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Abstract The performance demands of future particle-
physics experiments investigating the high-energy frontier
pose a number of new challenges, forcing us to find improved
solutions for the detection, identification, and measurement
of final-state particles in subnuclear collisions. One such
challenge is the precise measurement of muon momentum
at very high energy, where an estimate of the curvature pro-
vided by conceivable magnetic fields in realistic detectors
proves insufficient for achieving good momentum resolution
when detecting, e.g., a narrow, high mass resonance decay-
ing to a muon pair. In this work we study the feasibility of
an entirely new avenue for the measurement of the energy
of muons based on their radiative losses in a dense, finely
segmented calorimeter. This is made possible by exploiting
spatial information of the clusters of energy from radiated
photons in a regression task. The use of a task-specific deep
learning architecture based on convolutional layers allows
us to treat the problem as one akin to image reconstruc-
tion, where images are constituted by the pattern of energy
released in successive layers of the calorimeter. A measure-
ment of muon energy with better than 20% relative resolution
is shown to be achievable for ultra-TeV muons.

1 Introduction

Muons have been used as clean probes of new phenomena in
particle physics ever since their discovery in cosmic show-
ers [1,2]. Their detection and measurement enabled many
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groundbreaking discoveries, from those of heavy quarks [3–
5] and weak bosons [6] to that of the Higgs boson [7,8]
through its decay into weak bosons; most recently, a first
evidence for H → μμ decays has also been reported by
CMS [9], highlighting the importance of muons for searches
as well as measurements of standard model parameters. The
uniqueness of muons is due to their intrinsic physical proper-
ties, which produce a distinctive phenomenology of interac-
tions with matter. Endowed with a mass 200 times higher than
that of the electron, the muon loses little energy by electro-
magnetic radiation as it traverses dense media; it behaves as a
minimum ionizing particle in a wide range of energies, where
it is easily distinguishable from long-lived light hadrons such
as charged pions and kaons.

In continuity with their glorious past, muons will remain
valuable probes of new physics phenomena in future searches
at high-energy colliders. A number of heavy particles pre-
dicted by new-physics models are accessible preferentially,
and in some cases exclusively, by the detection of their decay
to final states that include electrons or muons; in particular,
the reconstruction of the resonant shape of dileptonic decays
of new Z′ gauge bosons resulting from the addition of an extra
U(1) group or higher symmetry structures to the Standard
Model [10,11] constitutes a compelling reason for seeking
the best possible energy resolution for electrons and muons
of high energy.

Unfortunately, the very features that make muons spe-
cial and easily distinguishable from backgrounds also hin-
der the precise measurement of their energy in the ultra-
relativistic regime. While the energy of electrons is effec-
tively inferred from the electromagnetic showers they initi-
ate in dense calorimeters, muon energy estimates rely solely
on the determination of the curvature of their trajectory in a
magnetic field. If we consider the ATLAS and CMS detec-
tors as a reference, we observe that the relative resolution of
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Fig. 1 Mass stopping power for muons in the 0.1 MeV to 100 TeV
range, in MeVcm2/g. The rise in radiative loss becomes important
above 100 GeV. Image reproduced with permission from Ref. [12]

muon transverse momentum achieved in those state-of-the-
art instruments at 1 TeV ranges from 8 to 20% in ATLAS,
and from 6 to 17% in CMS [13,14], depending on detec-
tion and reconstruction details; by comparison, for electrons
of the same energy the resolution ranges from 0.5 to 1.0%
in ATLAS, and from 1 to 2% in CMS [15,16]. Clearly,
for non-minimum-ionizing particles, calorimetric measure-
ments win over curvature determinations at high energy, due
to the different scaling properties of the respective resolution
functions: relative uncertainty of curvature-driven estimates
grows linearly with energy, while the one of calorimetric
estimates decreases with

√
E.

However, ultra-relativistic muons do not behave as
minimum-ionizing particles; rather, they show a rise in their
radiative energy loss [12] above roughly 100 GeV (see
Fig. 1). The effect is clear, although undeniably very small
in absolute terms; for example, a 1 TeV muon is expected to
lose a mere 2.3 GeV in traversing the 25.8 X0 of the CMS
electromagnetic calorimeter [17]. For that reason, patterns of
radiative losses have never been exploited to estimate muon
energy in collider detectors.1 It is the purpose of this work
to show how low-energy photons radiated by TeV-energy
muons and detected in a sufficiently thick and fine-grained
calorimeter may be successfully exploited to estimate muon
energy even in collider detector applications. Crucially, we
will also demonstrate how the input of such a measurement
is not only the magnitude, but also the pattern of the detected
energy depositions in the calorimeter cells.

1 To our knowledge, a measurement strategy has been demonstrated
only in the IceCube experiment [18,19], where the energy of muons
of interest is still higher than that investigated in this work, and the
thickness in radiation lengths of the traversed detector material is over
an order of magnitude larger than that of present-day collider detectors.
Moreover, attempts to aid the muon reconstruction with the energy
sum in the calorimeters have been made by the ATLAS Collaboration
[20,21].

The spatial patterns of calorimeter deposits are a well
known and heavily exploited feature for object identifica-
tion purposes, e.g. to distinguish electromagnetic showers
from hadronic showers by comparing the depth profile of
the energy deposits [15,22]. Recently, in the context of pro-
posals for calorimeters endowed with fine grained lateral
and longitudinal segmentation, it has been shown that this
granularity not only improves the identification purity, but
also allows for an accurate determination of the energy of
hadronic showers, by identifying individual patterns of their
electromagnetic and hadronic sub-components [23–28]. In
parallel, machine learning techniques have proven to be very
powerful for reconstructing individual showers [27,29,30] as
well as multiple, even overlapping showers while at the same
time being adaptable to the particularities of the involved
detector geometries [31–33]. Also pattern recognition appli-
cations for quick identification of pointing and non-pointing
showers at trigger level have been proposed [34,35]. Fol-
lowing the success of such applications, we chose a deep
learning approach to the problem, based on convolutional
neural networks and loosely inspired by the techniques used
for reconstructing hadronic showers in [29,30].

The plan of this document is as follows. In Sect. 2 we
describe the idealised calorimeter we have employed for
this study. In Sect. 3 we discuss the architecture of the
convolutional neural network we used for the regression of
muon energy from the measured energy deposits. In Sect. 4
we detail our results. We offer some concluding remarks
in Sect. 5. In Appendix 6 we describe the high-level fea-
tures we constructed from energetic and spatial informa-
tion of each muon interaction event; these features are used
as additional input for the regression task. In Appendix 7
we offer an extensive ablation study of the model archi-
tecture and loss, the training schedule, and other technical
aspects of our approach. Finally, in Sect. 8 we describe the
hardware and time requirements of both the study and the
regressor.

A public version of the research code is available from
Ref. [36]. The pre-processed datasets are available from
Ref. [37], and are designed to be used directly with the
code-base.

