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Abstract

We calculate the generalized soft functions at O(α2
s) at next-to-leading power ac-

curacy for the Drell-Yan process at threshold. The operator definitions of these
objects contain explicit insertions of soft gauge and matter fields, giving rise to a
dependence on additional convolution variables with respect to the leading power
result. These soft functions constitute the last missing ingredient for the validation
of the bare factorization theorem to NNLO accuracy. We carry out the calculations
by reducing the soft squared amplitudes into a set of canonical master integrals
and we employ the method of differential equations to evaluate them. We retain
the exact d-dimensional dependence of the convolution variables at the integration
boundaries in order to regulate the fixed-order convolution integrals. After com-
bining our soft functions with the relevant collinear functions, we perform checks of
the results at the cross-section level against the literature and expansion-by-regions
calculations, at NNLO and partly at N3LO, finding agreement.
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1 Introduction

Substantial progress has recently been achieved in the study of subleading power cor-
rections in elementary scattering processes within the soft-collinear effective theory
(SCET) [1–4] framework. Next-to-leading power (NLP) leading logarithmic (LL) contri-
butions to the partonic cross sections were resummed to all orders in perturbation theory
using renormalization group (RG) techniques for event shape observables [5], and for the
parton diagonal channels of colour singlet production processes, such as qq̄ → γ∗ [6] and
gg → H [7], near the kinematic threshold.1 Progress beyond the current state of the
art has been hindered by the ubiquitous appearance of endpoint divergent convolution
integrals [10–12] in subleading power factorization formulas both at LL in the parton non-
diagonal channels, and at next-to-leading logarithmic (NLL) accuracy for the diagonal
channels. These divergences prohibit a straightforward application of the standard RG
methods to perform resummation. Solutions to this problem at LL accuracy have been
found in particular cases by employing consistency relations [13], refactorization condi-
tions [14] and a combination of operator refactorization and consistency relations [15].
At NLL accuracy a solution has been obtained for the h→ γγ decay mediated by light-
quarks using diagrammatic methods [16] and within the SCETII framework [17, 18].
However, a universal solution to these problems is not currently known.

By employing the basis of subleadingN -jet operators constructed in [19–21],2 the bare
factorization theorem for the qq̄-initiated Drell-Yan (DY) process in the threshold region3

was derived at general subleading powers in [12]. In particular, the next-to-leading
power factorization formula is proportional to the leading power (LP) hard function
and to convolutions between the generalized soft functions and their associated collinear
functions, the latter calculated to O(αs) in [12]. Formally, this result is only valid when
the soft and collinear functions are evaluated in exact d-dimensions before evaluating
the convolution integrals. However, after convolution, it is safe to expand in the d → 4
limit.

Currently, the two-loop generalized soft functions are the only missing ingredients
which are required to validate the DY factorization theorem [12] up to NNLO at NLP
accuracy. The aim of the present article is to fill this gap by providing the calculation of
the generalized soft functions at O(α2

s) which is carried out while retaining the relevant
d-dimensional dependence of the results. We reduce the squared amplitudes to master
integrals (MIs) by employing the program LiteRed [27,28] and we calculate the MIs using
the method of differential equations and the transformation to the canonical basis [29].
The results for the soft functions are validated at the cross-section level, after convolution
with the collinear functions, by directly comparing to results obtained by means of
the expansion-by-regions and diagrammatic methods [30–32]. We also find agreement
with the NLP contribution of the NNLO result in [33]. To achieve this, we sum the
contributions to the cross-section due to the soft functions with the remaining NNLO

1NLP LL results were obtained using diagrammatic techniques in [8] and compared to SCET in [9].
2A power suppressed operator basis in the label formulation of SCET can be found in [22–25].
3An extension of the standard threshold limit to include full collinear dynamics was studied in [26].
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contributions calculated in [12] and collected in App. C. In the last step, we carry out
the remaining UV renormalization and remove the initial state collinear singularities at
cross section level.

To the best of our knowledge, this is the first time that soft functions at NLP are
evaluated to O(α2

s). However, in the present work, we do not analyze the UV renor-
malization and the RG evolution of the soft functions since any such procedure requires
an expansion around d → 4 which leads to the appearance of divergent convolutions
integrals preventing naive renormalization attempts. Our intention is to provide more
information about the higher order structure of these soft functions which could give a
hint towards the solution of the divergent convolution problem, at least in the present
case. However, it should be noted that at NLP accuracy, calculations and studies of
the renormalization and evolution properties of the soft function needed for the h→ γγ
decay process were recently presented at O(αs) in [34, 35]. In the context of the qT -
subtraction method, calculations at fixed-order accuracy, which required the evaluation
of several new integrals, have been recently carried out at NLP in QCD [36] without
separating the different regions.

The paper is organized as follows. In Sec. 2 we review the structure of the factorized
cross section which is one of the main results of [12]. In Sec. 3 we describe in detail
the calculation of the two-loop soft functions. In particular, we discuss the evaluation
of the canonical master integrals using the differential equation method. In Sec. 4 we
calculate the convolution integrals of the soft functions with the corresponding collinear
functions [12] which allows us to carry out a series of checks at the cross-section level
against the literature, [30, 31, 33], and against expansion-by-regions calculations, both
at NNLO and available results at N3LO [32]. In App. A we list the analytic results for
the collinear functions calculated in [12], and in App. B we provide expressions for the
relevant two-parton matrix elements used in this calculation. Useful cross-section level
results from [12] are collected in App. C. Finally, App. D contains the expressions for
the relevant Altarelli-Parisi splitting functions.

2 Factorization near threshold

In this section, we review the structure of the NLP factorization theorem for the DY pro-
cess in the threshold region [12], and we remind the reader of the operatorial definitions
of the NLP soft functions which are relevant for this work.

We consider the parton diagonal channel of the DY process, qq̄ → γ∗[→ `¯̀] + X in
the kinematic region z = Q2/ŝ → 1, where ŝ = xaxb s is the partonic centre-of-mass
energy squared, xa, xb are the momentum fractions of the partons inside the incoming
hadrons and Q2 is the invariant mass squared of the lepton pair. Up to NLP in the
threshold expansion, the cross-section differential in Q2 assumes the following form

dσDY

dQ2
=

4πα2
em

3NcQ4

∑
a,b

∫ 1

0

dxadxb fa/A(xa)fb/B(xb)
(
σ̂ LP
ab (z) + σ̂NLP

ab (z) +O(λ4)
)

+O
(

Λ

Q

)
,

(2.1)
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where fa/A(xa) and fb/B(xb) are the usual parton distribution functions (PDFs), and
σ̂(z) with superscripts LP and NLP are the leading power and the next-to-leading power
partonic cross sections, respectively. Since we only focus on the qq̄-channel, we omit the
indices a, b in the following. The LP partonic cross section factorizes into a product of
two functions

σ̂LP(z) = H(Q2)QSDY(Q(1− z)) , (2.2)

the hard function H(Q2) and the soft function

SDY(Ω) =

∫
dx0

4π
eiΩx0/2 S̃0

(
x0
)
. (2.3)

The LP position-space soft function is a vacuum matrix element of soft Wilson lines4 [38]

S̃0(x) =
1

Nc

Tr 〈0|T̄
[
Y †+(x)Y−(x)

]
T
[
Y †−(0)Y+(0)

]
|0〉 , (2.4)

where

Y± (x) = P exp

[
igs

∫ 0

−∞
ds n∓As (x+ sn∓)

]
. (2.5)

We now turn our attention to the NLP part of the factorization formula, which is un-
derstood to be formally valid only in d-dimensions, before renormalization. To facilitate
comparison with literature, we define the quantity ∆ related to the partonic cross section
as follows

∆(z) =
1

(1− ε)
σ̂(z)

z
. (2.6)

The NLP partonic cross section receives contributions from power corrections to the
phase-space, the so-called kinematic corrections, and from insertions of subleading power
Lagrangian terms in time-ordered product operators, referred to as dynamical correc-
tions. We have

∆NLP(z) = ∆dyn
NLP(z) + ∆kin

NLP(z) . (2.7)

The ∆kin
NLP(z) term has been presented in Eq. (5.11) of [12] at NNLO. In this work, we

focus on the calculation of the generalized soft functions which appear in the factorization
formula in the ∆dyn

NLP(z) contribution. The result for ∆dyn
NLP(z) takes the following form [12]

