i.e. satisfy positivity of the denisty 

matrix) there is a chance that a positivity-violating set of parameters 

might be within the symmetric errors given by equation 5.13; 

(ii) if the real maximum value of the likelihood function happens to 

correspond to one or some of the eigenvalues being negative, the 

values of the parameters used to calculate (G-1)aB are those which 

correspdnd to the situation obtained after the constraints are applied. 

These are “off-maximum—likelihood" values ahd so Va # 0 which implies 

that equation 5.13 is not strictly true; 
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(iii)the error calculation does not take into account the constraints of 

equation 5.5 and of the positivity of the eigenvalues of the density 

matrix. 

Despite, these difficulties, there is reason to believe that the errors 

calculated according to the method 'just described are not without meaning. 

Starting from the results of a particular fit on experimental data, 

several sets of "theoretical experimental data" were created by Monte Carlo 

methods. These were then fitted like real experimental data samples. The 

results were in agreement within the errors. 
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6. APPLICATIONS TO OTHER SYSTEMS 

The formalism derived in section 3 for the reaction K-p + (K-fl_fl+)p 

is, apart from small modifications, applicable to the study of three- 

meson systems produced in other reactions. Examples are 

i : : + -  
1r'p+(1TTTTT)P 

i i + 
K p + ( K K K ) p  

+ -  ++ 
np+(1r1r1r°)A 

+ 0 
w p + (w n n )n 

K P + (n-noiom 
+ 

and K p + (n w°K°)p. 

Furthermore, there are special cases where the analysis can be applied to 

a 4-meson system, for example 

1 : + - .  
K p + (K n N w°)p A 6.2 

+ —  

where the (n n w°)-system forms an m. 

This section is in two parts: Sect. 6.1 describes the modifications 

needed to make the analysis applicable to various three-meson systems 

while sect. 6.2 concerns itself with the 4-meson case. 

6.1 Three—meson systems. 

The only difference between most of the reactions of type 6.1 and 
_ — — +  . 

the reaction K p + K n n p used in sect. 3 is that the amplltudes have to 

satisfy certain restrictions arising from the identity of particles. 

For example, consider the reaction 

- — o—o 
K p + (W N K )p . 
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If the (Rum-system is assumed to have I = 1/2 the (Tr—1r°)—system must have 

I = l. The total amplitude must be symmetric with respect to interchange 

of the two pion's and so the :space part of the amplitude must be 

antisymmetric with respect to this interchange. 

The symmetry properties of the BTU—system are more complicated and 

have been extensively treated in the literature (e.g. ref. [18]) and will 

not be discussed here. 

Nevertheless, one presents here .the correctly symmetrised amplitudes 

needed if the program is used to study the reactions like those in equation 

6.1. 

‘ _ {1'0" ‘ 
The symmetry constraints force certain for different couplings 

(n-values) to be equa‘l and so, instead of the "9 1" of equation 5. 3 2 one uses 

linear combinations of them. The indicesa'fnllos , all but n, are omitted. 

Table 6.1 gives examples of various amplitudes. 

' 6.2 Four-meson systems. 

Consider reactions of the type 

K p + 11’ 1r 1! K p 

with the. (n+1r-1ro)-system forming an m. Thinking of this as a b + 1 + 2 + 

3 + 4 + 5, the equation corresponding to equation 3.1 is 

{ A  = < E F 1  P3 1’)“ E A  {Hulg fig“)
 613 

“Dir 

The set of twelve variables“, Pf‘E-E} can be replaced by the equivalent set 

{rug Hnu, § 6 ”It! “ P Y Su 5;, '5' where 

p 3 3 6 = 2 1 1 h  = momentum of (1234)-system in overall CM system; 

M1234 = invariant mass of the (1234)-system; 
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¢, 0 are the azimuthal and polar angles of the (123)—system in the 
(1234)-rest system; 

M123 = invariant mass of the (123)—system, ire. the w—mass; 

The quantities a,B,y,s12,s are the 5 variables which describe the (3w)—system: 
23 

a,B are the azimuthal and polar angles of the normal to the (3n)-plane 

in the (l23)—rest system (they are two Euler angles); 

Y is the third Euler angle, specifying the direction of one of the pions; 

s are the effective masses of two out of the three di—pion systems 12’ $23 
(Dalitz plot variables). 

