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ABSTRACT

The Illinois group has made a partial wave analysis of the reaction
mp > (3mM)p. We have modified the Illinois program to study the reaction
Kp >~ (Kmm)p. In this paper a detailed description is given of the partial
wave analysis of any reaction of the kind: meson + proton -+ proton +
(3 mesons). It is also shown that, with little modification, the method
can be applied to the study of special 4-meson systems like Kw. A dis-
cussion is given of the physical assumptions used and of their implications.
'wo questions are discussed: "Are there ambiguities like the well-known
ambiguities encountered in dimeson studies?" and "how is it possible

to measure imaginary parts of density matrix elements?"
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1. INTRODUCTION

Recently, a powerful method of performing @ partial wave analysis
of the (ﬂiﬂin:)-system was introduced by the Illinois group and applied,
by that group, to the reaction m p - (3w) p at various energies{1,2]
The authors have, more recently, been involved in applying a modified

- - 4+
version of the Illinois program to the (K 7 7 )-system [3],

The program divides naturally into two parts. The first part
calculates amplitudes and special normalization integrals of these
amplitudes over relevant regions of phase space, and prepares all the
necessary quantities needed by the second part of the program. This
latter part is a very fast fitting program designed by G. Ascoli for fitting
density matrix elements 5 and certain "density parameters" c , imposing

the constraint that the density matrix must be positive definite.

There is no easily available, detailed, discussion of the analysis.
Although most of the relevant formulae are in D.V. Brockway's Ph.D.
thesis [4] , there is nowhere an adequate discussion of the assumptions

made or of the method of analysis.

Since it appears that there will be a great deal of time spent on
the study of three-particle systems with this program, it is felt that
it is worthwhile presenting the formalism in more detail than is

customary [5-10] with the following aims in mind:

(1) to state clearly what assumptions are made and to discuss

their implication and validity;

(2) to try to give a presentation which will be of use to future

users of the Illinois program.
No attempt is made to describe the detailed workings of the program.

It is stressed that this presentation is intended for experimentalists.
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2. PLAN

The presentation of the formalism is given in sections 3, 4 and 5.
Section 3 gives a derivation of the formula for the cross-section for
a reaction of the type a + b > 1 + 2 + 3 + 4, Section 4 presents and
discusses the assumptions made to reduce the numbex of parameters to a
workable number. Section 5 describes the method of analysis. Section 6
extends the formalism to reactions other than K-p - K_ﬂ-ﬂ+p which is the
reaction in terms of which the formalism is presented. In Appendix A
there is a detailed discussion of what can be learnt about the (K_n-n+)
system from a study of one-dimensional angular distributions alone.
Appendix B contains the definition of all angles and reference systems
used. Appendix C discusses the question of interferences between different
states, Finally, in Appendix D, two important questions are discussed:
firstly, "are the solutions to the Illinois partial wave analysis of
3-particle systems unique ?" and, secondly, "how is it possible to

measure imaginary parts of density matrix elements 2"



CERN/D.Ph.II/PHYS 73-34
3. THE FORMALISM

The state of a free particle of mass M and spin j can be completely
specified by |gA[Mj]> where 3 is its 3-momentum and A its helicity.
The quantities M and j (invariants of the Poincaré’group) are.put: in brackets
because they are often omitted.

Now consider the reaction K_p - K—ﬂ_ﬂ+p to be a special case of
the general reaction ab + 1 + 2 + 3 + 4 where particles a, 1, 2 and 3
are spinless while b and 4 are fermions. In the helicity representation

just described, the amplitude for this reaction can be written as

f = GEEEMUIERAY o

where the momenta and helicities are taken in the overall centre of mass
system. The spinless particles in the final state are separated off

- - 4
because this analysis is a study of the (K m 7 )-system.

The aim now is to derive equation 3.19 for the cross-section
in terms of variables in which the analysis of the (K—ﬁ_ﬁ+)—system can
be described conveniently. This procedure involves five changes of basis
or of variables. At each step, an attempt is made not only to present
the necessary formulae, but also, to motivate and describe in a simple
way what physics is in that particular step.

From the experimental point of view the basis 515233> is very
natural because the momenta are what one normally measures. However,
theoretical results are usually more clearly presented in terms of an

angular momentum basis.

Before introducing such a basis, it is convenient to define an

. . b i Al o
intermediate one. The set of variables'{p]pzpB[MlM2M3]}is completely

equivalent to ﬁhe seti eﬂ ”u’i C] ”as‘y'l’l:"uﬁ,li;]}where
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> - - -
P =p, + P, + p., = momentum of (123)-system in overall centre
123 1 2 3
of mass;
M123 = invariant (effective) mass of particles 1, 2 and 3;

® and © are the azimuthal and polar angles of the (13)-system in the (123)

S s s :
rest frame; either the helicity system (x( ),y( ),z( )) or the Gottfried-
Jackson system (x(t), y(t),z(t ) can be used, (see Appendix B);

M13 = invariant mass of particles 1 and 3;

Y and Y are the azimuthal and polar angles of particle 3 in the

(13) -rest franm; see Appendix B.

Instead of coupling particles 1 and 3, one could just as well have
coupled 1 and 2 or 2 and 3, in which case Yy and x would have been angles
defined in the (12)- or (23)-rest frames, while ¢ and © would have
described the position of the (12)~ and (23)~systems, respectively, in

the (123)-rest frame.

It is stressed that these couplings give three different but
completely general descriptions of the (123)-system. It is not assumed
that the (123)-system decays via a two-step process. "Direct decay™"

into three bodies is included in each of the descriptions.

In terms of this new basis equation 3.1 can be written

f

Now, in an attempt to provide some "feel" for the link between the
. :
{R‘IJ M.;;IG Hq \PX7} -basis and an equivalent angular momentum basis,

one is reminded of the fact that the state of a quantum-mechanical

= <{B,M.,¥ 8 MWK, A Ju l};,pbx,,> 3.2

b)"c-

rigid rotator (two spinless particles "going round each other") can be

exXpressed in terms of le¢>—states or |£m>—states and also, that

" X
£86|tmd =Y¢ (0,4) = fe’-‘_:% _’D'::) (¢'O,o) 3.3.
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The 3-particle state (é:, ",,;}G n.;q’x>can be pictured loosely as two
such systems - with particles 1 and 3 going round each other as well
as (13) and 2 going rou:d each other. It seems not unreasonable, then,
and is rigorously demonstrated in ref. [9], that the variables &, ©

Y and ¥ can be replaced, by J, A, J and A where

J = spin of (123)~-system,

A = helicity of (123)-system in overall centre of mass,
j = spin of (13)-systemn,

A = helicity of (13)-system in the (123)-rest system.

Notice that, if the z axis of the (123)-coordinate system is chosen to be
the direction of motion of the (123)-system in the overall centre of
mass,then A is the same as M, the z-component of angular momentum in

the (123)~-coordinate system.

The link betweenlpuﬂ.uée Mis Y 7(> and|P ﬂA[JNn.]N.;J X>
B My OIS PY | T T ] 3 [T Utg 00 Dm0,

Expanding in terms of these 3-particle states of definite angular momentum,

equation 3.2 becomes

£ Ef— [E D oD 60 Fanlptdtan ErJulBEA)
AJA

2 Fﬁ[_;r DM@ 6N) d 4, (X) 3 (S' t, Mas,Ma) e

JAJ AN A

- - - +
In terms of the reaction K p - K 7 7 p,the function g is the
- - - +
amplitude for producing, from an initial K p state, a K 7 m p state

- - +
whose (K 7 7 )-system has spin J, mass M and helicity A in the

123
overall centre of mass system while, at the same time, particles 1

- - +
and 3 have an invariant mass M spin j and helicity A in the (K 7 7 )-

13’
system; the function g also depends on s, t,Ab and A4
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T
The product.di 1)3’ R is the Dalitz plot amplitude, which, in
Ay
general, is also a function of s and t. Notice that, for fixed M123 and

2 2
i i o M M., .
Ml3,cos X 1s linearly rolatedto 23 ©OF 12

The angles &, € and Yy describe the orientation of the plane of

the (123)-system.