2 Detector geometry and simulation

2.1 Detector geometry

Since our goal in this work is to show the feasibility of muon-
energy estimation from energy deposits in a calorimeter, we
strip the problem of any complication from factors that are
ancillary to the task. For that reason, we consider a homo-
geneous lead tungstate cuboid calorimeter with a total depth
in z of 2032 mm and a spatial extent of 120 mm in x and
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y. The calorimeter is segmented into 50 layers in z, each
with a thickness of 39.6 mm; this corresponds to 4.5 radi-
ation lengths. Such a longitudinal segmentation allows for
electromagnetic showers to be well resolvable. Each layer is
further segmented in x and y in 32 × 32 cells, with a size of
3.73 mm×3.73 mm. This results in 51 200 channels in total.

We assume that the calorimeter is embedded in a uniform
2-Tesla magnetic field, provided by an external solenoid or
dipole magnet. The chosen magnet strength equals that of
the ATLAS detector, and is in the range of what future col-
lider detectors will likely be endowed with. We note that
the magnetic bending of muon tracks inside the calorime-
ter volume is very small in the energy range of our inter-
est (1 TeV and above), and its effect on the regression
task is negligible there.2 In the studies reported infra we
will both compare the curvature-based momentum esti-
mate provided by an ATLAS-like detector to the radia-
tive losses-driven one, and combine the two to show their
complementarity.

2.2 Data generation

We generate unpolarised muons of both charges with a
momentum P = Pz in the z direction, of magnitude ranging
between 50 GeV and 8 TeV. This interval extends beyond
the conceivable momentum range of muons produced by a
future high-energy electron–positron collider such as CepC
or FCC-ee [38], and it therefore enables an unbiased study of
the measurement of that quantity in an experimentally inter-
esting scenario.

The generated initial muon position in the z coordinate
is set to z = −50 mm with respect to the calorimeter front
face; its x and y coordinates are randomly chosen within
|x| ≤ 20 mm and |y| ≤ 20 mm. The momentum components
in x and y direction are set to zero. As mentioned supra, to
compare the curvature-based and calorimetric measurement
we assume that the calorimeter is immersed in a constant
B = 2T magnetic field, oriented along the positive y direc-
tion. The detector geometry and the radiation pattern of a
muon entering the calorimeter are shown in Fig. 2. Even at
a relatively low energy of 100 GeV, the produced pattern of
radiation deposits is clearly visible and we can also see that
the multiplicity of deposits grows with the muon energy. The
interaction of the muons with the detector material is simu-
lated with Geant 4 [39,40] using the FTFP_BERT physics
list.

For the training and validation tasks of the regression prob-
lem a total of 886 716 muons are generated, sampled from
a Uniform distribution in the 0.05–8 TeV range. Additional

2 A 1 TeV muon traversing a uniform 2-Tesla field for 2.032 m with-
stands a transverse displacement of 1.24 mm from its original trajectory,
which is less than a third of a calorimeter cell.

Fig. 2 Pair of examples of muons entering the simulated calorimeter in
the z direction. The colour palette indicates the energy of each deposit,
relative to the highest-energy deposit for each muon, moving from blue,
through green, to yellow in increasing energy

muon samples, for a total of 429 750 muons, are generated at
fixed values of muon energy (E = 100, 500, 900, 1300, 1700,
2100, 2500, 2900, 3300, 3700, 4100 GeV) in order to verify
the posterior distributions in additional tests discussed infra,
Sect. 4. Such a discrete-energy dataset allows us to compute
precisely the resolution of the trained regressor at specific
muon energies, rather than having to bin muons according to
their energy.
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Fig. 3 Diagrams illustrating the three types of models used

3 The CNN regression task

Three regressor architectures are considered: regressors that
only use continuous input-features (such as the energy sum
and other high-level features) pass their inputs through a set
of fully-connected layers (referred to as the network body),
ending with a single-neuron output; when the 3D grid of
energy deposits is considered, the body is prepended with a
series of 3D convolutional layers (referred to as the head),
which act to reduce the size of the grid, whilst learning
high-level features of the data, prior to passing the outs to
the body; the main model used is a hybrid model com-
bining both approaches, in which the energy deposits are
passed through the head, and the pre-computed high-level
features are passed directly to the body. Layout diagrams
for these three models are illustrated in Fig. 3, and a tech-
nical description of component is included in the follow-
ing subsection. Models are implemented and trained using

PyTorch [41] wrapped by Lumin [42] – a high-level API
which includes implementations of the advanced training
techniques and architecture components we make use of in
the regressor.

3.1 Architecture components

3.1.1 Convolutional head

The head architecture is inspired by domain knowledge and
is based on the fact that the sum of the energy deposits is
related to the energy of the traversing muon, however accu-
rate correspondence requires that the deposits receive small
corrections based on the distribution of surrounding deposits.
The convolutional architecture draws on both the DenseNet
[43] andResNet [44] architectures, and is arranged in blocks
of several layers. Within each block, new channels are com-
puted based on incoming channels (which include the energy
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deposits) using a pair of 3D convolutional layers. The chan-
nels computed by the convolutional layers are weighted by a
squeeze-excitation (SE) block [45]. The convolutional plus
SE path is by-passable via a residual sum to an identity path.
At the output of the block, the channel corresponding to the
energy deposits is concatenated (channel-wise) to the output
of the addition of the convolutional layers and the identity
path.3 In this way, convolutional layers always have direct
access to the energy deposits, allowing their outputs to act as
the “small corrections” required.

The architecture becomes slightly more complicated when
the energy is downsampled; in such cases, convolutional
shortcuts [46] are used on the identity path, and fixed, unit-
weighted convolutional layers with strides equal to their ker-
nel size are applied to the energy deposits. These fixed kernels
act to sum up the energy deposited within each sub-cube of
the detector, and are referred to here as the “E-sum layers”.
This approach is strongly inspired by [29,30]. Additionally,
for blocks after the very first one, a pre-activation layout [46]
is adopted with regards to the placement of batch normali-
sation layers. Figure 4 illustrates and discusses the general
configurations of the three types of blocks used.

Sets of these convolutional blocks are used to construct
the full convolutional head. In all cases, the grid is down-
sampled four times, each time with a reduction by a factor
of two. However, non-downsampling blocks (Fig. 4b) may
be inserted in between the downsampling blocks in order to
build deeper networks. Figure 5 illustrates the layout of the
full convolutional head.

Technical specification In the convolutional layers, the ker-
nel sizes of all convolutional and average-pooling layers are
set to three, with the exception of the first convolution in
downsampling and initial blocks, which use a kernel size of
four, to match the stride and padding of the E-sum layer. Zero-
padding of size one is used (two when the kernel size is four).
Swish activation-functions [47] are used with β = 1 (Swish-
1). Weights are initialised using the Kaiming rule [48], with
the exception of the E-Sum layers, which are initialised with
ones. No biases are used.

The squeeze-excitation blocks feed the channel means
into a fully connected layer of width max (2, Nc//4) (Nc =
number of channels, // indicates integer division, Kaiming
weight initialisation and zero bias initialisation) and a Swish-
1 activation, followed by a fully connected layer of width Nc

(Glorot [49] weight initialisation and zero bias initialisation)
and a sigmoid activation. This provides a set of multiplicative
weights per channel which are used to rescale each channel
prior to the residual sum.