Changing to an angular momentum basis (of equation 3.5) gives 

.fibx =EE" Jfl-D Igggwgflg; (“6”“) 37 T. ‘Cs’tinuluflnsfih5u5 6.4 

3 M AAAbArK' 

where 

J = spin of the (1234)-system; 

A = helicity of (1234)—system in overall centre of mass; 

j = spin of (123)—system; 

= helicity of (123)-system in (1234)—system; 

K = projection of spin j along the normal to the (3n)—plane; see ref [7]. 

For the special case where the spin-parity of the (3N)-system is l“ (the 

w—meson) . 
7 J(=I)  

E} 555 (3 6.5.1 

Taking this special case, the index K can be dropped and equation 6.4 

AJEJE‘ ic¢9d)da(l)§)l\315(=d 6-5 

M A  A 
TAA ’ 

reduces to 
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Ignoring the $12 and $23 dependence of g (e.g. by integrating over 

12 and 523) it is then seen that equation 6.5 has the same form as equation 

3.5 because the w is a JP = 1- particle. 

This shows that the reaction K—p + (K-w)p and similar reactions 

can be inVestigated in terms of the formalism that has been developed to 

study the 3-meson system. 
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APPENDIX A 

By integrating the decay distribution over the Dalitz plot 

variables and also over two of the three Euler angles, the l-dimensiondl 

distribution of the third angle can be calculated. Although, in 

practice, these l-dimensional angular distributions are appreciably 

affected by cuts on the data, it is nevertheless felt thatit is 

worthwhile discussing them in some detail because they provide clues 

as to which states should be included in the fit. Remember that the 

axis of quantization is the direction of the incident K. in the 

(Knfl)-rest system; that is the so—called t—channel is being used. 

Using equations 3.19 and 3.20 the full decay distribution can be 

written (the same is true after the assumptions of chapter 4 have been 
made) as 

w(a,¢,zs)= N(0,¢,:s) +~ u(9..¢,.'a) m 

where the natural parity exchange (n = 1) part N(6,¢,Y) is given by 

WW) 1 1 ,r“ f'i'w 
Nan): m(h¢+fl)cm('\‘4>+*‘1) u c1194?” “AG“ 9 5  ' A, la 9' A" ‘3' 

to Q.“ “1"."1' A'q3l I 
w' MM) N010) , ’ 

and the un-natural parity exchange (n = -1) part U(e,¢,y)is given by 

("’0' 3 3| ( 1%,)X'C-‘I'éI-l 

WW)" rummwn'wflf “) ,. d.$°’<‘.‘.‘v°"“~' G, 7,. I wit 
my. my “WWW 
w'NmA‘rzo) 
This distribution W has two useful symmetry properties. The first 

is that it is unchanged when one replaces (¢ 6 y) by (-¢,6, -y). This 

is due to parity conservation in the reaction a + b + l + 2 + 3 + 4. 

The parity operation reverses all particle directions (including those 

which are used to define the coordinate frame). This symmetry 

condition means that it is only necessary to look at ¢ and Y in the 

range (0, n). 
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The second symmetry relation is that, if all the JP states have 

the same parity P, then W(¢,6,Y) is unchanged when one replaces 

(¢,6,Y) by (n + ¢, w — 6, n - y). To prove this one needs equations A.l’ 

3.19 and some properties of the d—functions. 

These two symmetry conditions imply that, if only states of one 

parity are present, each of the one-dimensional angular distributions are 

symmetric about n/2.This applies separately to the natural and un-natural 

parity exchange parts because they do not interfere. 

For completeness a summary will now be given of what can be learnt 

from the one-dimensional distributions. 

The ¢-distribution 

l. A Fourier analysis of the $~distribution can give a lower limit to 

the makimum value of J required. 

2. If only states with A = A' = O are present, the ¢-distribution has 

to be flat. (Such a situation is known as t—channel or s-channel 

holicity conservation depending on whether one is working in the 

Gottfried-Jackson or the helicity frame). 

3. If the distribution is not symmetric about fi/Z then there are 

contributions from states of different parity and,¥s differing by an 

odd number. 

The y—and e—distributions 

Again a Fourier analysis can give a lower limit to the maximum 

value of J required and asymmetry about fl/Z can be taken as evidence of 

the existence of states of different parity. 

It is stressed again that experimental biasses can affect the 

one-dimensional distributions and so care must be taken. 
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In the (123)-rest system, two sets of coordinate axes can be 

defined — the so—called "s—channel" (helicity) and "t-channel" axes 

(Gottfried-Jackson). 