At this point, a further change of basis is made - to states of
definite relative orbital angular momentum 2 of the (13)-system and
particle 2. This is motivated by the fact that, near threshold, only
small ¢-values contribute, a point which will be discussed later. The
amplitude g is now replaced by h, whose meaning differs only in that
A is replaced by #£. Explicitly

7

. * . - q ﬁ
gﬂlo\@*: % Llo.l'\ l75>4613/\r_7ﬂm‘]‘1,” Q/.B.X'v{u{h B &Ab>

o TR
= Ejzhf 4(03”7'0 g' J C:,t/r"hu,"l.s) . 3.6
2T+ AAbA#

where <!ojh |T ,\> is a Clebsch-Gordon coefficient.
It is worth mentioning that expressing the amplitude in terms of

these orbital angular momentum states '-e:’/\[fﬂugjﬁ,s J f> yields a bonus
because, in the (123)-rest system, these states are eigenstates of
parity P, see ref. [9];

i.e.

i+{
p ”5,:3:'0 /\[J'T‘(us]ﬂsaj 9> s ","’",3(-0‘” IF,:_‘ zo A D‘;’lus]ﬂgj ?) Seatl

where n., is the intrinsic parity of the ith particle. The product
i p

j+2
P=Nn.n.N (-l)J is then the parity of the (123)-system. From now on the

123
quantity P is included in the state vector.
That[é:,*OAEJN,n7M.3JQ> should be an eigenstate of parity is not

surprising in view of the fact that if a state of spin J is decomposed
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into two parts of definite spin and parity, then a particular 2-value
for their angular momentum corresponds to a definite value for the

parity of the original system.

For reasons of symmetry which will become apparent later when the
(3m)-system is discussed, the coordinate system is changed.The old angles
©, ¢ and Yy are so defined that the situation 0 = & = Yy = O corresponds

, s
to the (l13)-system going along z( ) with the direction of

(s) (s)
zZ

particle 3 being in the x -plane. For this situation, define ©

23
to be the angle between the directions of particles 2 and 3 in the

(123) -rest frame, (see Appendix B),

The new angles ¢ and 6 are the azimuthal and polar angles of particle

3 (the ﬂ+) in the (x(s), y(s), z(s)

)-system (the first two Euler angles),
while the third Euler angley is defined by the direction of the
projection of particle 1 (the K ) onto the plane perpendicular to the
direction of particle 3. The configuration $ = 8 =y = O corresponds to
particle 3 going along the z(s)-axis, particle 1 being in the x(s)z(s)-

plane.

To go from the situation © = & = § = O to the situation 6 = ¢ =y =0
it is necessary to rotate by (n—623) about y(s) and then by m about the
direction in which the (13)-system is moving after the rotation by

(Tr—e2 ).

3
To change the variables in equation 3.5 from ¢, © and § to ¢, © and vy
one can make use of the observation that a state of definite ¢, © and V¥
can be obtained from a state = © = § = O in two different ways: either

a rotation R(®, O, y) or two successive rotations R(O, ﬂ—923, m) and

R(¢, B, ¥). In terms of the irreducible representations of the rotation

group. = DXA - one obtains

¥* * ¥*
1 (5,04) =) Dy, ,9.0) I, (o, m) 500
v



CERN/D.Ph.II/PHYS 73-34

T
The product.digf)gJA R is the Dalitz plot amplitude, which, in
AMAp Ay

general, is also a function of s and t. Notice that, for fixed M123 and
2

2
i i el i .
Ml3,cos ¥ 1s linearly rclatedto M23 or M12

The angles ¢, © and Y describe the orientation of the plane of

the (l123)-system.

At this point, a further change of basis is made - to states of
definite relative crbital angular momentum £ of the (13)-system and
particle 2. This is motivated by the fact that, near threshold, only
small &-values contribute, a point which will be discussed later. The
amplitude g is now replaced by h, whose meaning differs only in that
A is replaced by &. Explicitly

7 = N
=) [HEL LEoA (735 LR ALT Tt &b, [l F 5 B A
gauba,, T LoD sl i, [l A

= T
= )[R CeoAlTdy B0 Gt me)
hedl AAbAQ

where (lojx lT )) is a Clebsch-Gordon coefficient.
It is worth mentioning that expressing the amplitude in terms of

S
these orbital angular momentum states'ﬁL’A[JT1niJr1,sj-g:> yields a bonus
because, in the (123)-rest system, these states are eigenstates of
parity P, see ref. [3];

i.e.

-3 j 0 -3
(° | Pay=0 A[:%.,,]m.a I 0) =/1,4;'~;3(-o"‘ [Pag =0 AEJ?«.,,]M.,JO Siex]

where n, is the intrinsic parity of the ith particle. The product

j+42
P=n.n.n (—l):J is then the parity of the (123)-system. From now on the

1273
quantity P is included in the state vector.
That‘;?,"‘OAEJ'”.nJM.SJQ) should be an eigenstate of parity is not

surprising in view of the fact that if a state of spin J is decomposed



CERN/D.Ph.II/PHYS 73-34

into two parts of definite spin and parity, then a particular f-value
for their angular momentum corresponds to a definite value for the

parity of the original system.

For reasons of symmetry which will become apparent later when the
(3m)-system is discussed, the coordinate system is changed.The old angles
6, ® and y are so defined that the situation © = ¢ = § = O corresponds

to the (13)-system going along z(s) with the direction of

(s)_(s)
z

particle 3 being in the x -plane. For this situation, define 62

3
to be the angle between the directions of particles 2 and 3 in the

(123)-rest frame, (see Appendix B),

The new angles ¢ and 6 are the azimuthal and polar angles of particle

3 (the ﬂ+) in the (x(s), y(s), z(s)

y-system (the first two Euler angles),
while the third Euler angley is defined by the direction of the
projection of particle 1 (the K ) onto the plane perpendicular to the
direction of particle 3, The configuration ¢ = 6 =y = O corresponds to
particle 3 going along the z(s)-axis, particle 1 being in the x(s)z(s)-

plane.

To go from the situation © = & = § = O to the situation 6 = ¢ =y =0
it is necessary to rotate by (ﬂ—923) about y(s) and then by 7w about the
direction in which the (13)-system is moving after the rotation by

(ﬂ—623).

To change the variables in equation 3.5 from ¢, © and ¥ to ¢, 8 and Yy
one can make use of the observation that a state of definite ¢, © and V¥
can be obtained from a state ® = @ = ¢ = O in two different ways: either
a rotation R(®, O, y) or two successive rotations R(O, ﬂ—923; 1) and
R(¢, 8, y). In terms of the irreducible representations of the rotation

group. - Dil - one obtains

¥* 3 *
]i:igéf,eaﬁp) =i§i;gx:1’<4bt>;v) jﬁ3256(o;Tr_‘5311t) 3.8.1
v
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where v is the helicity of the (12)-system, and where, for clarity, A

is temporarily replaced by AlB

If particles 2 and 3 are coupled, rather than 1 and 3, a similar

relation holds, specifically:

’D"’ Z_:b (¢ 0,%) ‘9 (m- B TT)
33

where 913 is the angle between particles 1 and 3 in the (123)-rest system

A23 is the helicity of the (23)-system in the (123)-rest system and where
¢', ©' and Yy are the counterparts for the (23)-coupling of ¢, © and V¥

in the (13)-coupling.