∆dyn
NLP(z) = − 2

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+

4

)
γρ⊥

]
βγ

×
∫
d(n+p)C

A0,A0 (n+p, xbn−pB)C∗A0A0 (xan+pA, xbn−pB)

4This object and its relation to other LP soft functions has been recently investigated in [37].
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×
5∑
i=1

∫
{dωj} Ji,γβ (n+p, xan+pA; {ωj}) Si(Ω; {ωj}) + h.c. , (2.8)

where Ω = Q(1− z). In the equation above, C A0,A0 is the hard matching coefficient of
the LP SCET current for the DY process. The Ji are the collinear functions and the Si
represent the generalized soft functions in momentum space, defined as

Si(Ω; {ωj}) =

∫
dx0

4π
eiΩx0/2

∫ {
dzj−
2π

}
e−iωjzj−Si(x0; {zj−}) , (2.9)

in terms of the position-space multi-local soft functions, Si(x0; {zj−}). At NLP these are
given by

S1(x0; z−) =
1

Nc

Tr〈0|T̄
[
Y †+(x0)Y−(x0)

]
T

([
Y †−(0)Y+(0)

] i∂ν⊥
in−∂

B+
ν⊥

(z−)

)
|0〉 , (2.10)

S2;µν(x
0; z−) =

1

Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1

(in−∂)

[
B+
µ⊥

(z−),B+
ν⊥

(z−)
])
|0〉 , (2.11)

S3(x0; z−) =
1

Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1

(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]])
|0〉 , (2.12)

SAB4;µν,bf (x
0; z1−, z2−) =

1

Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
ba

×T

([
Y †−(0)Y+(0)

]
af
B+A
µ⊥

(z1−)B+B
ν⊥

(z2−)

)
|0〉 , (2.13)

S5;bfgh,σλ(x
0; z1−, z2−) =

1

Nc

〈0|T̄
[
Y †+(x0)Y−(x0)

]
ba

×T

([
Y †−(0)Y+(0)

]
af

g2
s

(in−∂z1)(in−∂z2)
q+σg(z1−)q̄+λh(z2−)

)
|0〉 . (2.14)

In the above definitions, µ, ν are the Lorentz indices, σ, λ are the Dirac indices, and A,B
and a, b, f, g, h are adjoint and fundamental colour indices, respectively. The B±(q+)
field is a soft building block formed by a soft covariant derivative (soft quark field) and
soft Wilson lines

Bµ± = Y †± [iDµ
s Y±] , q± = Y †± qs . (2.15)
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The soft functions in Eqs. (2.10) – (2.14) are the fundamental objects of interest in this
work. Thus far, only partial results for these objects have been reported in the literature.
The O(αs) result for S1, expanded in ε, was given in [6], and with complete d-dimensional
dependence in [12]. At O(α2

s), results for virtual-real soft diagrams have been presented
in [12]. It was found that only the S1 soft function receives such contributions. In this
article, we complete the calculations of the bare soft functions at O(α2

s) by considering
all the diagrams with two-real soft parton emissions.

A quick inspection of the soft functions in (2.10) – (2.14) reveals that S1 and S3 are
conveniently defined as scalar objects. The remaining three functions, S2, S4 and S5,
contain instead a non-trivial dependence on Lorentz, Dirac, and adjoint and fundamental
colour indices. These indices are contracted with the corresponding indices carried by the
respective collinear functions, which are reported for convenience in App. A. We prefer
to work with scalar objects and, for this reason, we absorb the colour, spin and Lorentz
structures of the multi-local collinear functions into their corresponding soft functions
S4 and S5. For example, making use of (A.8), the part of the factorization formula at
O(α2

s) which depends on S4 is given by, 5

∆
dyn(2)
NLP,S4

(z) = 4QH(0)(Q2)

∫
dω1dω2 J

µν,AB (0)
4;fb (xan+pA;ω1, ω2) S

AB(2)
4;µν,bf (Ω;ω1, ω2).(2.16)

Focusing on the collinear and soft functions, we now redefine

J
µν,AB (0)
4;fb (n+p;ω1, ω2)S

AB(2)
4;µν,bf (Ω;ω1, ω2) ≡

(
− 1

n+p

)
︸ ︷︷ ︸

=J
(0)
4

S
(2)
4 (Ω;ω1, ω2), (2.17)

such that the new J
(0)
4 and S

(2)
4 are scalar functions. The S5;bfgh,σλ soft function in

Eq. (2.14) is redefined in an analogous way by factoring out the same scalar collinear

function such that J
(0)
5 = J

(0)
4 . Additionally, in this case, the spin structures in the first

line of (2.8) are also absorbed into the soft function.
The S2;µν soft function is anti-symmetric under the exchange of the Lorentz in-

dices µ, ν. Since this is a vacuum matrix element, it must be proportional to the epsilon
tensor εµν⊥ which is the only anti-symmetric structure which can carry two transverse
Lorentz indices. However, its appearance is forbidden due to parity conservation of QCD.
Indeed, we checked by direct calculation that S2;µν vanishes at O(α2

s).

3 Two-loop soft functions

We proceed with the main focus of this work by providing the calculation details of the
double real emission corrections to the soft functions defined in (2.10) – (2.14). Tech-
niques for solving integrals which appear in calculations of LP soft functions at NNLO

5We indicate the perturbative order in αn
s with the corresponding superscript (n).
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have been developed over the years and several examples exist in the SCET literature.
In particular, results for the exclusive soft function relevant for small transverse momen-
tum resummation in DY was obtained in [39], the soft function for the production of an
electroweak boson at large transverse momentum was computed in [40], and the calcu-
lation of the soft function relevant for boosted top-quark pair production was presented
in [41]. However, these methods are insufficient for the NNLO calculation of the NLP
soft functions containing dependence on additional convolution variables. Therefore, we
apply more advanced techniques developed for fixed order calculations. Similar methods
were used in [42] to calculate the NNLO soft function for top quark pair production
at threshold. The strategy is straightforward: we first obtain the squared amplitudes
at O(α2

s). Subsequently we use LiteRed [27, 28] to reduce such expressions to a linear
combination of master integrals (MIs), and finally, we compute the necessary MIs by
employing the differential equation method. Each of these steps is expanded upon in the
following sections.

3.1 Reduction to master integrals

The two-loop expressions for the soft functions S1 and S3 are directly obtained from
their matrix element definitions. The soft functions S4 and S5 are computed after the
redefinition made in (2.17) by employing the NLP Feynman rules given in [20]. The
expressions for the squared matrix elements of all the soft functions are collected in the
ancillary.pdf file and they correspond to the diagrams in Figures 1 – 4. We use k1

and k2 to label the momenta of the partons crossing the cut.

3.1.1 Topologies

The calculation of the double real emission corrections to the soft functions includes
two types of phase space constraints. The first constrains the total energy radiated into
the final state, enforced by the δ(Ω − 2EX) condition, where EX is the total radiation
energy. The second type instead constrains specific light-cone components of the soft
parton momenta. Indeed, the NLP soft functions are also differential in ω, or ω1 and ω2,
which are the convolution variables that connect the soft functions to their corresponding
collinear functions, as prescribed by (2.8). We find that up to O(α2

s), three different
constraints of the second type are possible. Namely, the integrands of the soft functions
depend on δ(ω − n−k1), 6 or δ(ω − n−k1 − n−k2) or δ(ω1 − n−k1) δ(ω2 − n−k2). These
constraints, along with the on-shell cut propagators conditions δ(k2

1) and δ(k2
2), are set

in the LiteRed program. We now define the auxiliary topologies, A, B, and C, which
implement the δ(ω − n−k1) constraint and only differ among themselves by the choice
of one propagator. Topology A is defined by the following set of seven propagators

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−k2, (3.1)

6In principle the δ(ω − n−k2) contribution can also appear, but it is mapped back to the structure
δ(ω − n−k1) by relabelling the momenta.
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Figure 1: Diagrams contributing to the S1 soft function. The part to the left (right)
of the cut corresponds to the time-ordered (anti-time-ordered) part of the diagram, and
lines labeled by n± with in (out)-going arrow correspond to soft Wilson lines Y∓(Y †∓).
The filled square in this figure stands for the soft covariant derivative and the Wilson
lines contained in

i∂⊥µ
in−∂
Bµ+ =

i∂⊥µ
in−∂

Y †+[iDµ
sY+].
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Figure 2: Diagrams contributing to the S3 soft function. Same conventions as in Figure 1
are used. Here, the filled square stands for the soft covariant derivatives and the Wilson
lines contained in 1