Due to the sparse nature of the data, we found in neces-
sary to use running batch-normalisation [50]. This modifies

3 By convention, the energy channel is kept as the zeroth channel.

the batch normalisation layers to apply the same transforma-
tion during both training and inference, i.e. during training,
the batch statistics are used to update the running averages
of the transformation, and then the averaged transformation
is applied to the batch (normally only batch-wise statistics
are used to transform the training batches, causing potential
differences between training and inference computations).
Additionally, running averages of the sums and squared sums
of the incoming data are tracked, rather than the mean and
standard deviation, allowing the true standard deviation to be
computed on the fly (normally the average standard devia-
tion is used). Together, these changes with respect to a default
batch normalisation implementation provide greater stability
during training, and enabled generalisation to unseen data.
All batch normalisation layers use a momentum of 0.1, mean-
ing that the running average of statistic θ is tracked according
to θ̄ ← 0.9θ̄ + 0.1θbatch.

3.1.2 Network body and output

The body of the network is relatively simple, and consists of
three fully connected layers, each with 80 neurons. Weights
are initialised using the Kaiming rule, and biases are ini-
tialised with zeros. Swish-1 activation functions are placed
after every layer. No batch normalisation is used.

The output layer of the network consists of a single neuron.
Weights are initialised using the Glorot rule, and the bias is
initialised to zero. No activation function is used.

3.2 Training

3.2.1 Data

Models are trained on simulated data for the full considered
range of muon true energy, 50–8000 GeV. The 3D grid of
raw energy deposits does not undergo any preprocessing,
nor do the target energies. When used, the measured energy
extracted from the curvature fit (V[24], see infra, Appendix 6)
is clamped between 0 and 10 TeV.4 All high-level features
are then standardised and normalised by mean-subtraction
and division by standard deviation.

The full training dataset consists of 886 716 muons. This
is split into 36 folds of 24 631 muons; the zeroth fold is
used to provide a hold-out validation dataset on which model
performance is compared. During training a further fold is
used to provide monitoring validation to evaluate the general
performance of the network and catch the point of highest
performance.

4 The computation code provides a signed energy according to the
direction of curvature as dictated by the charge of the muon, but the
sign is dropped before using the feature.
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Fig. 4 Diagrams illustrating the three types of blocks used to construct the convolutional heads

Prior to using the discrete-energy testing-data to com-
pute the resolution, the continuous-energy validation dataset
is finely binned in true energy, allowing us to compute an
approximation of the resolution at the central energy of the
bin (computed as the median true-energy of muons in the
bin).

3.2.2 Loss

Models are trained to minimise a Huberised [51] version of
the mean fractional squared error (MFSE):
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Fig. 5 Block layout for the convolutional head. Tensor dimensions are
indicated in the form (channel, z,x,y). The convention is to increase the
number of channels to eight in the first downsample, and then increase
the number of channels at each downsample by a factor of 1.5. The
number of channels increases by one in each block due to the energy
concatenation. Prior to being fed into the network body, the tensor is
pooled by computing the maximum and mean of each channel. The
data-batch dimension is not shown, for simplicity

Fig. 6 Data weight as a function of true muon energy

L
(
y, ŷ

) = 1

N

N∑

n=1

(
yn − ŷn

)2

yn
, (1)

where y is the true muon-energy, ŷ is the predicted energy, and
N is the batch size. The form of this loss function reflects the
expectation of a linear scaling of the variance of the energy
measurement with true energy, as is normally the case for
calorimeter showers when the energy resolution is dominated
by the stochastic term. In this study, the batch size used for
training the models is 256.

Huber loss To prevent non-Gaussian tails of the regressed
muon energy distribution from dominating the loss estimate,
element-wise losses are first computed as the squared error,(
yn − ŷn

)2, and high-loss predictions above a threshold are
modified such that they correspond to a linear extrapolation
of the loss at the threshold:

LHuber,i = t +
(

2
√

t
(∣∣yi − ŷi

∣∣ − √
t
))

, (2)

where i are indices of the data-points with a squared-error
loss greater than the threshold t. This Huberised element-
wise loss is then divided by the true energy to obtain the
fractional error, which is then multiplied by element-wise
weights (discussed below) and averaged over the data points
in the batch.

Since the loss values vary significantly across the true-
energy spectrum, data points are grouped into five equally
sized bins, each of which has its own threshold used to define
the transition to the absolute error. The transition point used
for a given bin is the 68th percentile of the distribution of
squared-error losses in that bin (allowing the threshold to
always be relevant to the current scale of the loss as train-
ing progresses). However, since for a batch size of 256 one
expects only 51 points per bin, the threshold can vary signifi-
cantly from one batch to another. To provide greater stability,
the bin-wise thresholds are actually running averages of the
past 68th percentiles, again with a momentum of 0.1, i.e. for
bin j, the threshold is tracked as tj ← 0.9tj + 0.1 LSE,j,68th,
where LSE,j,68th is the 68th percentile of the squared errors
in bin j.

Data weighting Models are trained on muons of true energy
in the 50–8000 GeV range, but will only be evaluated in
the range 100–4000 GeV in order to avoid biases due to
edge effects; effectively the regressor can learn that no targets
exist outside of the data range, and so it is more efficient
to only predict well within the data-range. This leads to an
overestimation of low-energy muons, and an underestimation
of high-energy muons. By training on an extended range and
then evaluating on the intended range, these edge-effects can
be mitigated. Yet we still want the network to focus on the
intended range; rather than generating data with a pre-defined
PDF in true energy, we use a uniform PDF and down-weight
data with true muon energy outside the range of interest.

The weighting function used depends solely on the true
energy of the muons and takes the form of:

w =

⎧
⎪⎨

⎪⎩

1 − Sigmoid
(

E−5000
300

)
E ≤ 5000 GeV,

1 − Sigmoid
(

E−5000
600

)
E > 5000 GeV.

(3)

This provides both a quick drop-off above the intended range,
and a slow tail out to the upper-limit of the training range.
Figure 6 illustrates this weighting function. It should be noted
that the above weights correspond to a comparatively smooth
modification of the true energy prior; for specific applications
where the physics puts hard boundaries on the energy spec-
trum (such as, e.g., a symmetric electron–positron collider,
where one may safely assume that muons cannot be produced
with energy larger than the beam energy) a sharper prior may
be used instead, and significantly improve the resolution at
the high end of the spectrum.
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Fig. 7 Details of a typical
training, showing the loss and
metric evolution and the
associated schedule of the
optimiser hyper-parameters

(a) Typical loss evolution during the training of a single model. The evo-
lution of the Mean Improvement is also shown (described in detail in
Sec. 4.2). Whilst the MI is what we aim to maximise, it fluctuates too
much during training to provide a reliable indication of the point of best
performance, and instead the validation loss is used to select the best
model.