Combining equations 3.5, 3.6 and 3.8.1, (or 3.8.2 for the (23)-

coupling) the amplitude fA A can now be written
b*4
f 3 I 2‘ 3’9
‘E\A el ALLEE WOV)Z__% G "Gt Mny) 3.9.1
b Tun

b SCBEEEY /) sy o)
Gl = ‘Gf-"""' it {LojAn1TAn) Qa.,“’"“‘w"’ Ao ®)
.9.2

4vfzTe

3
i .ff_:u_ Z_Sa 0ehoft) o 1 (a heeﬂ'\"d:_:‘g..l

ﬁj"“'(zs)-_- "’_"“-‘r__” i <1037\=3\TA;9®“ (1'r  We By, ) &‘5‘ %

Lt Jz T4y
23 ) 39,3
- 41 ) @
= BT 06 o maad o L4 o, )rectnd (o)
+1 Aus IMa “:AI-'!»
2
where € = (—l)J+2+j.

Notice that ¥, 9 and 6 are functions oi¢ s

23 13 © ~1—,-S and M

2 123°
In equations 3.9.2 and 3.9.3 the quantities j, £ and x are understood

to have suffixes (13) and (23) respectively.
Notice that in the case of the (23)-coupling there is an extra
ewTT = (-l)v which arises because the particle, whose Yy is used, does not

change,
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If the (l12)=-coupling were being used, corresponding to expanding
- - - -
the (KT m )-system in terms of (K m )-states of definite angular momentum,
+
the (because the direction of the m analyses is opposite to that of the

(K_ﬂ_)—system) equation 3.9.2 is particularly simple, explicitly:

ib. ' .
G:( iln) :-I)"G(‘D’ _____.FW) <onv|7¢7 d:‘: (’K) 3.9.4

L AT+

Use will be made of this in section 6, where the analysis is extended to
-0 0 = .
systems such as (K m m )-system where one expects to require resonances

in all three two-particle systems.

It is pointed out in ref. [9] that the constraints impesed by parity
conservation in the production process reduce the number of independent

amplitudes ‘.,The explicit formula is

T TaArArAy, TR
'ﬂL = P("l) ‘g\ 3.10

/\\bh, _A.Ah—lq
where P is defined in equation 3.7.
Before presenting a final formula for the amplitude fA A one further
br4

change of basis is made. The new representation efficiently incorporates
into the formalism the fact that parity is conserved in the production

b
process. The stateslp,‘;"‘/\[zpﬂ|n] NgJQ) are replacved by the states -
ls-o /\b’” 1'1 f > where n(=%1l) is the eigenvalue of the reflection
"y U D | - S

operator in the (xz)-(production) plane, Y = exp(—iny)P; see ref. [7].

It is shown in ref., [9] that
Y |F:;'0 A[3 M) Msi €)= Perf " [P0 A3ty ) 0 512

Defining

l Eﬁo AT’ 5], j%} = c‘{"":? 0 A5 My Mg ) ta & ‘Efs‘ AL as)n, i1
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J+l )+
where ¢ = P(-1) = (-)J+j i

equations 3.11 and 3.7 snow that

Yl'?ai“ A v ﬂ'“]”'sj ?'D ="’l'§: N A[T n] Me Q"l) 3.13
@ |-€1;=°A[TPN|23] ™ 3 ) pq)"""],‘]"‘]a(")” {f;:;o Ah’ﬂzJ”'Sj”‘l) 3.13a

—/— for A # 0 and c, = L for A =

In other words, the new states fp =0 A7 leﬂ My ) 917
are eigenstates of Y and of the parity operator 6! Incidentally, & is
minus the quantity which is often referred to as "naturality".

For future reference, equation 3.12 is written in an abbreviated

form:

£ na<9) 43) - <)

|7 M ,1 N“,DIM 7+~(e<) 17 -m >]

where A = helicity of (123)-system in overall centre of mass

_ oy (s) _ _(s)

=M = z component of angular momentum of the (123)-system

in the x(s)y(s)z(s)—coordinate system, which is the
so-called s-channel system.
, . , P (s)
To give an example, equation 3.12 says that the basic ]J M > states
+ + +
11>, [l 0> and Il -1> are replaced by the equivalent set of IJ M(s)
states
L
Iy = B b1y - itk
Ife+> = |(*oS
+ ) =41 ; + +_ }
[(F1=7 BArO + -0
_ | P (s) _ (s) -
Notice that [|J M n> states with M 2 O and n = 1 completely span
, P (s) (s)

the space given by IJ M > where -J < M < J.

This new representation turns out to have two advantages. Firstly,
as will be discussed later, the density matrix of the (123)-system is
diagonal with respect to n. And, secondly, for M(s) = 0,

n = +1 corresponds to a {(123)-state being formed by natural parity

exchange while n = -1 corresponds to formation by un-natural parity

s
exchange [11]. For M( ) # O, this condition is true *o leading order in (&).
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sy ':I”Pi’j
In terms of these [J M (or A)n> states, the amplitudes £274v\ A
>
are replaced by ‘{ 41 where ¥
A-h)(f.
T?QJ”I (p:r”e‘,‘ ;ro
Poon, = lhp, * 16 R
AAp Ao Adpde A Ak, 3.14

where A 2 O

Now, using the relation

e fy .
G = €¢V G 3.15
v . -‘9 .

which can be obtained from equation 3.9.2(or 3.9.3 or 3.9.4),the symmetry relation

7 (46,3 =¢0" 7D ch00) e

-A -

and eguation 3.14 it is straightforward to show that

TP

77e;
]C ) 2Th DM(Wth (ch,v)}Z_ G : M 3.17
bl
TA(zo)vq
which, in turn, can be re-written as
Pe l.l (=+1)
J(:\A =) Eh:n- ¢ (N +¥) d,w(a)z G, d M ;1
bty
T Al0)v
+%0; qu(:-i) 3.18
+d 1 ilz:m sm(f\dzwx)d (GJZ___G "
Ady Ag.
T A(2,0)9

Equation 3.17 can be used to write

the cross—section which is proportional to
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ZIfi

Ay,
( L.t (r ( 5 p l.,
= ﬁ'l'ﬂ)(l‘l"h)fmﬁ) C,."C,\.CD *"l i.?)( T). ‘] tr )((7 ") C
1Py
TP0(2,0490, v A'l

TPA (V'
where the density matrix p is given by

(225" 70, \A :r""e',;'q
(5 t '\1113 5, )= (ﬁ. 1 ) Q} 3.20
AAAe, Ny Ay, |
T/\'l,-r A'] '\b A, ¢

It should be noticed that @ is diagonal with respect toy . The sum over )\b
and A4 expresses the fact that the target is unpolarised and that one does not
measure the polarization of the recoiling proton.

Notice that the density matrix ¢ depends, in general, onl, ', j, i'
s, t, Ml and sp. The s2 -dependence implies that the density matrix elements
can vary over the Dalitz plot.

The relationship between thlsf and the one in which the more conventional
b P states are used is - :

= A, + g‘(-t)
a.PA’,’-IlPA‘.l NEA fx A 3 k rl 3-"'\1-3"'-,\‘

Formula 3.19 has been derived using the "s-channel" coordinate
system (x(s), y(s), z(s)) where z(s) is minus the direction of the recoil proton
in the (Kmm)- ~ centre of mass system. Exactly the same formula can be
derived by using t-channel axes (x(t), y(t), z(t)) where z(t) is the
direction of the incident K in the (Kmm) - centre of mass. In this
latter system, A gives the third component of angular momentum of the
(Kmm)-system where the axis of quantisation is now z(t). The density
matrix elements in the two systems are related by a rotation, through the

crossing angle, in the production plane.