(in−∂)2

[
B+µ⊥ ,

[
in−∂B+

µ⊥

]]
.
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Figure 3: Diagrams contributing to the S4 soft function. Same conventions as in Figure 1
are used. The filled squares stand for the soft covariant derivative and the Wilson lines
contained in B+µ⊥(z1−)B+

µ⊥
(z2−).
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Figure 4: Diagrams contributing to the S5 soft function. Same conventions as in Figure 1
are used. The filled squares in this figure stand for the soft covariant derivative and the
Wilson lines contained in q+(z1−) q̄+(z2−).
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P4 = k2
1, P5 = k2

2, P6 =
(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1

)
,

where the last four propagators are cut propagators. This means that

1

P4

→ δ(k2
1) =

1

2πi

[
1

k2
1 + i0+

− 1

k2
1 − i0+

]
, (3.2)

and equivalent relations hold for P5, P6 and P7. Topology B is obtained starting from
the list of propagators in (3.1) and replacing the single propagator P3 → n−(k1 + k2).
Similarly, topology C requires the substitution P3 → n+(k1 + k2). The integrals which
appear in our calculations are written as

ÎT (α1, α2, α3, α4, α5, α6, α7) = (4π)4

(
eγEµ2

4π

)2ε ∫
ddk1

(2π)d−1

ddk2

(2π)d−1

7∏
i=1

1

Pαi
i

, (3.3)

where the index T indicates the specific topology T ∈ {A,B, C, . . .}, and can be expressed
as a linear combination of the independent MIs. It turns out that all the MIs for the
topologies A and C are a subset of the MIs for the topology B. This is not surprising since
the three topologies share most of the propagators. In particular, we find the following
five MIs for topology B

Î1(Ω, ω) ≡ ÎB(0, 0, 0, 1, 1, 1, 1), Î2(Ω, ω) ≡ ÎB(0, 0, 1, 1, 1, 1, 1),

Î3(Ω, ω) ≡ ÎB(1, 0, 0, 1, 1, 1, 1), Î4(Ω, ω) ≡ ÎB(1, 1, 0, 1, 1, 1, 1),

Î5(Ω, ω) ≡ ÎB(1, 1, 1, 1, 1, 1, 1) , (3.4)

where the integral Î1(Ω, ω) represents the phase space integral. The squared matrix
elements with the δ(ω−n−k1−n−k2) constraint require four additional topologies to be
reduced. The topology D is defined by the list of propagators

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−k2, P4 = k2
1, (3.5)

P5 = k2
2, P6 =

(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1 − n−k2

)
,

where P4 to P7 are cut. Topology E is obtained from (3.5) by replacing P3 → n−k1, topol-
ogy F by substituting P2 → n+k1, and the topology G by exchanging both P2 → n+k1

and P3 → n−k1. After reduction, we find that only two additional MIs appear for the
set of topologies which implement the constraint δ(ω − n−k1 − n−k2):

Î6(Ω, ω) ≡ ÎE(0, 0, 0, 1, 1, 1, 1), Î7(Ω, ω) ≡ ÎE(1, 1, 1, 1, 1, 1, 1) . (3.6)

Two additional topologies are needed to reduce the integral expressions with a double
constraint given by δ(ω1 − n−k1) δ(ω2 − n−k2). We define the H topology as

P1 = (k1 + k2)2, P2 = n+k2, P3 = k2
1 P4 = k2

2, (3.7)
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P5 =
(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P6 =

(
ω1 − n−k1

)
P7 =

(
ω2 − n−k2

)
,

where only the first two propagators of the list remain uncut. The topology I is related
to H by a replacement of the second propagator P2 → n+k1. Only one MI is found for
these last topologies

Î8(Ω, ω1, ω2) ≡ ÎH(0, 0, 1, 1, 1, 1, 1). (3.8)

In total we find eight new MIs which need to be computed to evaluate the O(α2
s) cor-

rections to the NLP soft functions.

3.1.2 Results after reduction

The integrals belonging to each of the topologies defined above can be reduced by employ-
ing the program LiteRed. In this subsection we present the results for the soft functions
in terms of linear combinations of MIs. The soft function S1 carries an additional 2r0v
superscript since it is the only one that also receives a virtual-real (superscript 1r1v)
contribution. In the following expressions we omit for simplicity the Ω and ω (ω1,ω2)
dependence in the MIs and we find

S
(2)2r0v
1 (Ω, ω) =

α2
s

(4π)2
C2
F

8 (2− 9ε+ 9ε2)

ε2 ω (Ω− ω)2
Î1

+
α2
s

(4π)2
CFCA

[
(2− 3ε) (−4Ω + ε (ω + 19Ω) + 4ε2 (ω − 7Ω)− 16ε3(ω − Ω))

ε2(1− 2ε)ωΩ (Ω− ω)2
Î1

−(1− 4ε2)

ε ωΩ
Î2 +

(3Ω− 10εΩ + 16ε2(ω + Ω))

2(1− 2ε)ωΩ
Î3 +

(Ω− 3ω)

2ω
Î4

+ Ω Î5 +
(9− 20ε+ 12ε2 − 2ε3)

ε2 (3− 2ε)ω2(Ω− ω)
Î6 + (Ω− ω)Î7

]

− α2
s

(4π)2
CF nf

4(1− ε)2

ε (3− 2ε)ω2(Ω− ω)
Î6, (3.9)

where ε = (4− d)/2. The S3 soft function has the following form in terms of MIs

S
(2)
3 (Ω, ω) =

α2
s

(4π)2
CFCA

2(1− ε)
(3− 2ε)ω2(Ω− ω)

Î6 . (3.10)

S4 ans S5 originate from double insertions of O(λ) power suppressed Lagrangian contri-
butions. We obtain

S
(2)
4 (Ω, ω1, ω2) = − α2

s

(4π)2
CFCA

2(1− ε)ω2(ω1 − ω2)

(ω1 + ω2)4(Ω− ω1 − ω2)
Î8 , (3.11)

and

S
(2)
5 (Ω, ω1, ω2) =

α2
s

(4π)2

(
C2
F −

1

2
CFCA

)
8(−1 + ε)ω2

(ω1 + ω2)3(Ω− ω1 − ω2)
Î8. (3.12)

10



3.2 Master integrals

We begin by describing the calculation of the MIs for the topology B given in (3.4).
Starting from those expressions, it is convenient to make the variable change ω → rΩ,
and redefine the MIs by factoring out their mass dimensions in Ω

I ′1(r) =
1

Ω2

(
Ω

µ

)4ε

Î1(Ω, r), I ′2(r) =
1

Ω

(
Ω

µ

)4ε

Î2(Ω, r),

I ′3(r) =

(
Ω

µ

)4ε

Î3(Ω, r), I ′4(r) = Ω

(
Ω

µ

)4ε

Î4(Ω, r),

I ′5(r) = Ω2

(
Ω

µ

)4ε

Î5(Ω, r) , (3.13)

where the prime integrals only depend on the variable r. We use Canonica [43] to
guide us in finding the canonical basis of MIs [29]. In particular, this is achieved by the
following transformations

I ′1(r) =
2(1− r)2

2− 9ε+ 9ε2
I1(r),

I ′2(r) =
2(r − 1)

1− 5ε+ 6ε2
I1(r)− 1

ε(1− 2ε)
I2(r),

I ′3(r) =
1

ε2
I3(r),

I ′4(r) = − 1

ε2(1− r)I4(r),

I ′5(r) =
1

ε2r
I2(r)− 1

ε2r
I3(r)− 1 + r

2ε2(1− r)rI4(r) +
1

ε2r
I5(r) , (3.14)

where the canonical integrals are the ones without the prime. The system of differential
equations for the vector of integrals ~I(r) ≡

{
I1(r), I2(r), I3(r), I4(r), I5(r)

}
is given by

d~I(r)

dr
= εA(r) · ~I(r) , (3.15)

11



where

A(r) =



−1
r

+ 3
1−r 0 0 0 0

2
r

−2
r

0 0 0

2
r

0 −2
r

0 0

2
r

0 2
r

4
1−r 0

1
r

0 1
r

1
r
−2
r


. (3.16)