(b) Learning rate and momentum schedule associated with the training
shown in Fig. (a) . Initially, the parameters evolve as per 1cycle with cosine
interpolation. Following this fixed period, the best performing models are
continually reloaded, and the LR evolves as a step-decay whenever the
model fails to improve.
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3.2.3 Optimiser

The Adam optimiser [52] is used for updating the model
weights. The ε and β2 parameters are kept constant, at 1 ×
10−8 and 0.999, respectively. The learning rate (LR) and β1

(momentum coefficient) are adjusted during training in two
stages. For the first 20 epochs of training, the 1cycle schedule
[53,54], with cosine interpolation [55], is used to train the
network quickly at high learning rates; this is followed by
up to 30 epochs of a step-decay annealing [44], which is
used to refine the network at small learning rates. For the
1cycle schedule, training begins at an LR of 3 × 10−7 and
β1 = 0.95. Over the first two epochs of training the LR is
increased to 3 × 10−5 and β1 is decreased to 0.85. Over the
next 18 epochs, the LR is decreased to 3 × 10−6, and β1

increased back to 0.95. Following this, the best performing
model-state, and its associated optimiser state, is loaded and
training continues at a fixed LR and β1 until two epochs
elapse with no improvement in validation loss. At this point,
the best performing model-state is again reloaded, β1 is set to
0.95, and the LR is halved. This process of training until no
improvement, reloading, and halving the LR continues until
either all 50 epochs have elapsed, or 10 epochs elapse with no
improvement. At this point the best performing model-state
is again loaded and saved as the final model. Figure 7 details
a typical training with such a schedule.

Explicit, tunable regularisation was not found to be
required during training. Instead, overtraining is prevented
by continual monitoring of the model performance on a sep-
arate validation sample, and saving of the model parameters
whenever the validation loss improves.

3.2.4 Ensemble training

As mentioned in Sect. 3.2.1, the training dataset is split into
36 folds, one of which is retained to provide a comparison
between models, and another is used to monitor generalised
performance during training. During development and the
ablation study (discussed infra, Appendix 7), it was useful
to obtain an averaged performance of the model architecture
from five repeated trainings. Since, however, one training on
the full dataset takes about one day, we instead ran these
trainings on unique folds of the full dataset, using different
folds to monitor generalisation, i.e. each model is trained on
seven folds and monitored on one fold, and no fold is used
to train more than one model (but folds can be used to mon-
itor performance for one model and also to train a different
model). This allows us to train an ensemble of five models
in just one day, and also to get average performance metrics
over the unique validation folds, to compare architecture set-
tings. This method of training is referred to as “unique-fold
training”.

Fig. 8 Raw predictions of the regressor ensemble as a function of true
energy. The ideal response is for all points to lie on a straight line along
y = x. The green line shows a linear fit to predictions in bins of true
energy

For the full, final ensemble, each model is trained on 34
folds and monitored on one fold, which is different for each
model. Once trained, the ensemble is formed by weighting
the contributions of each model according to the inverse of
its validation performance during training. This method of
training is referred to as “all-fold training”.

4 Results

Unless explicitly specified, all results presented in this sec-
tion refer to the main regression model, in which both raw
energy-deposits and the high-level features are used.

4.1 Regressor response and bias correction

Figure 8 shows the predictions of the regression ensemble as
a function of true energy for the holdout-validation dataset.
Whilst the general trend is linear, we can see some dispersion,
and Fig. 9 better details the fractional error as a function of
true energy, along with the trends in the quantiles. From this
we can see that regressor overestimates medium energies,
and underestimates high energies. Low energies are predicted
without significant bias.

We can correct for the bias in the prediction, however we
must do so in a way that does not assume knowledge of the
true energy, such that the correction can also be applied to
prediction in actual application. The method used is to fit a
function (in this case a linear function – green line in Fig. 8)
to the mean of the predictions in bins of true energy, and
their uncertainties as estimated from bootstrap resampling.
Having fitted the function, the inverse of the function can
now be used to look up the true energy of a given prediction,
resulting in a corrected prediction. Figure 10 illustrates the
corrected predictions on both the continuous validation data.
Although the difference is only slight, as we will see later in
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Fig. 9 Fractional error of predictions as a function of true energy, along
with quantile trends. The ideal response is for all points to lie on a
straight line along y = 0. The one and two sigma lines indicate the
50 ± 34.1% and 50 ± 47.7% percentiles, respectively

Fig. 10 Corrected predictions on validation data resulting from the
inversion of the fit as a function of the true energy. The black dashed
line indicates the ideal response

Sect. 7, the de-biased predictions allow for a better resolution
once the residual biases in the predictions are accounted for.
To best reproduce actual application, the debiasing correction
is fixed using the validation data, and then applied as is to
the testing data.

Figure 11 shows the distributions of the ratios of corrected
predictions to true energies on the testing data.

4.2 Resolution and combination with curvature
measurement

From the discussion in Sect. 1 we can expect that the rela-
tive resolution of the energy estimation from the calorimeter
should improve as the energy increases, similarly we expect
the resolution from magnetic-bending in the tracker will
improve as the energy decreases. This difference in energy
dependence means that the two measurements are comple-
mentary to one another and it would make sense in actual
application to use both approaches in a weighted average.

Since our setup only includes a calorimeter, we assume
that the resolution of a tracking measurement, performed
independently by an upstream or downstream detector, scales

linearly with energy, and equals 20% resolution at 1 TeV. Fig-
ure 12 shows the resolution of both the regressor measure-
ment and the simulated tracker measurement, along with the
resolution of their weighted average. Resolution here is the
fractional root median squared-error computed in bins of true
energy according to:

Resolution =

√(
Ẽp − Ẽt

)2 + �68
[
Ep

]2

Ẽt
, (4)

where Ẽp and Ẽt are the median predicted and true energies in
a given bin of true energy (their difference being the residual
bias after the correction via the linear fit), and �68

[
Ep

]
is the

difference between the 16th and 84th percentiles of the pre-
dicted energy in that bin (the central 68th percentile width).
When computing the resolution on the testing data (which
are generated at fixed points of true energy), Ẽt is instead the
true energy at a given point.

It is interesting to note that the regression resolution ini-
tially gets worse with energy, rather than starting poor and
gradually improving. Good resolution at low energy was not
observed during development studies prior to the introduc-
tion of the magnetic field, therefore we assume that the CNNs
are able to make use of the magnetic bending in the calorime-
ter to recover performance when there is reduced radiation.
As expected, the regressor quickly improves in resolution
once the energy reaches a certain threshold at around 1.5 TeV.

Having established that both the calorimeter and tracker
measurements are useful and complementary, for later stud-
ies it makes sense to compare models in terms of the per-
formance of the combined measurement. One such metric
is the poorest resolution achieved by the combined mea-
surement for the studied energy range (in this case 29.5%
– lower = better). This however relies only on a single point
of the response. A more general metric is to compute the
improvement of the combined measurement over the tracker-
only measurement in bins of true energy, and take the average
or sum; this then characterises the improvement due to the
regression across the whole spectrum. We will refer to this
metric as the Mean Improvement (MI). Considering the 11
points in the range 100–4100 GeV, our mean improvement
is 22.1% (higher = better). Computation of the MI on the
validation data instead uses 20 bins in the 100–4000 GeV.