Usually the analysis is done in the t-channel because the dominance

of certain states is more marked in it than in the s—-channel.
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Appendix B defines all reference systems and angles used in the

- - +
analysis of the (3mw)-system [1,2] and the (K m 7 )-system [3].

Before going on to discuss the assumptions in the next section,

an important property of the density matrix is discussed.

From equations 3.10 and 3.1l3a it can be shown in a straightforward

manner that

72; At 7e;
ﬁ. " -.:.’Tl(—f)H- ot e\ i 3.21

Using equations 3.20 and 3.21 it can further be shown that

f@?:ij') _='1 ﬁtpﬁq . g‘a‘ ? V' +RI 'a'\. R'.T'Pz .

g‘h1;Iﬂk1 AT AT AT

where 4 (V) corresponds to helicity %(-%).

Bearing in mind the mathematical fact that a matrix Aik formed from
a vector ai according to‘the prescription Aik = aia;£ canlonly have one non-zero
eigenvalue, it can be seen that p can have two eigenvalues for each
n-value, corresponding to helicity flip and helicity non-flip at the

proton vertex.

At this point attention is drawn to Appendix A where there is a
discussion of what can be learnt from studying the one-dimensional

angular distributions alone.
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4. ASSUMPTIONS

(a)

(b)

From the l1-dimensional distributions it appears that the data
can be fitted without introducing J-values above a certain
J . This has previously been found to be the case in the study

max
of the (3m)-system produced in mp interactions

Assumption l: assume J < J y where J is estimated from a
max . max
Fourier analysis of the 1l-dimensional angular

distributions.

To emphasize the fact that the amplitude fl A can be written in
- 4 - 4+ = = b4
terms of (K m ), (mm™) or (K m )-couplings, let it be written

symbolically as:

ol oP o0
=1 = o= . .

 JWnt)=o srmt):=o J(kml=0

- + - + - - -+
where j(K m ), j(m 7 ) and j(K w ) are the spins of the (K 7 )-,
_+ VR
(m m )= and (K 7 )-systems respectively. Another description

which will be useful for discussing assumption 2, is given by

o© o0 Land
=502 +)_ .
Aphey 3 JKw=0 JOrat)=o i(k~n)=o0 .

- + B -+ - .
Assumption 2: assume that j(K m ), j(w m ) and j(m K ) are

- +
restricted to be less than or equal to jmax(K T™ ),

. -t . == .
jmax(ﬂ m ) and jmaX(K T ) respectively, and that

one can write
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JCwn) J Crnt) J (<)
fa= 2 *2__ v 1 e
b/\l* Jat)zo Jr=wy*) =0 J(k~m-)=0

The fact that the 1/3 is missing in equation 4.3 reflects the
assumption that the high partial waves in any one particular
coupling are covered by the low partial waves in the other two
couplings and the hope that there is not very much overlap

between the truncated contributions.

In the (K_ﬂ-ﬂ+)—case [3] it is assumed that jmax(K_ﬂ+) = 2,
jmax(ﬂ_ﬂ+) = 2 and that the contribution of the third coupling can be ignored
altogether. There can still, in principle, be overlaps between some or
all of the j(K_ﬁ+) = 0,1 and 2 contributions and the j(ﬂ—ﬂ+) = 0,1 or 2
contributions, resulting in "double counting". (To express things in terms
which should not be used until after assumption 3, overlap between, for

-+ L, =+ .
example, j(K v ) = 1 and j(w 7 ) = 1 contributions would correspond to

*
interference between K (890)7w and Kp decay modes of the (Knw)-system).

This assumption is motivated by the observation that the (K_ﬂ+)—
and (v_ﬂ+)-effective mass distributions show K*(890), K*(l420), p and
f signals and also, phase shift analyses [13,14] find that S-, P- and D-waves
are enough to describe (Kfﬂ+)’ and (w_w+)—systems for masses up to those
encountered in this analysis. The I = 3/2 phase shifts for the (K_ﬂ-)-system
are small and are neglected.

(c) The amplitude R.is seen to depend on the masses Ml3 and M23

for the (13)- and (23)-couplings respectively. If one invokes

the idea of a strong Watson final state 2-particle interaction [17],

it is reasonable to factorize off this dependence.

Assumption 3: assume

TP!idln 10'

( M:a; Ha R_(St ﬂ,,-’) BV (nn) % (Mn) }) (Nn, F]“) 4.4
AAA,
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where the index n, introduced here, is 1, 2 or 3 depending on
whether the (23)-, (13)- or (12)-coupling is being used and

where the ina.c?s & and j refer to the coupling in question.

J

3
The product p .BW.q~ is a parametrization based on the picture

of the (Kum)-system breaking up by a two-step decay. The barrier

L
factors at the first and second decay vertices are p and o_r:l

respectively, where p is the momentum of the di-meson system

of intec st in the (Kmnm)-rest frame, % is its orbital angular
momentum relative to the lone meson, and q is the momentum of

one of the decay products of the di-meson system in the di-meson
rest frame. The function BW parametrises the mass dependence of the

di-meson system either by a Breit-Wigner or by phase shifts [17].

(d)Looking at the indi Q’Pﬁ"
QOK1ln a e lhalces on
| AMA,

matrix defined in equation 3.20 has many elements. For example,

it is clear that the density

consider the (123)-system to decay only by the modes shown in
table 4.1. This would correspond to a (5 x 5)-density matrix

which is described by 25 real parameters.

In an attempt to reduce the number of parameters a further assump-
tion is made. (Appendix D discusses further implications of

assumptions 3 and 4).

Assumption 4: assume

Tpﬂj n, Tp Tpﬂa"‘
E\_ (S,t, H-n) = T ! (S't) "m) C (st, M“3) 4.5

AXA .
AA,, b'le

Equation 4.5 assumes that C is independent of the (discrete)

variables Ab, A A and n and that T is independent of the

4I
. . . . C e . P

discrete variables &, j and n. Notice that, if in a given J state

there were but one resonance, this assumption would be automatically

satisfied. Furthermore, C would be independent of s and t,
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making the amplitude split into production and decay parts.
In this paper T and C will be loosely referred to as the
production and decay parts of the amplitude despite the fact
that C depends on s and t.

It is now possible to define new "reduced matrix elements" by

? (5,0, My ) Z_( A ,\Q) -T )‘b'\ 4.6

h T f‘l‘[,:r "I'I Ab,\“"

In accordance with custom, A will henceforth be replaced by M.
The program tries to determine these density matrix elements

(?T 'ju ) . , .
and the . Notice that if one again considers only the
states given in table 4.1, the number of parameters is, as a
result of assumption 4, reduced to nine density matrix parameters
cT f;‘!\

plus four complex parameters In sect. 5 it is shown

that, by means of a suitable normalization convention, it is

P¢ P
7N equal to one for every J

possible to put one C
: [} . r .

state considered; in which case, only two of the c remain

in the example being considered. Thus, assumption 4 has reduced

the number of parameters from 25 to 13.

With sufficient statistics one would determine p and C as
functions of s, t and M123 by fitting in small intervals of
these wvariables; then the rest of this paragraph (e) would be

redundant.
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In reality, the intervals are quite wide and one has to average

over each interval. One writes .