We notice from the structure of A(r) that the integral I2(r) only couples to I1(r). The
alphabet simply reads {1− r, r}. The A(r) matrix in Eq. (3.16) is lower triangular and
can be solved iteratively. The integral I1(r), which is the starting integral of our system
of equations, is obtained by direct integration and we find

I1(r) = e2εγE
r−ε(1− r)−3εΓ(1− ε)

2Γ(1− 3ε)
θ(r)θ(1− r) . (3.17)

We notice that I2(r) and I3(r) satisfy the same differential equation. Hence, they will
lead to identical results. Starting from the result for I1(r), it is possible to compute I3(r)
(and I2(r) = I3(r)) by solving the differential equation. The result is

I3(r) = r−2εe2εγE

(
C3(ε) +

rε Γ(1− ε) 2F1(ε, 3ε, 1 + ε, r)

Γ(1− 3ε)

)
θ(r)θ(1− r) . (3.18)

The ε-dependent constant C3(ε) can be fixed by requiring that the integral of I3(r) in
the range r ∈ [0, 1] is equal to the parent integral where the δ(ω − n−k1) constraint is
removed. This latter integral is easily evaluated by direct integration. Specifically, we
require that ∫ 1

0

dr I3(r) = −e
2εγE 2 εΓ(1− ε)2

Γ(3− 4ε)
, (3.19)

which fixes the ε-dependent constant of I3(r) to be

C3(ε) = −Γ(1 + ε)Γ(1− ε)
Γ(1− 2ε)

. (3.20)

We now focus on the integral I4(r) that satisfies a differential equation which involves
both I1(r) and I3(r), as dictated by Eq. (3.15). Its solution reads

I4(r) = (1− r)−4ε

[
C4(ε) +

e2εγEεΓ(1− ε)
Γ(1− 3ε)

∫ r

1

dr′ (1− r′)ε(r′)−1−ε

12



×
(

1− 2ε(1− r′) 2F1(1, 1− 2ε, 2− 3ε, 1− r′)
1− 3ε

)]
θ(r)θ(1− r) .

(3.21)

The most complicated part of the integration concerns the hypergeometric function which
we rewrite using its integral representation

2F1(1, 1− 2ε, 2− 3ε, 1− r′) ≡ Γ(2− 3ε)

Γ(1− 2ε) Γ(1− ε)

∫ 1

0

dt
t−2ε(1− t)−ε
1− t (1− r′) . (3.22)

Then, we make the variable transformation r′ → 1 + R (r − 1) and integrate over the
range R ∈ [0, 1]. Finally, we carry out the integration over t and arrive at the result

I4(r) =− (1− r)−4ε e2εγEΓ(1− ε)
[

2 Γ(1− 2ε)Γ(1 + ε)

Γ(1− 4ε)

+
ε r−1−ε(1− r)1+ε

(1 + ε)Γ(1− 3ε)
3F2

(
1, 1− ε, 1 + ε; 1− 3ε, 2 + ε;

r − 1

r

)]
θ(r)θ(1− r),

(3.23)

which retains exact d-dimensional dependence. In the above equation the integration
constant has already been fixed following the same procedure as used for the inte-
gral I3(r). We checked that the resulting expression for I4(r) satisfies its initial dif-
ferential equation.

Finally, we consider the last and most difficult integral of topology B: I5(r). The
differential equation for I5(r) reads

dI5(r)

dr
= ε

[
1

r
I1(r) +

1

r
I3(r) +

1

r
I4(r)− 2

r
I5(r)

]
, (3.24)

and the solution has the following structure

I5(r) = r−2ε

[
C5(ε) +

∫ r

1

dr′ fI5(r
′, ε)

]
θ(r)θ(1− r) . (3.25)

We do not write explicitly the function fI5(r
′, ε) since it is too lengthy, but we know its

exact expression in d-dimensions. Unfortunately, we are not able to directly integrate
fI5(r

′, ε) in d-dimensions since it involves a 3F2 hypergeometric function. Nevertheless,
we devise a technique which allows us to retain the dependence on r−2ε terms, after r′

integration, which is the relevant information that is needed to regularize the convolution
integrals. Indeed these are the potential problematic contributions since the division by r
in the transformation to the non-canonical basis (see the last term of (3.14)) will generate
delta terms and plus distributions, after ε expansion, for the non-canonical integral I ′5(r).
Therefore, we need to treat these terms with care. We follow the strategy of expanding
the function fI5(r

′, ε) in the limit r′ → 0 (up to finite order in r′) and add and subtract
this term in the following way∫ r

1

dr′ fI5(r
′, ε) =

∫ r

1

dr′
(

lim
r′→0

fI5(r
′, ε)

)
13



+

∫ r

1

dr′
[

lim
ε→0

(
fI5(r

′, ε)− lim
r′→0

fI5(r
′, ε)

)]
+O(ε4) , (3.26)

where the ε-limit in the above equation means that one needs to perform the ε → 0
expansion up to the relevant order. In Eq. (3.26) we split the integral in two terms, the
first which we are able to integrate in d-dimensions exactly and the second which we
need to ε-expand before integration. For the first term, we find∫ r

1

dr′
(

lim
r′→0

fI5(r
′, ε)

)
=

1

2
e2εγE

Γ(1 + ε)Γ(1− ε)
ε

[
8ε3(r − 1)

Γ(2− 2ε)

+
3(rε − 1 + ε2(3(ε− 2) + rε((7− 3ε)r − 1)))

(ε2 − 1)Γ(1− 3ε)Γ(ε)

]
. (3.27)

The second term in (3.26) contains terms that are non-singular in the r → 0 limit and
can be expressed in terms of standard HPLs [44] as follows∫ r

1

dr′
(

lim
ε→0

fI5(r
′, ε)− lim

ε→0
lim
r′→0

fI5(r
′, ε)

)
=

ε2
(

13

12
π2 +

13

2
(r − 1)− 13

2
H(0, 1; r)

)
+ ε3

(
25

2
(1− r) +

21

2
r H(0; r)− 17

2
H(0, 0, 1; r)

− 21

2
H(0, 1, 0; r)− 55

2
H(0, 1, 1, r) + 15ζ3

)
+O(ε4) . (3.28)

We now have all the ingredients to construct the non-canonical integral I ′5(r) by using
the last equation of (3.14) which combines the canonical integrals I4(r) and I5(r). The
expression retains the exact d-dependence for terms of the type r−1−2ε and (1− r)−1−4ε

which makes it suitable to be convoluted with O(αs) collinear functions avoiding unde-
fined convolutions at fixed-order accuracy. In total we find

I ′5(r) =

[
(1− r)−1−4ε 2e2εγEΓ(1− 2ε)Γ(1− ε)Γ(1 + ε)

ε2Γ(1− 4ε)

+ r−1−2ε

(
3
e2εγE

(
1 + 6ε2 − 3ε3

)
Γ(1− ε)Γ(1 + ε)

2(1− ε)ε2Γ(1− 3ε)Γ(2 + ε)

− e2εγE
(
1− 2ε+ 8ε2

)
Γ(1− ε)Γ(1 + ε)

2ε2Γ(2− 2ε)
+

13

12

(
π2 − 6

)
+

30

12
ε
(
6 ζ3 + 5

))
+

1

6 ε(r − 1)r

(
6ε(6− 7r)Li2(r) + 48 ε(r − 1) ln2(1− r) + r

(
3 ε ln2 r + επ2 + 6 ln r

)
− 12 ln(1− r)

(
(r + 1)ε ln r + 2(r − 1)

))]
θ(r)θ(1− r) +O(ε) . (3.29)
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One can also expand the boundary singular terms in ε→ 0 by using the relation

x−1−n ε = −δ(x)

(nε)
+

[
1

x

]
+

− (nε)

[
lnx

x

]
+

+
(nε)2

2!