Input comparison: high-level features and raw inputs As
discussed in Sect. 6, alongside the recorded calorimeter
deposits, a range of high-level (HL) features are also fed
into the neural network. To better understand what, if any-
thing, the CNN learns extra from the raw information, we can
study what happens when the inputs are changed. In Table 1
we show the MI metric values for a range of different inputs.
In cases when the raw inputs are not used, the neural net-
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Fig. 11 Distributions of the ratios of corrected predictions to true energies in bins of true energy. The ideal response here would be delta distributions
centred at one. Distributions not centred at one are indicative of residual bias in the predictions for that energy range

Fig. 12 Resolutions of the
energy regression (Calorimeter),
the simulated tracker, and their
weighted average in a combined
measurement. Resolution is
computed on testing data at
fixed points of true energy. The
tracker is assumed to provide a
linearly scaling resolution with a
relative value of 20% at 1 TeV

work (NN) consists only of the fully connected layers. For
this comparison, we use the MI computed during training on
the monitoring-validation dataset and average over the five
models trained per configuration.

From these results we can see the CNN is able to extract
more useful information from the raw data that our domain

Table 1 Mean Improvements for a range of different input configura-
tions. The MI is computed on the monitoring-validation data and aver-
aged over the training of five models per configuration. The change in
MI is computed as the difference between configuration and the nominal
model (“Raw inputs + HL feats.”) as a fraction of the MI of the nominal
model. Energy-sum features are the three features corresponding to the
sums of energy in different threshold regions (V[0], V[26], and V[27])

Inputs MI Change in MI [%]

Raw inputs + HL feats. 20.30 ± 0.08 N/A

Raw inputs only 19.53 ± 0.06 −3.8 ± 0.4

HL-feats. only 17.60 ± 0.08 −13.3 ± 0.6

Energy-sum only 14.98 ± 0.05 −26.2 ± 0.5

expertise provides, however we are still able to help the model
perform better when we also leverage our knowledge. More-
over, we can see that the additionally computed HL-features
provide a significant benefit to the energy-sum features. The
importance of the top features as a function of true energy
is illustrated in Fig. 13. From this, it is interesting to note
the shift in importance between V[0] and V[26] (the sum of
energy in cells above 0.1 GeV and below 0.01 GeV, respec-
tively; see Appendix 6, infra). This is due to the increased
chance of high-energy deposits as the energy of the muon
increases. The fact that the HL-features give access to a finer-
grained summation of energy than the energy-pass-through
connections in the CNN architecture (which sum all the
energy in cells within the kernel-size, regardless of energy)
is potentially why the HL-features are still useful; a further
extension to the model, then, could be to also perform the
binned summation during the energy pass-through.

Figure 14 shows the resolutions of the four different mod-
els on the holdout-validation data. From this we can clearly
see the benefits of providing access to the raw-hit data. The

123



   79 Page 12 of 26 Eur. Phys. J. C            (2022) 82:79 

Fig. 13 Permutation importance of the most important features as eval-
uated using the “HL-feats. only” model in bins of true energy. The
features, described further in Sect. 6 are: V[0] – E-sum in cells above
0.1 GeV, V[1] – fractional MET, V[3] – overall 2nd moment of trans-

verse E distribution, V[11] – maximum total E in clustered deposits,
V[15] – maximum energy of cells excluded from clustered deposits,
V[22] – relative 1st moment of E distribution along x-axis, V[26] –
E-sum in cells below 0.01 GeV

Fig. 14 Resolutions of the
models with varying input
menus. Resolution is computed
on the holdout-validation data in
bins of true energy

benefits of the high-level features are most prominent in the
low to medium energy range, where features V[0] and V[26]
have very similar importance.

5 Conclusions

As we move towards the investigation of the potential of
new accelerators envisioned by the recently published “2020
Update of the European Strategy for Particle Physics” [56],
we need to ask ourselves how we plan to determine the
energy of multi-TeV muons in the future detectors which
those machines will be endowed with and beyond. As men-
tioned supra (Sect. 1), the CMS detector is able to achieve
relative resolutions in the range of 6% to 17% at 1 TeV, thanks

to its very strong 4-Tesla solenoid. It is important to note
that the choice of such a strong magnet for CMS imposed
a compact design to the whole central detector; the result
proved successful at the LHC, but might be sub-optimal in
other experimental situations. Given the linear scaling with
momentum of relative momentum resolution as determined
with curvature fits, it is clear that complementary estimates of
the energy of high-energy muons would be highly beneficial
in future experiments.

In this work we investigated, using an idealised calori-
meter layout, how spatial and energy information on emit-
ted electromagnetic radiation may be exploited to obtain an
estimate of muon energy. Given the regularity of the detec-
tor configuration, processing of the raw data was possible
using 3D convolutional neural networks. These allowed us
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to exploit the granular information of the deposited energy
pattern to learn high-level representations of the detector
readout, which we could also combine with high-level infor-
mation produced by physics-inspired statistical summaries.
We found the use of deep learning and domain-driven fea-
ture engineering to both be beneficial. In Sect. 7 we further
explore the CNN architecture and training loss, finding there
too, that using knowledge of the physical task can help inspire
more performant solutions.

Our studies show that the fine-grained information on the
radiation patterns allows for a significant improvement of the
precision of muon energy estimates. E.g. for muons in the 1–
3 TeV range, which are the ones of higher interest for future
applications, the relative resolution improves approximately
by a factor of two with respect to what can be achieved by only
using the total energy release (see Fig. 14). A combination of
such information with that offered by a curvature measure-
ment, such as a resolution term of the form δP = 0.2P (with
P in TeV) which can typically be enabled by tracking in a
B = 2 T magnetic field, may keep the overall relative reso-
lution of multi-TeV muons below 30% across the spectrum,
and achieve values below 20% at 4 TeV (see Fig. 12).

Acknowledgements A significant fraction of computational and stor-
age resources used in this investigation were provided by CloudVeneto;
we thank the them and their support team not only for the compute
offered, but the high up-time.

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: A public version of the research
code is available from Ref. [36]. The pre-processed datasets are avail-
able from Ref. [37], and are designed to be used directly with the code-
base.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix

6 High-level muon features

The regression task we set up in Sect. 3 uses 28 global fea-
tures extracted by combining spatial and energy information
collected in the calorimeter cells. In this section we describe
how those features are calculated.

Some of the features describe general properties of the
energy deposition (e.g., the sum of the signal in all cells
recording energy above or below a Ethr = 0.1 GeV thresh-
old), while others are fully reliant on fine-grained information
(moments of the energy distribution, in five regions of detec-
tor depth: z < 400 mm, 400 < z < 800 mm, 800 < z <

1200 mm, 1200 < z < 1600 mm, and z > 1600 mm; and
imbalance of the deposited energy in the transverse plane). A
few more variables describe the result of a clustering of the
energy deposits, which is briefly described in Sect. 6.1 infra.
A final set of features described in Sect. 6.2 are specifically
constructed to leverage the magnetic field and estimate the
curvature of muons by detecting the spread of the radiation
pattern along the x coordinate caused by the small bending
along x that muons of sub-TeV energy follow as they pene-
trate in the calorimeter. Below we discuss in detail how the
features are computed.

6.1 Clustering of calorimeter cells

The small size of calorimeter cells (which span 0.24 radiation
lengths in x and y, and 4.5 radiation lengths in z) implies that
photons of energy large enough to produce showers by pair
production will produce a signal in multiple cells, especially
if they are emitted with non-null angles with respect to the z
direction. Given that all the information on radiation emission
by the muon is possessed by primary photons, it seems rea-
sonable to try and decipher the pattern of emitted radiation by
aggregating the granular cell-based information into clusters,
whose properties may constitute useful statistical summaries
to complement the full resolution of the calorimeter.