L/ . —_— ~oPp; PMn 0

T T =7 T%jn T Myin

T, Aba,(,"t'”"") C7 (st May) =T, C 7R TGty o

and fits in each interval for the constants 5 and E, where

f ? 'f! , == Tﬂjhj" M A A 4.8
J H'l"l M|| Mg ey b

The "shape function" R is given by

P ) 3 , {4 e:
&R iy T )

4.9

and it contains the best knowledge available on the dependence

of the amplitude on t and M (averaged over s if experiments of

123
different energies are being combined). The function FT can be

different in different Ml23-intervals (in accordance with well-

known experimental results) and the function F can be different

in different t-intervals.

The function F is given by
Y
(o) _

FU=IM (o deds| BWA ) ehase asfsial ,
b =637}

3JbJﬂ 2 gyglom) ¢ r‘
H,=Z_ |67 Ve s man) pf BWE g
If BWA is kept constant the gquantity F(b) in equation 4.10 forces

dcr/dMl for a given state to be independent of M in the

23 123

interval considered. However, the contribution to dc/dM123 from

interference between different states can still be functions of

M123 (see Appendix C); explicit calculation shows that this

remaining dependence is weak.
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The function BWA describes the mass-dependence. In the program
there is a ro'tine BWA which enables one to put in explicit

dependence on M when the dependence is believed to be

123

strong; for example, for large M intervals near thresholds.

123
The functions FT andBWA (and hence R) are normalised to one in
each interval considered. The reason for doing this will be

discuvsased in sect. 5.
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5. METHOD OF ANALYSIS

(1) The likelihood function

The partial wave anulysis of the (Kmrm)-system is done by using the

extended maximum likelihood method [15] to determine the quantities
L -—
c:z R~

and y . The function that is maximised
IPVH1IUJPIGVI

is

“«’:ﬂu‘r

0&, - DM w(T;)— WY ACTYDT 4 I AT,

l:’-'-l L=)

where N = number of experimental events used,
INPUT

_ 3 in 'PQJn TY ) 55
e !gﬂ dm"'] O5n f 1Hv|@dn

l"
..p‘
Ty 3" .
?a?%q’ D
T represents the seven phase space variables t, M123, sl, s2, ¢, O, Yy

X represents the three spatial variables (x, v, z)5

A( T, Xi) is the acceptance of the ith event (every real event in the

laboratory is characterised by T and x)s
A(T) = fA(T, x)dx.

The product U(Ti)A(Ti, xi) is the probability of finding an event at
the "point" (Ti, xi). The quantity Zn A(Ti, xi) is a constant and is
ignored in the fit. Notice then that to perform a fit it is only

necessary to know the acceptance integrated over x, A(T).
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’)

-
1
The "matrix element" Gﬁq'ﬂ 0 has the explicit form (see equations
Ll e
3.19, 4.4, to 4.9)

M Z Cj )("9") +"I‘D (“’:s’a )) Hm- mafin) 5.3.1
l"\r";l\

where

»

To facilitate the discussion of normalization which comes later, it is

J@Ad't T-ZE‘(E }; fdm*m A dT 5.4

where the indices which have been left out are as in equation 5.2

[dr =

is meant integration over that region of phase space in which the fit

By

i

Z 4 d0 dCo8)ds ds.ds. dMny dt
S

INPUT Mna

is being formed (defined by the interval in M and t). The sum over s

123
is needed if events from more than one energy s are used. Then, NS is

= JN .
the number of events of energy s and NINPUT : s

One can, for convenience distinguish between two kinds of conditions

when A # 1 over the whole of phase space.

(a) It might be decided to reject some events because they are felt to
be unsatisfactorily measured; for example, if the reaction
K-p - K—ﬂ—ﬂ+p is studied at 10 GeV/c in a bubble chamber, events
with a fast K and a fast m often give fits to two reactions,

corresponding to interchange of the K— and the w_; in ref. [3],
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such events are removed from the analysis - at the expense of
increasing statistical errors - and are corrected for as if they had

not been detected in the first place.

When events are removed in this way, A is either 0 or 1, depending
on the position in phase space. The region of phase space over which

A =1 is referred to as "cut phase space”" and one could write

wAdt = jwd'f

LAl P LT
where "uncut phase space" is the whole of phase space over which a
fit is being performed., It is for this reason that“{r‘:fdf is
referred to as "cut integral" in the Illinois program, even when A
varies over phase space. For the cases where A = 0 or 1 there are
routines called CHRM 10 and CHRM 11 where the acceptance is applied
to the experimental and Monte Carlo events (used for producing

integrals) respectively.

The detection efficiency of one's apparatus may not be 100% in which
case A can vary over phase space. In this case there is a routine
BOBK for applying to the Monte Carlo events that acceptance which is

believed to exist for the experimental events.

Now, since wA is the probability of finding an event
joAd't--:l ot "lz"pwj@AdT = Nyypur 5.5

This condition is maintained throughout the fitting procedure by

. ’ 1}
replacing .f'pm“ﬁ_,p”." at every step by -?‘I'N.I,T'PH‘Q/I“A‘*T
All this normalization condition says is that, if an event is being

used in the fit, the probability of finding it somewhere must be one.
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(2) Interpretation of density matrix elements and C's

The normalization discussed at the end of sect. 4 ensures that

Jdﬂ:mcd’t = 1 QE{TP”"['Qj“} 5.6

This condition will be used later in this section.
i-—- "’-l L=
. (ET’{,"\) Cf €jn ,
Now the fit actually determines the products 5’? L{ ]
ITraI M
(see equation 5.4) which are here called "full density matrix elements".
If there are more than one decay mode of a particular J ,
E:r'-ljt\

one can be fixed to an arbitrary complex number. For simplicity

this is chosed to be one.

At this stage one defines the "predicted number of events" to be
the number of events in the whole of phase space for a detection efficiency

A =1; it is given by

== d
Nﬂemcfsb xn FUT_( wat

e Pt PN el
= N (E._,e,‘”)’r C"’"‘a“ KMT \ Ms dr
T f ‘ l"hlﬂl'n e S-7
r"n.,,:r‘ Mg 1
J'Pr"lglﬂj;\
P, ¢
Using equations 5.6 and 5.7 it is now possible to interpret the guantities

Sanda.

P : P!
For the case when { J Mn&jnt ={J' M'nf'j'n'l, equations 5.6 and

'BALEY

-a < kY
5.7 allow one to interpret 'i'uhrlc’&l.l ‘P'P” as the predicted

number of events of the type {JPMnﬂ,jn}.
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From equation 5.7 alone the quantity

+ N SRS
Mh E’ii') C,ern,n ém Pl dt N samo witl 3"',!193!\
i J‘FI‘"I :‘"n H', (e "10-!" RP’KH‘ LJ T Hll “’l‘

is interpreted as the predicted number of events which exhibit interference

P , g p' ,
between combinations {J Mn&jn} and{J' M'm2'j'n’'}.

(i) This interference, when integrated over the whole of phase space,

can only occur when { JPMn} = { J‘PlM‘r. } and when n # n'; see Appendix C.
Amongst other things, this means that it is not possible to have interference
between K*(890)1r and K*(l420)'n decay modes of the same { JPMrﬂ; and

also, that s- and d-wave decays of a given { JPMn} into a given mode do not

interfere. It should be noted that the conditions derived here for the Kmm
system do not all carry over to the situation where one has identical particles.
(ii) Imaginary parts of density matrix elements can only be determined

by measuring interference terms between states of different n or j, see

Appendix D.