[
ln2 x

x

]
+

+ . . . , (3.30)

to find

I ′5(r) =

[
− δ(1− r) + δ(r)

2ε3
+

1

ε2

(
2

[
1

1− r

]
+

+

[
1

r

]
+

)
+

1

12ε

(
5π2δ(1− r)− π2δ(r)

− 96

[
ln(1− r)

1− r

]
+

− 24

[
ln r

r

]
+

− 48 ln(1− r)
r

− 12 ln r

1− r

)

+
ζ3

3

(
28δ(1− r)− 5δ(r)

)
− 5π2

3

[
1

1− r

]
+

+
π2

6

[
1

r

]
+

+ 16

[
ln2(1− r)

1− r

]
+

+ 2

[
ln2 r

r

]
+

+ 8
ln2(1− r)

r
+

2(1 + r)

r(1− r) ln(1− r) ln(r) +
ln2 r

2(r − 1)
− 7π2

6

+
(6− 7r)

(r − 1)r

(
Li2(r)− π2r

6

)]
θ(r)θ(1− r) +O(ε) . (3.31)

In order to reproduce the cross section we need to integrate our results over r in the
range r ∈ [0, 1] and we obtain∫ 1

0

dr I ′5(r) = − 1

ε3
+

7π2

6ε
+

62ζ3

3
+ . . . . (3.32)

The integration constants are fixed similarly to I3 and I4. It turns out that they are zero
up to the finite order in ε.

We still need to discuss the calculation of the two MIs in Eq. (3.6) which implement
the constraint δ(ω − n−k1 − n−k2) and the last MI in Eq. (3.8) with the constraint
δ(ω1 − n−k1) δ(ω2 − n−k2). These integrals are carried out by direct integration in a
straightforward way. For completeness we report the results below

Î6(Ω, r) = Ω2

(
µ

Ω

)4ε

r1−2ε(1− r)1−2ε e
2εγE Γ(1− ε)2

Γ(2− 2ε)2
θ(1− r) θ(r), (3.33)

Î7(Ω, r) =
1

Ω2

(
µ

Ω

)4ε

r−1−2ε(1− r)−1−2ε θ(1− r) θ(r)

× 3
e2εγE

ε2
Γ(1− ε)
Γ(1− 3ε)

3F2 (−ε,−ε,−ε;−3ε, 1− ε; 1) , (3.34)

Î8(Ω, r1, r2) =

(
µ

Ω

)4ε
(1− r1 − r2)1−2ε

rε1 r
ε
2

e2εγE

Γ(2− 2ε)
θ(1− r1 − r2)θ(r1)θ(r2) , (3.35)

where r1 = ω1/Ω and r2 = ω2/Ω.
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3.3 Results

In this subsection we collect the final expressions for the bare soft functions which con-
stitute the main results of our work. We retain the relevant d-dimensional dependence
at the integration boundaries to avoid divergent convolutions when combining the soft
functions with collinear functions [12] to fixed-order accuracy. We refrain from expand-
ing our results in d→ 4 since a consistent procedure for the renormalization of the soft
functions beyond LL accuracy is not yet available in the literature.

Starting from the reduced result for S
(2)2r0v
1 in Eq. (3.9) expressed in terms of non-

canonical MIs and using the transformations in Eqs. (3.13) and (3.14), it is then necessary
to substitute the expressions for the canonical MIs in (3.17), (3.18), (3.23) and (3.29)
to obtain the explicit result for the real-real contribution to the S1 soft function. We
do not report the complete expression for S

(2)2r0v
1 (Ω, ω) here due to its length, but it is

possible to easily reconstruct it from the information provided in the two subsections
above. With an analogous procedure we obtain the results for the S3, S4 and S5 soft
functions

S
(2)
3 (Ω, ω) =

α2
s

(4π)2
CFCA

(
ω2(Ω− ω)2

µ4

)−ε
2

ω

(1− ε)
(3− 2ε)

×e
2εγE Γ(1− ε)2

Γ(2− 2ε)2
θ(Ω− ω)θ(ω) , (3.36)

S
(2)
4 (Ω, ω1, ω2) =− α2

s

(4π)2
CFCA

(
ω1 ω2(Ω− ω1 − ω2)2

µ4

)−ε
2ω2(1− ε)(ω1 − ω2)

(ω1 + ω2)4

× e2εγE

Γ(2− 2ε)
θ(Ω− ω1 − ω2)θ(ω1)θ(ω2) , (3.37)

S
(2)
5 (Ω, ω1, ω2) =− α2

s

(4π)2

(
C2
F −

1

2
CFCA

)(
ω1 ω2(Ω− ω1 − ω2)2

µ4

)−ε
8(1− ε)ω2

(ω1 + ω2)3

× e2εγE

Γ(2− 2ε)
θ(Ω− ω1 − ω2)θ(ω1)θ(ω2) . (3.38)

In the above expressions the strong coupling constant is understood to be the renor-
malized coupling αs ≡ αs(µ) in the MS scheme obtained via the relation Zααsµ

2ε =
(4πe−γE)ε α0

s, where α0
s is the bare coupling constant and Zα = 1 − β0αs/(4πε) with

β0 = 11
3
CA − 4

6
nf . The discussion of the renormalization procedure for the soft func-

tions is outside the scope of this paper due to the aforementioned divergent convolution
problem. However, one should keep in mind that, according to coupling renormaliza-
tion, contributions proportional to ZαS

(1)
1 will appear at O(α2

s) and must be taken into
account before operator renormalization.
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4 Comparison to fixed order results

4.1 Next-to-next-to-leading order: soft contributions

After presenting the main results of this work in the section above, we now proceed
with their validation through comparisons against cross-section level results which are
available in the literature. The soft functions calculated in this work carry a dependence
on the convolution variables ω or ω1, ω2. In order to evaluate their contributions to the
cross section, one needs to carry out the convolution integrals of the ω-dependent soft
functions with their respective collinear functions.

We begin with the contribution of S1 by considering the relevant part of the factor-
ization formula in (2.8) with the variable transformation r = ω/Ω. We have

∆
dyn (2)2r0v
NLP−soft,S1

(z) = 4QΩH(0)(Q2)

∫
drJ

(0)
1,1 (xa(n+pA); rΩ)S

(2)2r0v
1 (Ω, r) . (4.1)

Inserting the result for the S
(2)2r0v
1 (Ω, r) soft function and the tree-level collinear function

in (A.5), then integrating over the convolution variable r one finds to all orders in ε: 7

∆
dyn (2)2r0v
NLP−soft,S1

(z) =
α2
s

(4π)2

(
Ω4

µ4

)−ε(
C2
F

32

ε3
e2εγEΓ(1− ε)2

Γ(1− 4ε)
− 4CFCA

e2εγEΓ(1− ε)2

ε3(1− 2ε)2Γ(1− 4ε)

×
(

(3− 25ε+ 50ε2 − 23ε3)

(3− 2ε)
− 3Γ(2− 2ε)2

Γ(1− ε)Γ(1− 3ε)
3F2(−ε,−ε,−ε; 1− ε,−3ε; 1)

)

−8CFnf
1

ε2
1

(1− 2ε)2(3− 2ε)

e2εγEΓ(2− ε)2

Γ(1− 4ε)

)
. (4.2)

Setting the soft scale to Ω = Q(1 − z), the scale µ = Q, and finally expanding in ε we
arrive at the following expression

∆
dyn (2)2r0v
NLP−soft,S1

(z) =
α2
s

(4π)2

{
C2
F

[
32

ε3
− 128

ε2
ln(1− z) +

1

ε

(
256 ln2(1− z)− 112π2

3

)
+

32

3

(
− 32 ln3(1− z) + 14π2 ln(1− z)− 62ζ3

)]
+CFCA

[
8

ε3
− 4

3ε2

(
24 ln(1− z)− 11

)
− 16

9ε

(
− 36 ln2(1− z)

+33 ln(1− z) + 6π2 − 16
)
− 256

3
ln3(1− z) +

352

3
ln2(1− z)

7We note that this result is accurate to all orders in ε, whereas the part proportional to I5(r) above is
obtained only to finite order in the ε expansion. This is not surprising since here we are only interested
in the final results after convolution, hence we can switch the order of integration and perform the
convolution integral first. We checked that the two results agree in the ε expansion.
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+
128

3
π2 ln(1− z)− 1024

9
ln(1− z)− 616ζ3

3
− 154π2

9
+

1484

27

]
+CFnf

[
− 8

3ε2
+

32

9ε

(
3 ln(1− z)− 2

)
+

4

27

(
− 144 ln2(1− z)

+ 192 ln(1− z)− 122 + 21π2
)]

+O (ε)

}
. (4.3)

We recall that the complete contribution to S1 proportional to CFCA comprises an
additional term, which stems from diagrams involving virtual-real corrections. Such
contribution can be found in Eq. (5.10) of [12], and reads