We set a minimum threshold Ethr = 0.1 GeV for the
energy recorded in cells elected as seeds for the cluster-
ing procedure. The search for clusters starts with seed cells
belonging to the column of same transverse coordinates x
and y of the incident muon,5 and performs the following cal-
culations:

1. The highest-energy cell is selected as a seed if it has
E > Ethr;

2. The six calorimeter cells adjacent in either x, y, or z to
the seed cell are added to the cluster if they recorded a
non-null energy deposition;

3. Cells with non-null energy deposition are progressively
added to the cluster if they are adjacent to already
included cells;

4. The final cluster is formed when there are no more cells
passing the above criteria; at that point, features such as

5 The impact position of muons is well determined as that of the xy posi-
tion whose z-integrated recorded energy is the highest, but we assume
here that we know it from a tracking detector located upstream, with no
loss of generality.
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the number of included cells and the total cluster energy
are computed (see below).

5. All cells belonging to the cluster are removed from the
list of unassigned cells;

6. The algorithm returns to step 1 to form other clusters.

Once clusters seeded by the column of cells along the
muon trajectory are formed by the above procedure, a second
set of clusters is constructed using cells yet unassigned to any
cluster:

1. The highest-energy cell above Ethr is considered, irre-
spective of its x, y coordinates;

2. The six calorimeter towers adjacent in either x, y, or z to
the seed cell are added to the cluster if they recorded a
non-null energy deposition;

3. Cells with non-null energy deposition are progressively
added to the cluster if they are adjacent to cells already
included;

4. The final cluster is formed when there are no more cells
passing the above criteria; features are then computed for
the identified cluster;

5. All cells belonging to the cluster are removed from the
list of unassigned cells;

6. The algorithm returns to step 1) to search for additional
clusters.

Using the results of the above two-step clustering proce-
dure, we define the following high-level features:

– V[9]: The number of muon trajectory-seeded clusters
(type-1 clusters);

– V[10]: The maximum number of cells among type-1 clus-
ters;

– V[11]: The maximum total energy among type-1 clusters;
– V[12]: The maximum extension along x of type-1 clus-

ters;
– V[13]: The maximum extension along y of type-1 clus-

ters;
– V[14]: The maximum extension along z of type-1 clus-

ters;
– V[16]: Average number of cells included in type-1 clus-

ters.
– V[17]: The number of clusters seeded by a cell not

belonging to the muon trajectory (type-2 clusters);
– V[18]: The maximum number of cells among type-2 clus-

ters;
– V[19]: The maximum total energy among type-2 clusters;
– V[20]: Ratio between maximum energy and maximum

number of cells of type-2 clusters;
– V[21]: Average number of cells included in type-2 clus-

ters.

Finally, some cells may remain non associated to any type-
1 or type-2 clusters. To extract further information from them,
we search for the 3×3×3 cube of 27 cells in x,y,z which cap-
tures the highest total energy among cells still not included in
clusters (V[25]), and the second-highest total energy (V[15]).
These two features are listed infra. Standardised distribu-
tion of these features, along with the others defined in this
Appendix, are shown in Figs. 15, 16, 17; correlations with
muon energy are shown in Figs. 18, 19, 20.

6.2 Measuring curvature with energy deposits

Muons entering our simulated calorimeter do so with an ini-
tial trajectory orthogonal to the calorimeter front face.6 From
that point on, they undergo interactions with the material, as
well as a bending Lorentz force. If we ignore all physical
effects except the magnetic bending, which we wish to esti-
mate, we may model the muon track as an arc of a circle in the
xz plane. At the back face of the calorimeter, the expected
deviation of such a circumference from a straight line ori-
ented along z is very small in absolute terms: for a muon of
momentum P in GeV in a magnetic field B in Tesla, the curva-
ture of the trajectory is R = P/(0.3 B) meters, hence the esti-

mated deviation is �x = R−
√

R2 − �2
z , where �z = 2 m is

the calorimeter depth along z. Assuming, e.g., P = 600 GeV
we find a curvature R = 1000 m and from it a displacement
�x = 2 mm, which is already smaller than the calorimeter
granularity.

In constructing a variable sensitive to curvature, we
observe that circular trajectories that start orthogonal at the
front face of the calorimeter may in principle be determined
by measuring any two points along their path in the lead
tungstate material. We further notice that while calorimeter
cells traversed by the muon track usually collect a detectable
amount of energy from ionization processes, they are not the
only ones carrying information on the muon trajectory. In
fact, for muons that bend very little in the magnetic field, the
process of muon radiation in a homogeneous medium is dom-
inated by brehmsstrahlung originating by multiple scattering
processes. In the plane orthogonal to the muon trajectory the
direction of the emitted photons is thus largely random, but
these photons do not travel very far before depositing their
energy in calorimeter cells. Hence the position of additional
cells lit up by photons traveling away from the muon trajec-
tory contains a good deal of extra information on the position
of the radiating particle.

We construct a statistical estimator of the muon curvature
by determining two separate points in the xz plane, using
separately the first 25 and the second 25 layers of crystals in

6 A very small initial bending is produced for low-energy muons in
traversing the first 50mm from the point of origin to the calorimeter
front face.
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Fig. 15 1D density-distributions of features V[0] to V[9]. Features are defined in Sect. 6.3
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Fig. 16 1D density-distributions of features V[10] to V[19]. Features are defined in Sect. 6.3
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Fig. 17 1D density-distributions of features V[20] to V[27]. Features are defined in Sect. 6.3
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Fig. 18 2D histograms showing the dependence of features V[0] to V[9] (on the y axes) on true muon energy (on the x axes). Features are defined
in Sect. 6.3
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Fig. 19 2D histograms showing the dependence of features V[10] to V[19] (on the y axes) on true muon energy (on the x axes). Features are
defined in Sect. 6.3
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Fig. 20 2D histograms showing the dependence of features V[20] to V[27] (on the y axes) on true muon energy (on the x axes). Features are
defined in Sect. 6.3

z. We compute the following weighted averages:

x̂1 =
∑

i1
Eixiwi

∑
i1

Eiwi

ẑ1 =
∑

i1
Eiziwi

∑
i1

Eiwi

x̂2 =
∑

i2
Eixiwi

∑
i2

Eiwi

ẑ2 =
∑

i2
Eiziwi

∑
i2

Eiwi

where the sums over indices i1 run on calorimeter cells in the
first 25 layers, and sums over indices i2 run on calorimeter
cells in the second 25 layers along z, and where weights wi

are defined as follows:

wi = exp(−(|yi − yμ|)/50)

with mm units, and where yμ is the center of the towers
in the y plane containing the highest amount of measured
energy. In other words, calorimeter cells are assumed to con-
tain information on the xz position of the radiating particle
in proportion to their detected energy, and inversely propor-
tional to the distance of the cell to the y coordinate at which
the particle track lays.