To illustrate the interpretations of c and 5 one considers an example.
Assume that the onlngPMnJLjn} combinations used in the fits are
[l+0 + 0 115 and{l+0 + 0 12}, corresponding to thé dominant s-wave decays

*
of the Q via K (890)7 and Kp respectively. The fit determines

N [C™ e = predicled ks of (') - events = N (K')

"n.mlE"""l‘jfm oo, = Preicked mustos o (Kg) - eveuly =N (kgp)
o

ot *-— +* |+ ! .
*on um- j ( =
Npururd RAC"®Y) € [ F—— JWlo,M o*md’r =N (TuTERFeREUCE)

If the last number were zero then the ratlo'c_l’al'l/ % \{ould be the
(gt

L J
K n/Kp branching ratio. The quantity(C' °") C1%en can be written

*
R exp (iA¢) where A¢ 1is the relative phzse of the K 7 and Kp decay

modes.
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Remembering that one of the C's can be put equal to one; in which case
f:"l‘! E H gives the number of predicted events decaying

via that partlcular moca whose C is put equal to one.

3. How the positivity constraint is applied ,

Next, the incorporation into the fit of the constraint that the
density matrix of the (Kmum)-system must be positive definite will be
discussed. In this analysis, it is the "reduced" density matrix 5 which

is kept positive definite. If 5 is positive then so is the "full" density

matrix C 6 ?

A hermitian matrix (in this case the density matrix) can be described
I
by its N eigenvalues )\I and N normalized eigenvectors v( ) according to

the relation

e ay* ) )
e = AT U e A v e A )
i ¢ i 5.8.1

*
(l (0 (1) (1) L (N) (D)
V V V:, + \[; \lj 5.8.2

- : , . P .
where V; = Ai ﬂi and the suffices i and j refer to J Mn-values. This
relation is just an unfamiliar way of expressing the fact that a hermitian

matrix can be diagonalized by the unitary matrix formed from its eigenvectors.

(For simplicity of presentation only, assume that only states with
n = + 1 are present. Exactly the same holds for the n = - 1 part of the

density matrix).
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By transforming from "density-matrix~element-space" to "eigenvalue-
and eigenvector-space" the non-linear positivity conditions on the
density matrix elements become very simple, namely that XI > 0. These
are imposed at every step in the fits. In passing, the normalization of
the eigenvectors is taken into account by using the angles which specify

them.

4. Implications of having a recoiling spin 1/2 particle.

Now that the "eigenvalue-and eigenvector space" has been defined it
is possible to discuss some very important implications of having a

recoiling spin 1/2 proton (as opposed to a recoiling A or anything).

Equation 3.22 or 4.8 shows that the existence of a recoiling proton
means that an (NXN)-density matrix is defined by two N-vectors (4N real
numbers) and has only two non-zero eigenvalues. (In the "reduced" density
matrix 5 being determined, some deviation from this ideal situation is
expected because approximations have been made. One possible example is
that equation 4.7 assumes the same dependence on s, t and M123 for
helicity-flip and helicity-non-flip amplitudes in the interval being
fitted.)

2
The fitting program determines a density matrix which has N real

parameters in it.

It would then seem, at first sight, to be possible (for N > 4) to
determine the 2N complex amplitudes of equation 4.8, i.e. to perform an
amplitude analysis. This is not so and the reason for this will now be

discussed.
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Tne density matrix being measured is of the form

cor¥ () ¥ A

ey

— + 5.9
i.; ™ 11 ™ T

The question is: "is it possible to determine uniquely the amplitudes £

by measuring pij?“. The fitted density matrix in the program is given

by

¢ |),‘ (Y]

] 1*
p (fied) =V, \]J“ e V" V,
*3

see equation 5,8.2. It is tempting to identify these V with the amplitudes

f. However, this cannot be done because if 5 can be formed from the

vectors Vfl) and Véz) it can also be formed from the vectors Wil) and
W;Z) (see ref. [16]), where
¢ Ao [T ofP V(”
= 5.10
(1) i% c(MaPe¥ -ot) @)
W, 1-A™ ¢ Ae P V.

The matrix in equation 5.10 is the most general unitary matrix, with four

free parameters (0 €« A < 1 and a,B and y can take any values).

All that equation 5.19 says is that a rotation in the spin space
of the proton does not change the density matrix, and it is therefore
impossible to do an amplitude analysis if one sums over the spin projections
of the recoiling proton. However, if, for example, one knew one particular
T;:Fn and'f}ihlthen the parameters A, o, B and Yy could be determined and

hence an amplitude analysis performed.
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However, bearing all this in mind one might still ask "Is it still
possible to learn something from the eigenvalues of the density matrix?".
It is. If the density matrix found in the fitting program has two non-zero
eigenvalues then both sp.iu-flip and spin-non-flip amplitudes are present.
If, on the other hand, only one non-zero eigenvalue is found, it is not
possible to say that only spin-flip OR spin-non-flip is present. This can be
seen by considering the case when the ratio of the spin-flip amplitude to

P ;
the spin-non-flip amplitude is the same for all J Mn states. This

situation = normally called "spin coherence" - is described by
P — P
i —
__l—-:rvl — a —['f'[ 5.11
Mt mTT

P -
where a is an arbitrary complex number, independent of J M and where T

is defined in equation 4.8. In this case

pomm— 7.91

PN 5.12

] = (viar) T
; MmTT

TPH-‘JT'P ﬂ\V\

which can only have one non-zero eigenvalue. Incidentally, a special case

of this would be the complete absence of either helicity-flip or

helicity-non-flip amplitudes. This situation implies maximal interference

between all states.

5. Brief Discussion of errors.

Before going on to make a few remarks about how the errors are
calculated it is worth saying that as a result of the density matrix
having rank 2, the number of independent parameters in the problem is
(for N 2 4) reduced to 4N - 2., This makes the errors on the N2 (inter-
dependent) parameters  calculated by the fit smaller thian might have been

expected had they been independent.
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A few remarks about the error calculation will be made. lLet the

log-likelihood function be written in the form of a Taylor expansion:

Chb) | Nt 3L \(p- D

[ = [+ ,P) il
=T “ PP&’P:

Fo b

= [: +Z..V"‘5Pu —%Zéhn Gd,abﬁ"' v o

where Pa are the-parameters to be fitted and the superfix "0" corresponds

to the starting value of any particular iteration.

Then, in the absence of constraints, the errors on the parameters

p, are given [15] by
6’; St:p -‘—'(G )"‘F' 5.13

-1
where the (G )GS are evaluated at the final set of parameter values i.e.

the values of pa which give the maximum likelihood.

The same formula for calculating the errors is used in this analysis,

BUT:

(i) even if the maximum value of the likelihood function is found to be
in the physical region (i.e., satisfy positivity of the denisty
matrix) there is a chance that a positivity-violating set of parameters

might be within the symmetric errors given by equation 5.13;

(ii) if the real maximum value of the likelihood function happens to
correspond to one or some of the eigenvalues being negative, the
values of the parameters used to calculate (G-l)aB are those which
correspond to the situation obtained after the constraints are applied.
These are "off-maximum-likelihood" values ahd so Va # 0 which implies

that equation 5.13 is not strictly true;
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(1ii)the error calculation does not take into account the constraints of

equation 5.5 and of the positivity of the eigenvalues of the density

matrix.

Despite, these difficulties, there is reason to believe that the errors
calculated according to the method just described are not without meaning.
Starting from the results of a particular fit on experimental data,
several sets of "theoretical experimental data" were created by Monte Carlo
methods. These were then fitted like real experimental data samples. The

results were in agreement within the errors.
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6. APPLICATIONS TO OTHER SYSTEMS

- - =+
The formalism dexrived in section 3 for the reaction K p > (K 7 m )p
is, apart from small modifications, applicable to the study of three-
meson systems produced in other reactions. Examples are
t + 4+
Tp > (nww)p R
A S
Kp> (KKK )p
+ - o  +H+
Tp > (rwm)A \

+ o
mp > (mwTw )n
- o-o
Kp > (r mK)p
+
and K+p > (7 woKo)p. /)

Furthermore, there are special cases where the analysis can be applied to

a 4-meson system, for example
+ r + -
KP->(K1T1T1T°)p 6.2

+_
where the (mw 7 no)-system forms an w.