∆
dyn (2)1r1v
NLP−soft,S1,CF CA

(z) =
α2
s

(4π)2
CFCA

[
− 8

ε3
+

32 ln(1− z)

ε2
− 64 ln2(1− z)

ε
+

28π2

3ε

+
256

3
ln3(1− z)− 112

3
π2 ln(1− z) +

448ζ3

3
+O(ε)

]
. (4.4)

It is interesting to notice that the leading logarithmic contribution proportional to CFCA
cancels at cross section level when summing the double real, Eq. (4.3), and virtual-real,
Eq. (4.4), corrections. Such cancellation is expected, given that at order n in αs the
leading logarithms in the cross-section are proportional to Cn

F [6].
After summing Eqs. (4.3) and (4.4) we obtain the complete contribution of S1 to the

partonic cross section at NNLO

∆
dyn (2)
NLP−soft,S1

(z) =
α2
s

(4π)2

{
C2
F

[
32

ε3
− 128

ε2
ln(1− z) +

1

3ε

(
768 ln2(1− z)− 112π2

)
+

32

3

(
− 32 ln3(1− z) + 14π2 ln(1− z)− 62ζ3

)]
+CFCA

[
44

3ε2
− 4

9ε

(
132 ln(1− z)− 64 + 3π2

)
+

2

27

(
1584 ln2(1− z)

−1536 ln(1− z) + 72π2 ln(1− z) + 742− 231π2 − 756ζ3

)]
+CFnf

[
− 8

3ε2
+

32

9ε

(
3 ln(1− z)− 2

)
+

4

27

(
− 144 ln2(1− z)

+192 ln(1− z)− 122 + 21π2
)]

+O (ε)

}
. (4.5)

In addition to S1, we need to take into account the contributions due to the other
soft functions S3, S4, and S5, which can be obtained integrating over the convolution
variables the corresponding term in (2.8), similarly to what written in (4.1). S3 and S4

read

∆
dyn (2)2r0v
NLP−soft,S3

(z) = −∆
dyn (2)2r0v
NLP−soft,S4

(z)
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= 4
α2
s

(4π)2
CFCA

(
Ω4

µ4

)−ε
1

ε

(1− ε)
(1− 2ε)2(3− 2ε)

e2εγEΓ(1− ε)2

Γ(1− 4ε)
. (4.6)

Expanding in ε with Ω = Q(1− z) and µ = Q we obtain

∆
dyn (2)2r0v
NLP−soft,S3

(z) = −∆
dyn (2)2r0v
NLP−soft,S4

(z)

=
α2
s

(4π)2
CFCA

[
4

3ε
− 4

9

(
12 ln(1− z)− 11

)
+O (ε)

]
. (4.7)

After convolution with the corresponding collinear function, S3 and S4 gives opposite
contributions to the partonic cross section, such that they effectively cancel each other
at this order. The last contribution to the partonic cross section is given by the term
involving S5, and reads

∆
dyn (2)2r0v
NLP−soft,S5

(z) = 8
α2
s

(4π)2

(
C2
F −

1

2
CFCA

) (
Ω4

µ4

)−ε
(1− ε)

ε(1− 2ε)2

e2εγEΓ(1− ε)2

Γ(1− 4ε)
. (4.8)

Setting Ω = Q(1− z), µ = Q and expanding in ε we find

∆
dyn (2)2r0v
NLP−soft,S5

(z) =
α2
s

(4π)2

(
C2
F −

1

2
CFCA

) [
8

ε
− 32 ln(1− z) + 24 +O(ε)

]
. (4.9)

We point out that the contributions to the cross section due to the soft functions starting
at O(α2

s), namely S3, S4, and S5, in (4.7) and (4.9), do not contain leading logarithmic
terms. This confirms an assumption made in [6], where it was claimed that a logarith-
mically enhanced off diagonal mixing of these soft functions with the single gluon soft
function is not possible.

Results concerning the calculation of soft gluon contribution to the partonic Drell-
Yan cross section within a diagrammatic approach have been presented in [31]. The
contribution due to double real soft radiation is provided in Eq. (5.2) of [31] and con-

tains the contribution due to ∆
dyn (2)2r0v
NLP−soft presented here in Eq. (4.3). However, a direct

comparison is not straightforward, because the expression in Eq. (5.2) of [31] contains
also NLP corrections due to the expansion of the phase space from the integration of the
LP matrix element squared. In the present approach, these are a part of the kinematic
correction in Eq. (2.7) discussed in [12]. Similarly, the contribution due to virtual-real
soft radiation given in Eq. (4.4) of this paper is included in Eq. (4.6) of [31]. However,
the two contributions cannot be compared directly, as Eq. (4.6) of [31] contains also the
contribution due to hard and collinear loops. The problem can be overcome by compar-
ing with the individual terms giving rise to Eq. (4.6) and (5.2) of [31], provided by one
of us, and we confirm that the whole contribution to the cross section due to the soft
function S1 in (4.5) agrees with the cross-section level diagrammatic calculation of [31].
Moreover, the contribution due to S5 has not been considered in [31], and we validate
its expression against an in-house calculation performed with the expansion-by-regions
method [45].
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4.2 Next-to-next-to-leading order: complete contribution

The result obtained in this paper, together with the results given in [12], can be com-
pared with the reference [33] which gives the full NNLO contribution to the Drell-Yan
process. To this end, we recall that within the present approach the full partonic cross
section is given according to Eq. (2.7), that is, as the sum of a dynamic and a kinematic
contribution. Writing explicitly all the terms contributing to the cross section, we have8

∆
(2)
NLP = ∆

kin (2)
NLP (z) + ∆

dyn (2)
NLP−coll(z) + ∆

dyn (2)
NLP−hard(z) + ∆

dyn (2)
NLP−soft(z). (4.10)

The first three terms have been calculated in [12], and are reported explicitly in Eqs. (C.1),
(C.2) and (C.3) of App. C. The last term is given by the sum of the S1, S3, S4 and S5

contributions given in (4.5), (4.7) and (4.9) respectively. Explicitly, it reads

∆
dyn (2)
NLP−soft(z) =

α2
s

(4π)2

{
C2
F

[
32

ε3
− 128

ε2
ln(1− z) +

1

3ε

(
768 ln2(1− z) + 24− 112π2

)
+

8

3

(
− 128 ln3(1− z)− 12 ln(1− z) + 56π2 ln(1− z) + 9− 248ζ3

)]
+CFCA

[
44

3ε2
− 4

9ε

(
132 ln(1− z)− 55 + 3π2

)
+

2

27

(
1584 ln2(1− z)

−1320 ln(1− z) + 72π2 ln(1− z) + 580− 231π2 − 756ζ3

)]
+CFnf

[
− 8

3ε2
+

32

9ε

(
3 ln(1− z)− 2

)
+

4

27

(
− 144 ln2(1− z)

+192 ln(1− z)− 122 + 21π2
)]

+O (ε)

}
. (4.11)

Substituting this result along with expressions in Eqs. (C.1), (C.2) and (C.3) into (4.10),
we arrive at the full NLP NNLO correction for the qq̄ partonic channel of the Drell-Yan
process at threshold

∆
(2)
NLP(z) =

α2
s

(4π)2

{
C2
F

[
− 16

ε2

(
4 ln(1− z) + 1

)
+

1

3ε

(
576 ln2(1− z)− 336 ln(1− z)

−564− 32π2
)

+
4

3

(
− 224 ln3(1− z) + 306 ln2(1− z) + 285 ln(1− z)

+72π2 ln(1− z)− 288− 14π2 − 384ζ3

)]
+CFCA

[
44

3ε2
− 4

9ε

(
132 ln(1− z)− 166 + 3π2

)
+

2

27

(
1584 ln2(1− z)

8We recall that we drop the indices qq̄, namely, ∆
(2)
NLP ≡ ∆

(2)
qq̄ NLP.
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−3714 ln(1− z) + 72π2 ln(1− z) + 1402− 267π2 − 756ζ3

)]
+CFnf

[
− 8

3ε2
+

8

9ε

(
12 ln(1− z)− 14

)
+

4

27

(
− 144 ln2(1− z)

+336 ln(1− z)− 164 + 21π2
)]

+O (ε)

}
. (4.12)