The two points (x1, z1), (x2, z2) in the xz plane allow
the construction of an estimator for the radius of the muon
trajectory: we first specify the equation of a circumference
as

(x − x0)
2 + z2 = R2
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Fig. 21 Correlation matrix
between the high-level features.
See the text for details
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from which we get

x0 = z2
2 − z1

2 + x2
2 − x1

2

2(x2 − x1)

and from it the radius estimator as

R =
√

x1
2 − 2x1x0 + x0

2 + z1
2

Variable V[24] is then defined as V[24] = 0.3BR. It pro-
vides useful information for muon momenta below about
500 GeV, as can be seen in Fig. 20.

6.3 Description of other global features

We list below the other features we compute for each muon:

– V[0]: The total energy recorded in the calorimeter in cells
above the Ethr > 0.1 GeV threshold;

– V[1]: We define Hx = ∑
i Ei ·�xi and Hy = ∑

i Ei ·�yi,
where �xi and �yi are the spatial distances in the x and
y directions to the centre of the cell which is hit by the
muon at the calorimeter front face; from these we derive

V[1] =
√

H2
x + H2

y/
∑

i Ei. In this calculation, all cells are
used;

– V[2]: This variable results from the same calculation
extracting V[1], but it is performed using in all sums
only towers exceeding the Ethr = 0.1 GeV threshold;

– V[3]: The second moment of the energy distribution
around the muon direction in the transverse plane,
computed with all towers as V[3] = ∑

i[Ei(�x2
i +

�y2
i )]/

∑
i Ei, where indices run on all towers and the

distances are computed in the transverse plane, as above;
– V[4]: The same as V[3], but computed only using towers

located in the first 400 mm-thick longitudinal section of
the detector along z;

– V[5]: The same as V[3], but computed only using towers
in the 400 < zi < 800 mm region;

– V[6]: The same as V[3], but computed only using towers
in the 800 < zi < 1200 mm region;

– V[7]: The same as V[3], but computed only using towers
in the 1200 < zi < 1600 mm region;

– V[8]: The same as V[3], but computed only using towers
in the zi ≥ 1600 mm region;

– V[9]-V[14] and V[16]-V[21]: See supra (Sect. 6.1);
– V[15]: Second-highest maximum energy in a 3 ×3 ×3

cubic box from cells not included in type-1 or type-2
clusters;
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– V[22]: The first moment of the energy distribution along
the x axis, relative to the x position of the incoming muon
track;

– V[23]: The first moment of the energy distribution along
the y axis, relative to the y position of the incoming muon
track;

– V[24]: See supra (Sect. 6.2);
– V[25]: Maximum energy in a 3 ×3 ×3 cubic box from

cells not included in type-1 or type-2 clusters;
– V[26]: Sum of energy recorded in cells with energy below

0.01 GeV;
– V[27]: Sum of energy recorded in cells with energy

between 0.01 and Ethr = 0.1 GeV.

The correlation matrix of the 28 variables is shown in
Fig. 21.

7 Ablation study

The architecture of the network described in Sect. 3.1, and
training methodology detailed in Sect. 3.2, are both reason-
ably complex, leveraging a range of recently published, or
otherwise unusual, techniques, as well as other aspects that
are specific to the task at hand. Similar to the study of the
input features in Sect. 4.2, it is worth quantifying the actual
benefits of each of these items in the hope of simplifying
the model, or to help inform future studies in similar task
regimes.

This ablation study takes the strategy of inspecting sepa-
rately: the loss, the ensembling, the training, the architecture,
and the bias correction. In each inspection, particular aspects
of the model or method will be removed, or replaced with
more standard approaches, individually (i.e. only one aspect
is ever different) to quantify the benefit of each particular
aspect in the presence of the others. Finally, the whole sec-
tion of the model or method will be replaced with a standard
approach, to quantify the overall benefit of that part of the
model or method. Unless otherwise stated, the results shown
are computed on the monitoring-validation dataset and aver-
aged over the five models trained per test via unique-fold
training (see Sect. 3.2.4).

7.1 Loss function

As a reminder, the regressor is trained to minimise a
Huberised version of a domain-informed loss function, which
tracks running averages of its thresholds in bins of true
energy, and element-wise losses are weighted according to a
function of the true energy. We can simplify this loss function
by: using just a single bin of true energy; using a fixed thresh-
old per bin computed solely on the first batch of data; using

Table 2 Ablation study of the loss. The change in MI is computed as
the fractional difference with respect to the default model. The “MSE”
test uses the down-weighting of the data, and the “No down-weighting”
test uses the full adaptive Huberised MFSE loss

Ablation MI Change in MI [%]

Default 19.42 ± 0.08 N/A

Single bin 19.14 ± 0.08 −1.5 ± 0.6

Batchwise thresholds 19.25 ± 0.04 −0.9 ± 0.5

Non-Huberised loss 19.36 ± 0.06 −0.4 ± 0.5

Fixed thresholds 19.39 ± 0.05 −0.2 ± 0.5

MSE loss 18.43 ± 0.06 −5.1 ± 0.5

No down-weighting 16.5 ± 0.2 −15.12 ± 1.03

thresholds per bin computed entirely on the current batch of
data without averaging; using unweighted loss elements; or
using the mean fraction squared error without Huberisation
(i.e. as in Eq. (1)). Finally we can replace the domain-inspired
function with a more standard mean squared-error loss, how-
ever we will still include the down-weighting of the data. The
results of these studies are summarised in Table 2.

From these results we can confirm that the domain-
inspired loss we have adopted is beneficial to the training, and
that the down-weighting is also very important. The Huberi-
sation of the loss is potentially useful, however when it is
used one should compute separate thresholds in bins of true
energy, and either fix these for the whole training, or track
their running average.

7.2 Ensembling and dataset size

Whilst in this study the focus is mainly on improving per-
formance, in practice one may also be concerned by retrain-
ing time, inference time, and dataset-size requirements. Due
to these potential concerns it is worth checking the bene-
fits of ensembling and training on larger datasets. Table 3
summarises two ensemble trainings, one via full-fold, and
the other via unique-fold. Each training is then interpreted
in two ways: one assumes that all five models were trained
and applied as an ensemble (full/unique ensemble); the other
assumes that only one model was trained and computes the
average MI across the five models that were actually trained
(full/unique singles).

From the above results we can see that both ensembling
and using a larger dataset provide performance improve-
ments. We also see that if a large dataset is available, then
it is better to train a single model on the whole of it, than
an ensemble on unique subsamples of it, both in terms of
inference time and MI. Since the training time of the full
models, the disk-space-size per data point, and the data gen-
eration times are all relatively low compared to many other
algorithms used in HEP and trainings can be used for an
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Table 3 Ablation study of the ensembling and dataset size and usage.
Inference time is per batch of 256 muons and excludes the disk-to-RAM
time. The MI is computed on the holdout-validation data. “Full” indi-
cates the model was trained on 34/36 folds of data and monitored on

one fold of data. “Unique” indicates the model was trained on a unique
set of seven folds of data, and monitored on one fold of data. In the case
of the single models, the MI is averaged across five individual models

Ablation Dataset size Times MI

Training [h] Inference [second per batch]

Full ensemble 862,085 113.4 0.47 20.72

Full singles 862,085 22.7 0.091 20.29 ± 0.04

Unique ensemble 862,085 23.3 0.47 19.83

Unique singles 197,048 4.7 0.0.091 19.37 ± 0.08

Table 4 Ablation study of the
architecture. The change in MI
is computed as the fractional
difference with respect to the
default model. “Parameters”
refers to the number of trainable
parameters in the architecture of
each model