This section is in two parts. Sect. 6.1 describes the modifications
needed to make the analysis applicable to various three-meson systems

while sect. 6.2 concerns itself with the 4-meson case.
6.1 Three-meson systems.

The only difference between most of the reactions of type 6.1 and
- - -+ .
the reaction K p > K 7 7 p used in sect. 3 is that the amplitudes have to

satisfy certain restrictions arising from the identity of particles.

For example, consider the reaction

= - o0-0o
Kp~>(rm™K)p .
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If the (Knn)-system is assumed to have I = 1/2 the (n_ﬂo)—system must have
I = 1. The total amplitude mus& be symmetric with respect to interchange
of the two pions and so the space part of the amplitude must be
antisymmetric with respect to this interchange.

The symmetry properties of the (37)-system are more complicated and
have been extensively treated in the literature (e.g. ref. [18]) and will

not be discussed here,

Nevertheless, one presents here the correctly symmetrised amplitudes
needed if the program is used to study the reactions like those in equation

6.1.

p

¥
The symmetry constraints force certain El for different couplings
""1

(n-values) to be equal and so, instead of the H of equation 5.3.2 one uses

linear combinations of them. The 1nd1ces3"\1 3 , all but n, are omitted.

Table 6.1 gives examples of various amplitudes.

6.2 Four-meson systems.

Consider reactions of the type
- +_.o—
Kp>+*mTmmTKp
L - ) ,
with the (m = ﬁo)—system forming an w. Thinking of this as a b > 1 + 2 +

3 + 4+ 5, the equation corresponding to equation 3.1 is

<E d 3u s:A ‘UIP ﬂ,’\b> o

I,

The set of twelve varlables{‘.b P P }can be replaced by the equivalent set

{nlst,“'“‘r § e Hlﬂ L P T Sia Sia } where

1‘;(, 2‘ [7‘ = momentum of (1234)-system in overall CM system;

M1234 = invariant mass of the (1234)-system;
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®, © are the azimuthal and polar angles of the (1l23)-system in the
(1234)-rest system;

M123 = invariant mass of the (123)-system, i.e. the w-mass;

The quantities a,s,y,slz,s are the 5 variables which describe the (3m)-system:

23
0,8 are the azimuthal and polar angles of the normal to the (37)-plane
in the (123)-rest system (they are two Euler angles);

Y is the third Euler angle, specifying the direction of one of the pions;

S are the effective masses of two out of the three di-pion systems

R
(Dalitz plot variadables).

Changing to an angular momentum basis (of equation 3.5) gives

f“. EE'-E _.P:‘. @@o)g (u?‘&) 3%- (St Mg Mas,$0,553) 6.4

TAjA AMAK

where

J = spin of the (1234)-system;

A = helicity of (1234)-system in overall centre of mass;
j = spin of (123)-system;
= helicity of (123)-system in (1234)-system;
K = projection of spin j along the normal to the (3m)-plane; see ref [7].

For the special case where the spin-parity of the (37)-system is 1 (the
w-meson) R
T J(zl)
E} = 0 6.5.1

Taking this special case, the index K can be dropped and equation 6.4

Eﬂt :Dn (1>9ut) dd( l)§) 3”(:0 6.5

AANA A‘-
TAA =

reduces to
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Ignoring the s12 and s23 dependence of g (e.g. by integrating over

12 and 523) it is then seen that equation 6.5 has the same form as equation

3.5 because the W is a JP =1 particle.

]

This shows that the reaction K_p -+ (K_w)p and similar reactions
can be investigated in terms of the formalism that has been developed to

study the 3-meson system.
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APPENDIX A

By integrating the decay distribution over the Dalitz plot
variables and also over two of the three Euler angles, the l-dimensional
distribution of the third angle can be calculated. Although, in
practice, these l-dimensional angular distributions are appreciably
affected by cuts on the data, it is nevertheless felt thatit is
worthwhile discussing them in some detail because they provide clues
as to which states should be included in the fit. Remember that the
axis of quantization is the direction of the incident K in the

(Kmm)-rest system; that is the so-called t-channel is being used.

Using equations 3.19 and 3.20 the full decay distribution can be

written (the same is true after the assumptions of chapter 4 have been
made) as

wW(e,b,8) = NI(0,¢,8) + U(6,d v) Al
where the natural parity exchange (n = 1) part N(8,¢,y) is given by

T

i) 3 ot
NBbY) = ) (os(Ad+93)con(nN'p4v) v d,{,‘”ol;f:) fafm(G,, ')G e

il
TP l’;‘l =1
s¥r [T 3 Aq‘-‘,’ ‘l"
+9' Alz0) A'(%0) ,
and the un-natural parity exchange (n = -1) part U(8,¢,y)is given by

(5" N % A vter
U(%!)'-" ﬁ"m‘p”x)ﬁ"m‘cb*"")f 7 \ d.f.”d,.‘f.o lc“q\’(Gy ) Gq! J a.lb
' T'ﬂ e T'pn' ==
Ter Pye's! L R |
VY Alze) Nf%0)

This distribution W has two useful symmetry properties. The first
is that it is unchanged when one replaces (¢ 6 y) by (-¢,6, -y). This
is due to parity conservation in the reaction a + b + 1+ 2 + 3 + 4,
The parity operation reverses all particle directions (including those
which are used to define the coordinate frame). This symmetry
condition means that it is only necessary to look at ¢ and Yy in the

range (O, ).
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The second symmetry relation is that, if all the JP states have
the same parity P, then W(¢,06,y) is unchanged when one replaces
(¢,6,Y) by (m + ¢, m - 8, T = y). To prove this one needs equations A.1

)
3.19 and some propert.es of the d-functions.

These two symmetry conditions imply that, if only states of one
parity are present, each of the one-dimensional angular distributions are
symmetric about 7m/2. This applies separately to the natural and un-natural
parity exchange parts because they do not interfere.

For completeness a summary will now be given of what can be learnt

from the one-dimensional distributions.

The ¢-distribution

g A Fourier analysis of the ¢-distribution can give a lower limit to

the maximum value of J required.

2. If only states with A = A' = O are present, the ¢-di stribution has
to be flat. (Such a situation is known as t-channel or s-channel
helicity conservation depending on whether one is working in the

Gottfried-Jackson or the helicity frame).

3. If the distribution is not symmetric about 7/2 then there are
contributions from states of different parity and A's differing by an

odd number.

The y-and O-distributions

Again a Fourier analysis can give a lower limit to the maximum
value of J required and asymmetry about 7/2 can be taken as evidence of

the existence of states of different parity.

It is stressed again that experimental biasses can affect the

one-dimensional distributions and so care must be taken.
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APPENDIX B

Definition of angles and reference systems

In the (123)-rest system, two sets of coordinate axes can be
defined - the so-called "s-channel" (helicity) and "t-channel" axes

(Gottfried-Jackson).

The s-channel system is given by: Z(S) = —§4
(s) _ L (s)
g “PanA?

. (s) . (s) . (s)
ARRY W

The t-channel system is given by: Z(t) = pa
S(t) . (t)
Y =Py Az
. (t) (t) L ()
X =9’ A

All the vectors in the above definitions are in the (123)-rest system.

Notice that Y(S) = ?(t) = normal to production plane.