This is the non-singlet contribution to the qq̄ unrenormalized partonic cross section,
expressed in terms of the bare coupling constant. To compare with [33] we need to
write it in terms of the UV-renormalized coupling constant and remove the initial state
collinear singularities at cross-section level. These procedures amount to adding the
following counterterms to the full NNLO cross section:

∆(2)
ren(z) = ∆(2)(z) +

(
αs
4π

)2[
− 1

2ε2

(
P 0
qq ⊗ P 0

qq − P 0
qqβ0

)
+

1

2ε

(
P 1,NS
qq

+ 2P 0
qq ⊗∆(1)(z)|ε0 − 2∆(1)(z)|ε0β0

)
− 2P 0

qq ⊗∆(1)(z)|ε + 2∆(1)(z)|εβ0

]
, (4.13)

when both sides are evaluated in terms of the renormalized coupling constant, for µf =
µr = Q. In this equation the symbol ⊗ indicates convolution9:

(f1 ⊗ f2)(x) =

∫ 1

0

dx1 dx2 δ(x− x1 x2)f1(x1)f2(x2), (4.14)

furthermore, by ∆(1)(z)|ε0 and ∆(1)(z)|ε we indicate respectively the coefficient of the
ε0 and ε terms of the NLO qq̄ Drell-Yan correction, and P 0

qq and P 1,NS
qq represent the

one- and two-loop Altarelli-Parisi splitting functions, that we provide for completeness
in App. D. We note that Eq. (4.13) is valid to all powers in (1 − z). Expanding all
terms in (1 − z) and selecting the NLP contribution we finally get the finite partonic
cross section

∆
(2)
NLP, ren(z) =

α2
s

(4π)2

{
C2
F

[
4

3

(
− 96 ln3(1− z) + 186 ln2(1− z) + 213 ln(1− z)

+16π2 ln(1− z)− 96− 16π2 − 192ζ3

)]
+CFCA

[
4

27

(
396 ln2(1− z)− 1461 ln(1− z) + 36π2 ln(1− z)

+701− 84π2 − 378ζ3

)]
(4.15)

9We use the program MT [46] to evaluate convolutions of plus distributions.
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+CFnf

[
8

27

(
− 36 ln2(1− z) + 132 ln(1− z)− 82 + 6π2

)]
+O (ε)

}
,

which agrees with the NLP content of Eq. (B.7) in [33], for µf = µr = Q, namely

∆
(2),CA
qq̄ +∆

(2),CF
qq̄ +∆

(2)

qq̄,A2 +2∆
(2)
qq̄,AC expanded to NLP. These terms are provided explicitly

in [33] in Eqs. (B.30) – (B.33).

4.3 Next-to-next-to-next-to-leading order

Recently, partial results for the NLP expansion of the C3
F contribution to the N3LO

Drell-Yan cross section were calculated in [32] using the expansion-by-region method.
We are able to compare to this result by combining the result of the collinear function
J

(1)
1,1 at O(αs) [12] and the calculation of the O(α2

s) soft function S
(2)
1 obtained in this

paper. To this end, we now focus on the following part of the factorization formula
expanded to the third order in the coupling constant

∆
dyn (3)

NLP−coll, C3
F

(z) = 4Q

∫
dω J

(1)
1,1 (xa n+pA;ω)S

(2)

1,C2
F

(Ω;ω) . (4.16)

For the one-loop collinear function we use the CF part of the result given in (A.10)
after the colour generator and Dirac-index Kronecker-symbol are removed. The relevant
two-loop soft function piece reads

S
(2)2r0v

1,C2
F

(Ω, ω) = 8
α2
s

(4π)2
C2
F

(
ω (Ω− ω)3

µ4

)−ε
1

ω

1

ε2
e2εγEΓ(1− ε)

Γ(1− 3ε)
θ(Ω− ω)θ(ω). (4.17)

We perform the convolution according to (4.16) and arrive at the following d-dimensional
result

∆
dyn (3)

NLP−coll, C3
F

(z) = 32
α3
s

(4π)3
C3
F

(
QΩ5

µ6

)−ε
1

ε4
(−4 + 7ε+ ε2)

×e
3εγEΓ(1 + ε)Γ(1− ε)2Γ(1− 2ε)

Γ(1− 5ε)Γ(3− 2ε)
. (4.18)

Setting Ω = Q(1− z) and µ = Q, and expanding in ε we find

∆
dyn (3)

NLP−coll, C3
F

(z) =
α3
s

(4π)3
C3
F

[
− 64

ε4
+

80(4 ln(1− z)− 1)

ε3
+

16

ε2

(
− 50 ln2(1− z)

+25 ln(1− z) + 7π2 − 6

)
+

1

ε

(
4000

3
ln3(1− z)− 1000 ln2(1− z)

−560π2 ln(1− z) + 480 ln(1− z) + 2624ζ3 + 140π2 − 128

)
−5000

3
ln4(1− z) +

5000

3
ln3(1− z) + 1400π2 ln2(1− z)
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−1200 ln2(1− z)− 700π2 ln(1− z) + 640 ln(1− z)

+ζ3(3280− 13120 ln(1− z)) +
62π4

5
+ 168π2 − 192

]
. (4.19)

Our expanded result in the equation above agrees with Eq. (45) of [32] up to the finite
constant terms which are not reported there and a factor of two accounting for the
anticollinear contribution.

4.4 Cusp anomalous dimension

In addition to the checks performed at the cross-section level in the two sections above,
we use the leading pole of the two-loop soft function S1 to extract the first diagonal
entry of the anomalous dimension matrix defined in Eq. (3.50) of [6] finding agreement.
Currently, the resummation beyond LL is hampered by the appearance of endpoint
divergent convolutions [12]. However, once cured, the results obtained in this work will
be useful to extract the soft anomalous dimension matrix beyond LL accuracy.

5 Conclusions

In this article, we calculated the real-real contributions to the NLP generalized soft
functions, which enter the bare factorization theorem for the Drell-Yan process in the
threshold region [12]. This allowed us to complete the comparison of the NNLO Drell-
Yan cross-section up to NLP against existing fixed-order results.

The generalized soft functions, listed in Eqs. (2.10) – (2.14), contain a dependence
on additional convolution variables ω or ω1, ω2 with respect to the LP soft function.
We carried out the calculation by employing methods developed for fixed-order calcu-
lations such as the reduction to MIs and the use of the differential equations for the
direct evaluation of the MIs. Our results retain the exact d-dimensional dependence on
the convolution variables at the integration boundaries which allows us to perform the
convolution integrals with collinear functions at fixed-order accuracy. Given the current
issues stemming from the expansion in d → 4 of the soft and collinear functions be-
fore the convolution is performed, we leave the non-trivial study of the renormalization
procedure of the generalized soft functions for future work.

We showed that combining the soft functions with their respective collinear functions,
as prescribed by the NLP factorization theorem, and performing the d-dimensional in-
tegrals yields the correct NNLO cross-section expressions up to NLP in the threshold
expansion. In addition, we reproduced partial N3LO results available in the literature.
We also confirmed the result for the diagonal entry of the anomalous dimension com-
puted in [6], and explicitly validated to NNLO the assumption made in [6] that the soft
functions beginning at O(α2

s) do not contribute to the LL series. This is the first time
that NLP soft functions are calculated to O(α2

s) and we hope that further investigations
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of their intricate structure can shed light on the endpoint divergent convolution prob-
lem currently prohibiting the NLP resummation of the threshold logarithms beyond LL
accuracy for the Drell-Yan process.
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A Collinear functions

For completeness, we provide the results for the collinear functions, Ji in (2.8), obtained
in [12]. The tree-level collinear functions corresponding to insertions of power suppressed
Lagrangian terms at a single position are given by

J
(0)
1;γβ(n+q, n+p;ω) = δβγ

(
− 1

n+p
δ(n+q − n+p) + 2

∂

∂n+q
δ(n+q − n+p)

)
, (A.1)

J
µν,(0)
2;γβ (n+q, n+p;ω) = −1

2

1

n+p

[
γµ⊥γ

ν
⊥
]
γβ
δ(n+q − n+p) , (A.2)

J
(0)
3;γβ(n+q, n+p;ω) = δβγ

(
− 1

n+p
δ(n+q − n+p) + 2

∂

∂n+q
δ(n+q − n+p)

)
. (A.3)

It is useful to write the J1(n+p, xa n+pA;ω) collinear function in terms of two scalar
components in the following way