(S) 
The s—channel system is given by: 2 

9 ( 5 )  

.(5) 
x 

(t) 
The t—channel system is given by: 2 

(t) 

-(t) x 

All the vectors in the above definitions are 

5 
Notice that Y( 

t ) = Y( ) = 

= —§4 

_ - (S) 
_ Pa A 2 
-(S) -(s) Y A z 

_ - .(t) 

(t) -(t) — z — A . 

in the (123)-rest system. 

normal to production plane. 

The two angles, 9 and ¢, will now be defined with respect to a 

set of axes (2, 9, 2) which is the same as (2 

(t) 2”), 9 , 2(t) ( ). 

cos 6 = p3.2. 

4
}
 

I
I
 

(s) (5).? . 2(5)) or 

azimuthal angle of particle 3 in (2, 9, 2). 

To define the angle Y it is necessary to define a new set of 

axes ( 2 ' ,  9', 2') in the (12)—rest frame: 
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2' = p3 

y l = 2 A 2 '  

2 | = ? I A  2 ' :  

Y is the azimuthal angle of particle 1 in this system. 

The angles 9 and 613 are defined by: 23 

cos 9 = p2 . p 
23 3 

cos 913 = §3 - P 

They are independent of whether s-channel or t-channel systems are 

being used. 

The angles x12, x23 and x13 (which are also independent of whether 

s—channel or t—channel systems are being used) are defined in the (12)—, 

(23)- and (l3)-rest systems respectively. Thus: 

cos x = -P . p1 evaluated in (12)—rest system; 
12 3 

cos X23 = —pl . p3 evaluated in (23)—rest system; 

cos X13 = -p2 . p3 evaluated in (l3)—rest system. 

Notice that they are not cyclically defined; this is so because 

it is easier to demonstrate the symmetry between particles 1 and 2 when the 

angles are not cyclically defined. (The program was originally written for 
- - + 

the (n n n )-system.) 
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APPENDIX C 

In Appendix A the distribution given by equation 3.19 was integrated 

over all variables except one Euler angle and the l—dimensional 

angular distributions thus obtained were discussed. This appendix discusses 

the interferences which remain when (a) one integrates over the three 

Euler angles (i.e. what interferes on the Dalitz plot?) and (b) one 

1 and s2. integrates over ¢, 6, Y and s 
3' . 

(a) Orthogonality of the rotation matrices Dngflafl‘) implies that it is 

impossible for states of different J or M to interfere on the Dalitz 

plot. Furthermore, equation 3.15 implies that states with different 

parity cannot interfere on the Dalitz plot. 

(b) The only interferences which can occur when one integrates over 

¢, 9, y, 51 and 52 are interferences between decays of a particular 
P 

IJ Mn>-state into final states of different n. 

A few illustrative examples are given: 

~I: * p 
(i) The K (890)“ and K (1420)w decay modes of a particular J Mn>-state 

can interfere on the Dalitz plot, but there is no interference between 

them when one integrates over ¢, 6, y, s and s ; 
1 2 

+ 
(ii) The same is true for the s— and d—wave decays of the IJPMn> = I1 0+> * . 

state into K (890)n; 

* P 
(iii)The K (890)w and K9 decay modes of given J Mn>—state do interfere 

even after integrating over all five decay variables. 

- - + 
It should be noticed that the conditions derived here for the (K n n )- 

system do not all carry over automatically to the case where one has 

identical particles. 
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APPENDIX D 

The aim of this appendix is to discuss two questions. First of all, 

in the study of di-meson systems it is well known that there are ambiguities; 

that is, that giVen one set of parameters which describes the data it is 

possible to construct another which describes the data in the same way. 

Is the same true for three—meson systems? The second question is 

concerned with the measurability of the imaginary parts of off-diagonal 

density matrix elements. That there must be off diagonal elements follows 

if more than two {JPMn} combinations exist because the presence of a 

recoiling nucleon implies that the density matrix has rank 2. A rank 2 

matrix with more than 2 non—zero diagonal elements must have non-zero off 

diagonal elements. These are, in general complex. In the special case 

when all the production amplitudes are relatively real - "phase 

coherence" -.the off-diagonal density matrix elements are real. 

It will be shown that the answers (for an alternative treatment see 

ref [19]) are related to assumptions 3 and 4. For clarity of presentation 

the discussion is in two parts, the first part treats the situation 

when assumption 4 is NOT made while the second part deals with the 

implications of making this assumption. 