The two angles, 6 and ¢, will now be defined with respect to a

. s
set of axes (X, ¥, 2) which is the same as (ﬁ(s), 9( ), Z(S)

28, oft), 2(8)y,

) or

cos 6 = §3.2.

azimuthal angle of particle 3 in (%, ¢, 2).

R
I

To define the angle vy it is necessary to define a new set of

axes (X', 9', 2') in the (12)-rest frame:
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g' =

Y is the azimuthal angle of particle 1 in this system.

The angles 623 and 613 are defined by:

cos 623 - P2 - P

8 =
CcOS 3

They are independent of whether s—channel or t-channel systems are
being used.
Th 1
e angles Xl2

and Xq (which are also independent of whether

| %5 3
s-channel or t-channel systems are being used):are defined in the (12)-,

(23)- and (13)-rest systems respectively. Thus:

it
|
'O

. pl evaluated in (12)-rest system;

cos X, 3
cos x23 = —pl . p3 evaluated in (23)-rest system;
cos Xl3 = —p2 g p3 evaluated in (13)-rest system.

Notice that they are not cyclically defined; this is so because
it is easier to demonstrate the symmetry between particles 1 and 2 when the
angles are not cyclically defined. (The program was originally written for

- -+
the (m m 7 )-system.)
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APPENDIX C

In Appendix A the distribution given by equation 3.19 was integrated
over all variables except one Euler angle and the l-dimensional
angular distributions thus obtained were discussed. This appendix discusses
the interferences which remain when (a) one integrates over the three
Euler angles (i.e. what interferes on the Dalitz plot?) and (b) one

integrates over ¢, 6, vy and s, and s_.

1 2

7 .
(a) Orthogonality of the rotation matrices D ¢ 8, '6') implies that it is

2 4
impossible for states of different J or M to interfere on the Dalitz
plot. Furthermore, equation 3.15 implies that states with different

parity cannot interfere on the Dalitz plot.

(b) The only interferences which can occur when one integrates over

¢, 0, Y, 5 and s, are interferences between decays of a particular

2
P
|J Mn>-state into final states of different n.

A few illustrative examples are given:

* * P
(i) The K (890)1 and K (1420)71 decay modes of a particular |J Mn>-state
can interfere on the Dalitz plot, but there is no interference between

them when one integrates over ¢, 6, y, s, and s_;

1 2
+
(ii) The same is true for the s- and d-wave decays of the ]JPMn> . |l 0+>

*
state into K (890)m;

* P
(1ii)The K (890)w and Kp decay modes of given |J Mn>-state do interfere

even after integrating over all five decay variables.

- -+
It should be noticed that the conditions derived here for the (K m 7 )=
system do not all carry over automatically to the case where one has

identical particles.
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APPENDIX D

The aim of this appendix is to discuss two questions. First of all,
in the study of di-meson systems it is well known that there are ambiguities;
that is, that given one set of parameters which describes the data it is
possible to construct another which describes the data in the same way.
Is the same true for three-meson systems? The second question is
concerned with the measurability of the imaginary parts of off-diagonal
density matrix elements. That there must be off diagonal elements follows
if more than two {JPMn} combinations exist because the presence of a
recoiling nucleon implies that the density matrix has rank 2. A rank 2
matrix with more than 2 non-zero diagonal elements must have non-zero off
diagonal elements. These are, in general complex. In the special case
when all the production amplitudes are relatively real - "phase

coherence" - the off-diagonal density matrix elements areé real.

It will be shown that the answers (for an alternative treatment see
ref [19]) are related to assumptions 3 and 4. For clarity of presentation
the discussion is in two parts, the first part treats the situation
when assumption 4 is NOT made while the second part deals with the

implications of making this assumption.

Assumption 4 not made.

It is important to stress that if assumption 4 is not made then
for every decay mode (specified by j, £ and n) there exists a different

density matrix.

a) Existence of ambiguities.

Consider equation 3.19 together with assumption 3 (equation 4.4).
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of a fixed n, £ = 0 and j = j' = 1 which might correspond to s-wave

*
decays via K (890)71. In such a situation it is not possible to measure the

imaginary parts of the i.terference the M = O and M' = 1 amplitudes
A oim On
.e, ﬂfﬂ 4 J

i*or, 1%is

Assumption 4 made.

'. !'.g ]
IR, KA
Assumption 4 replaces the density matrix JD | by the
= 1ﬁﬂqﬁﬂpﬁl
"reduced density matrix" i and complex decay parameters
(:1' ’ corresponding to various decay modes. It can be seen

that different decay modes of a IJPMn>—state are associated with the

same density matrix elements.

a) Removal of ambiguities

The ambiguities which exist when assumption 4 is not made are no

longer present because the decay modes are now dependent on each other.

b) Measurement of imaginary parts.

Consider equation 5.2 written in the form

— %
“ =Z— Sip Wb dj*‘ D.3

bd'
h 7 Gf
where = = TR
1 Z— 1
Q;.
A
Equations 5.3.1 and 5.3.2 can be used to show that OUL Nb is

always complex. Consequently both real and imaginary parts of all density

matrix elements after explicity in equation D.3 and are thus measurable.
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— a0 ’®,. . -
w = NaTe) 7'+ f in A 3\,/ (jm) Bwﬁ',n') 1"‘, PQ.@' »e
Pl P
" D.1
) m* ¥ (:r‘) ) ( r%; GT‘PQ\ 1
X(Dm )(D +m D G )

If j=3' and n = n' it is possible for more than one set of density matrix
elements to give the same decay distribution y - ambiguities can exist. The
simplest example is when j = j' = 0. In this case, for fixed 32, equation
3.19 describes the decay of systems of various spin-particles JP into

two spinless particles - like a decay into two pions which is known to have

ambiguities.

b) Measurement of imaginary parts

For simplicity, equation Dl is written in the form

= Z—- “m faa'
T {(Beg Jeot - s...y NECIE AR R
where @ £ {TPn“\ "j"“

and q) = 4’3(“4&) - 0"5(‘”‘)

From equation D2 it is seen that Qﬂj’ is measurable if cos¢ # O somewhere

on the Dalitz plot, while ‘]vmf is measurable if sin¢ # O somewhere

o
on the Dalitz plot. The only imaginary contribution to J’] Jﬂa. comes
from the product Bw"’") 8w <"") which is therefore responsible for the

measurability of the imaginary parts of the density matrix elements.

However, even now, not all imaginary parts of density matrix elements
can be deteruu.ned. This is the case when n = n' and j = j' because the
Bw Iy,
product ecomes real and hence only the corresponding real part

of the density matrix can be determined. For example, consider the.case
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So, when assumption 4 is made (and one has more than one decay mode
of a particular state) the ambiguities discussed no longer exist, and
it is in principle pos=zible to measure the imaginary parts of all
density matrix elements. If there is but one decay mode,the situation
concerning both the ambiguities and the measurability of imaginary parts

is similar to what it was before assumption 4 was made.

To end, a cautionary remark is made about the situation when there are
identical particles. Consider for example, the case of the (w_v-w+)—system.
Here, assumption 4 only serves to reduce the number of parameters being
fitted. The removal of ambiguities and the measurability are already
guaranteed because the imposition of Bose' symmetry ensures that different

decay modes interfere.
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I——- —_ —_— - — 4 =y
J P L Mn Decay mode
—_— e ————— ¥ = et B el
O-PO+ ; K -
O-PO+ Kp
*
l +50+ K
1l +S5S0 + Kp
*®
l1+s1+ K

Table 4.1
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Table 4.1 Example of set of states given to show how assumption 4

reduces the number of parameters.

Table 6.1 Table of amplitudes to be used in Illinois Partial wave

Program for various three-meson systems.
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