Ablation MI Change in MI [%] Parameters

Default 19.42 ± 0.08 N/A 636,570

No BN 18.5 ± 0.3 −5 ± 1 635,404

No identity path 18.72 ± 0.08 −3.6 ± 0.6 634,356

Nominal BN 19.2 ± 0.2 −1.1 ± 0.9 636,570

No E-pass 19.30 ± 0.05 −0.6 ± 0.5 671,076

No SE 19.33 ± 0.09 −0.5 ± 0.6 631,259

No pooling 19.4 ± 0.1 −0.4 ± 0.7 805,130

No CNN 17.45 ± 0.09 −10.2 ± 0.6 4,111,361

Table 5 Software used for the
investigation

Software Version References Use/Notes

Lumin 0.8 [42] Wrapping PyTorch to implement networks

PyTorch 1.8 [41] Implementing neural networks

Seaborn 0.9 [57] Plot production

Matplotlib 3.2 [58] Plot production

Pandas 1.2 [59] Data analysis and computation

NumPy 1.21 [60] Data analysis and computation

Scikit- Learn 0.22.0 [61] Data shuffling & splitting

Geant 4 [39,40] Detector simulation

Root 6 [62] Processing of data

Uproot 3.11 [63] Processing of data

entire data-taking run, our recommendation would be to use
as much training data as possible. The choice between sin-
gle model or ensembling depends mostly on the time-budget
available during application (since other reconstruction algo-
rithms will be being run during processing), and whether the
regression is performed online during data-taking for trig-
gering, or during offline reconstruction.

7.3 Training

The nominal training scheme involves changing the learning
rate and the momentum of the optimiser during training: first
via a 1cycle schedule, to quickly train the model; and sec-
ond via a step decay of the LR. To check the advantage of

this schedule, we can retrain keeping the LR and momentum
constant. The LR is set to 1 × 104, slightly lower than the
maximum LR used for nominal training, to account for the
fact that it has no possibility to decrease, other than through
ADAM’s scaling parameters, and that the momentum will
not be able to stabilise the higher LR. The number of epochs
and early-stopping criteria are kept the same. Such a training
results in a 5.2(6)% decrease in MI, and an increase in the
required training time due to the nominal scheme triggering
the early-stopping criterion earlier.
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7.4 CNN architecture

The CNN, although inspired by established architectures,
is by no means standard, and includes a task-specific com-
ponent in the form of the energy-pass-through connections.
The studies performed are: removal of the squeeze-excitation
blocks; removal of the max-average pooling layer, instead
flattening the hidden state and feeding all inputs to the fully
connected layers; replacing the running batchnorm layers
with standard BN layers; removal of BN entirely; removal
of the identity paths, i.e. the paths through the trainable con-
volutional layers are no longer residual (in this case the posi-
tions of the BN and activation layers are changed to always
be convolution into activation into BN); and removal of the
energy-pass-through connections (in this case the number of
channels added at each downsampling stage is increased to
maintain a similar number of trainable parameters). Finally,
we can remove the CNN head entirely and flatten all 51 200
cell values into a vector to be fed directly to the full connected
layers. Table 4 details the results of these studies.

As expected, the CNN head is essential to avoid over-
parameterising the model. Additionally, the use of running
batchnorm is necessary to avoid instabilities in the validation
performance of the network (running without any BN at all
also produces instabilities in the training loss). The identity
paths also provide a large improvement to the model. It is
interesting to note that the energy pass-through connections
provide an improvement, since the model should be able to
learn this itself, however similar to DenseNet, the fact that
we explicitly retain a part of the previous representation of
the data throughout the model, allows a slightly more direct
flow of gradient update to the trainable layers. Additionally
we are implicitly suggesting that the trainable layers act as
small corrections to the recorded energy, rather than allowing
the model to learn this approach.

7.5 Bias correction

Whilst not strictly part of the architecture, we can also check
whether the minor correction to the predictions that we apply
post-training is useful in improving the resolution. With-
out the bias correction, the change in MI is −2.1% on the
holdout-validation dataset when using the nominal model
and all-fold training (see Sect. 3.2.4), so the correction is
worth applying.

8 Resource requirements

8.1 Regressor

The models used for this study were trained on Nvidia V100S
GPUs. Training the nominal architecture at a batch size of

256 requires 5 GB of VRAM, 5 GB RAM, and 100% of both
a single (virtual) CPU core (Intel Xeon Gold 6248 CPU @ 2.5
GHz in our case) and the GPU. The training time per model
is about 23 h, and about five days for the full ensemble when
trained serially; however, with sufficient resources, ensemble
training would be trivially parallelisable.

Application of the ensemble takes 61 s for a dataset of 24
631 muons computed in batches of 256, of which 15 s are
spent loading the dataset into RAM. Excluding the disk-to-
RAM time, inference is about 0.5 s for a batch of 256 muons
(including RAM-to-VRAM time) for the ensemble (0.1 s per
batch per model).

Although some steps are taken to reduce data-loading
times (LZF-compression and sparse hit-representation), disk-
to-RAM loading time is still significant and training/
inference time depends highly on the disk read speed and
access latency; whilst production and development was
mainly performed in the cloud on powerful and expensive
GPUs, local runs on a much cheaper Nvidia 1080 Ti GPU
with a solid-state hard-drive were actually just as quick.

Whilst the loading time from RAM to GPU is minor com-
pared to the load-time from disk to RAM, further improve-
ments would be to retain the sparse representation of the data,
however sparse tensors in PyTorch are still experimental,
and sparse CNN implementations are limited in functionality,
let alone implemented for 3D convolutions.

8.2 Datasets and preparation

The time to generation the data via Geant 4 heavily depends
on the muon energy, however by running the generation as
7000 simultaneous jobs on a batch system, the dataset was
processed in about one day. The raw ROOT files require 183
GB of storage space.

Computation of the high-level features is performed in
C++ and is also run as 7000 jobs on a batch system, taking
a few hours to complete. The resulting uncompressed CSV
files require 246 MB of space.

Processing of the raw hits from ROOT into the HDF5
files required by Lumin, and combination with the high-level
features is a three-step process:

1. Each ROOT file is processed into an LZF-compressed
HDF5 file containing only the raw hits and the muon
energy (the ROOT files also contain additional informa-
tion which is no longer required). This takes about six
hours and requires about a further 44 GB of space.

2. Meta data required to pre-process the HL-features is com-
puted via a loop over the CSV files, which takes a few
seconds.

3. The individual HDF5 files are combined with the CSV
files into two LZF-compressed HDF5 files with the train-
ing and validation data being split into 36 folds, and the
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testing data split into 18 folds. At this point the HL-
features are pre-processed based on the meta data com-
puted beforehand, and the raw energy deposits are trans-
formed into a sparse format (which reduces loading time).
This requires several hours; the final training file has a
size of 32 GB and the testing file of 12 GB.

9 Software

The investigation performed in this project depended on
many open-source software packages. These are summarised
in Table 5. A public version of the research code is available
from Ref. [36]. The pre-processed datasets are available from
Ref. [37], and are designed to be used directly with the code-
base.
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