Assumption 4 not made. 

It is important to stress that if assumption 4 is not made then 

for every decay mode (specified by j, k and n) there exists a different 

density matrix. 

a) Existence of ambiguities. 

Consider equation 3.19 together with assumption 3 (equation 4.4). 
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of a fixed n, l = O and j = j' = l which might correspond to s—wave 
* 

decays via K (890)“. In such a situation it is not possible to measure the 

imaginary parts of the interference the M = O and M' = 1 amplitudes 

. 0‘0 Ola 
n.2, g m  f I J . 

1’01», WH- 

Assgggtion 4 made. 

1391393 
Assumption 4 replaces the density'matrix JD by the 

-" w'n ,I‘P'H'q 
"reduced density matrix“ r . and camplex decay parameters 

1"15‘ ,7. M 
corresponding to various decay modes. It can be seen an» 

that different decay modes of a IJPMn>-state are associated with the 

same density matrix elements. 

a) Removal of ambiguities 

The ambiguities which exist when assumption 4 is not made are no 

lénger present because the decay modes are now dependent on each other. 

b) Measurement of imaginary parts. 

Consider equation 5.2 written in the form 

—— ’t 
(.0 = Z:- fbb‘ Nb “(5‘ D.3 

65' 

h Z 1' TP w ere _ __ “'3' [in 

'1 1 J 
efn 

1 
Equations 5.3.1 and 5 . 3 . 2  can be used to show that 0“; JV, is 

always complex. Consequently both real and imaginary parts of all density 

matrix elements after explicity in equation D.3 and are thus measurable. 
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-lj,uu¢""nu 
“Elna-+1) (11%!) fr? 

WW5») awn-gal) iMPQ'e‘ c” r 

m, ’ ' m 
' | 'ij P‘ u. I 

X(D<fl+"] :5.)(Dfi :rJ*+ "IDS; )(Gv 3' 4*) G1.“ 2 '  

M9 DH ‘v' 

If j = j' and n = n' it is possible for more than one set of density matrix 

elements to give the same decay distribution 1» - ambiguities can exist. The 

simplest example is when j = j‘ = O. In this case, for fixed 52, equation 

3.19 describes the decay of systems of various spin-particles J into 

two spinless particles - like a decay into two pions which is known to.have 

ambiguities. 

b) Measurement of imaginary parts 

For simplicity, equation D1 is written in the form 

=Z7. “m: 51"“ 

Zflfiflnf )“4” “my “fl‘é'kl‘nol [Mal 

where a 5 {1-a (1"‘5 

and q: = gm...) — yam.) 
From equation D2 it is seen math}... is measurable if cosd: ;‘ O somewhere 

D.2 

on the Dalitz plot, while gent. is measurable if sin¢ a! O somewhere 

on the Dalitz plot. The only imaginary contribution to a": mu. comes 

from the product 6 W )  ’V (VI) which is therefore responsible for the 

measurability of the imaginary parts of the density matrix elements. 

However, even now, not all imaginary parts of density matrix elements 

can be determined. This is the case when n - n' and j = j' because the 

product 0w“ qfi’becomes reeland hence only the corresponding real part 

of the density matrix can se determined For' example, consider the, case 
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So, when assumption 4 is made (and one has more than one decay mode 

of a particular state) the ambiguities discussed no longer exist, and 

it is in principle possible to measure the imaginary parts of all 

density matrix elements. If there is but one decay mode,the situation 

concerning both the ambiguities and the measurability of imaginary parts 

is similar to what it was before assumption 4 was made. 

To end, a cautionary remark is made about the situation when there are 

identical particles. Consider for example, the case of the (fl_w-fl+)-system. 

Here, assumption 4 only serves to reduce the number of parameters being 

fitted. The removal of ambiguities and the measurability are already 

guaranteed because the imposition of Bose' symmetry ensures that different 

decay modes interfere. 
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*1 
t 

r—-——-—-——---— ~-— -~& 

J P 2 M n Decay mode 
a—- <- —————————-«---1 * --—~—--—~—v 

o — P o + f K - 

O - P O + K0 

1 * 
1 + S O + K W 

2 1 + S o + Kp 

* 

1 + S 1 + K n 

Table 4.1 
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Table 6.1 
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Example of set of states given to show how assumption 4 

reduces the number of parameters. 

Table of amplitudes to be used in Illinois Partial wave 

Program for various three-meson systems. 
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