J1;γβ (n+p, xa n+pA;ω) = δγβ

[
J1,1 (xan+pA;ω) δ(n+p− xan+pA)

+ J1,2 (xan+pA;ω)
∂

∂(n+p)
δ(n+p− xan+pA)

]
. (A.4)

such that

J
(0)
1,1 (n+p;ω) = − 1

n+p
, (A.5)

J
(0)
1,2 (n+p;ω) = 2 . (A.6)
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Next, we write the tree-level collinear functions with two ωi variables, corresponding to
two time-ordered product insertions of the O(λ) Lagrangian terms. We have

J
µν,AB (0)
4;γβ,fb (n+q, n+p;ω1, ω2) =

2gµν⊥
n+p (ω1 + ω2)2

(
ω1 TATB + ω2 TBTA

)
fb

× δ(n+q − n+p) (A.7)

≡ J
µν,AB (0)
4;fb (n+p;ω1, ω2) δγβδ(n+q − n+p), (A.8)

and

J
fk1k2e (0)
5;γσλβ (n+q, n+p;ω1, ω2) = −TA

fk2
TA
k1e

1

n+p

ω2

(ω1 + ω2)

/n−γη
2

γµ⊥,ησγ⊥µ,λβ δ(n+q − n+p)

+ 2 TK
feT

K
k1k2

ω1ω2

(ω1 + ω2)2
/n−λσδγβ

∂

∂n+q
δ(n+q − n+p) . (A.9)

We also give the one-loop collinear function corresponding to the only soft function
starting at O(αs). The result is

J
(1)
1;γβ (n+q, n+p; ω) =

αs
4π
δγβ

1

(n+p)

(
n+p ω

µ2

)−ε
eε γE Γ[1 + ε]Γ[1− ε]2

(−1 + ε)(1 + ε)Γ[2− 2ε]

×
(
CF

(
−4

ε
+ 3 + 8ε+ ε2

)
− CA

(
−5 + 8ε+ ε2

))
δ(n+q − n+p). (A.10)

B Matrix elements

To generate our starting cross-section level expressions we require the following results
for the power suppressed matrix elements

〈gK1(k1)gK2(k2)|T
[
Y †−(0)Y+(0)

i∂µ⊥
in−∂

B+
µ⊥

(z−)

]
|0〉 =

g2
sT

K2 TK1
1

(n−k1)

nη2−
(n−k2)

[
kη11⊥ −

k2
1⊥

(n−k1)
nη1−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k1

+g2
sT

K1 TK2
1

(n−k2)

nη1−
(n−k1)

[
kη22⊥ −

k2
2⊥

(n−k2)
nη2−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k2

−g2
sT

K2 TK1
1

(n−k1)

nη2+

(n+k2)

[
kη11⊥ −

k2
1⊥

(n−k1)
nη1−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k1

−g2
sT

K1 TK2
1

(n−k2)

nη1+

(n+k1)

[
kη22⊥ −

k2
2⊥

(n−k2)
nη2−

]
ε∗η1 (k1)ε∗η2 (k2) eiz−k2

+g2
s if

K1K2KTK 1

n−(k1 + k2)

(
− (kη21⊥ + kη22⊥)nη1−

(n−k1)
+

(kη11⊥ + kη12⊥) nη2−
(n−k2)
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− nη1− n
η2
−

n−(k1 + k2)(n−k1)(n−k2)

[
(n−k1)

(
k2

1⊥ + k1⊥ · k2⊥
)

−(n−k2)
(
k2⊥ · k1⊥ + k2

2⊥
) ])

ε∗η1(k1)ε∗η2(k2) eiz−(k1+k2)

+g2
s if

K1K2KTK 1

(n−(k1 + k2))2

1

(k1 + k2)2

([
nη1− (2k1 + k2)η2

−nη2− (k1 + 2k2)η1 − gη2η1(n−(k1 − k2))
]
(k1⊥ + k2⊥)2

+
[
(kη11⊥ + kη12⊥)(−2k1 − k2)η2 + (kη21⊥ + kη22⊥)(k1 + 2k2)η1

+gη2η1
(
k2

1⊥ − k2
2⊥
)]

(n−(k1 + k2))

)
ε∗η1(k1)ε∗η2(k2) eiz−(k1+k2), (B.1)

〈q(k1)q̄(k2)|T
[
Y †−(0)Y+(0)

i∂µ⊥
in−∂

B+
µ⊥

(z−)

]
|0〉 = g2

s

1

(n−(k1 + k2))2
TB

×
(
n−(k1 + k2)(k1⊥ν + k2⊥ν)− (k1⊥ + k2⊥)2n−ν

)
× 1

(k1 + k2)2
ū(k1)TBγνv(k2) eiz−(k1+k2), (B.2)

and

〈cK1(k1)c̄K2(k2)|T
[
Y †−(0)Y+(0)

i∂µ⊥
in−∂

B+
µ⊥

(z−)

]
|0〉 = g2

s

1

(n−(k1 + k2))2
ifK1BK2TB

×
(
n−(k1 + k2)(k1⊥ν + k2⊥ν)− (k1⊥ + k2⊥)2n−ν

)
× 1

(k1 + k2)2
kν1 e

iz−(k1+k2) . (B.3)

We also require the LP amplitudes

〈0|T̄
[
Y †+(0)Y−(0)

]
|gK1(k1)gK2(k2)〉 =

g2
s n

η1
− n

η2
−

(
1

n−k2

1

n−(k1 + k2)
TK2 TK1 +

1

n−k1

1

n−(k1 + k2)
TK1 TK2

)
εη1 (k1)εη2 (k2)

+g2
s n

η1
+ n

η2
+

(
1

n+k2

1

n+(k1 + k2)
TK1 TK2 +

1

n+k1

1

n+(k1 + k2)
TK2 TK1

)
εη1 (k1)εη2 (k2)

+g2
s

(
−nη1− nη2+

1

n−k1

1

n+k2

TK1 TK2 − nη1+ n
η2
−

1

n+k1

1

n−k2

TK2 TK1

)
εη1 (k1)εη2 (k2)
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− g2
s

(
i fK1K2K TK

) 1

n−(k1 + k2)

1

(k1 + k2)2

×
(
− nη1− (2k1 + k2)η2 + gη1η2 n−(k1 − k2) + nη2− (2k2 + k1)η1

)
εη1 (k1)εη2 (k2)

+ g2
s

(
i fK1K2K TK

) 1

n+(k1 + k2)

1

(k1 + k2)2

×
(
− nη1+ (2k1 + k2)η2 + gη1η2 n+(k1 − k2) + nη2+ (2k2 + k1)η1

)
εη1 (k1)εη2 (k2), (B.4)

〈0|T̄
[
Y †+(0)Y−(0)

]
|q(k1)q̄(k2)〉 = g2

s TA 1

(k1 + k2)2

×
(
− n+ν

n+(k1 + k2)
+

n−ν
n−(k1 + k2)

)
v̄(k2)TAγνu(k1), (B.5)

and

〈0|T̄
[
Y †+(0)Y−(0)

]
|cK1(k1)c̄K2(k2)〉 = g2

s if
K1K2A TA

×
(

n+k2

n+(k1 + k2)
− n−k2

n−(k1 + k2)

)
1

(k1 + k2)2
. (B.6)

For S3 we need

〈gK1(k1)gK2(k2)| 1

(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
|0〉 =

g2
s if

K1K2KTK 1

(n−(k1 + k2))2

[
(n−k1 − n−k2)gη1η2⊥

+
(n−k2)

(n−k1)
kη21⊥n

η1
− −

(n−k1)

(n−k2)
kη12⊥n

η2
− + kη12⊥n

η2
− − kη21⊥n

η1
−

−
(
k1⊥ · k2⊥

n−k1

− k1⊥ · k2⊥

n−k2

)
nη1− n

η2
−

]
ε∗η1(k1)ε∗η2(k2)eiz−(k1+k2). (B.7)

C Terms contributing to the NNLO cross section

We report in this appendix the terms contributing to (4.10), which have been calculated
in [12]. First of all one has the contribution to the partonic cross section due to the
kinematic correction at NNLO:

∆
kin (2)
NLP (z) =

α2
s

(4π)2

[
C2
F

(
16

ε2
− 192 ln(1− z) + 96

ε
+ 512 ln2(1− z)
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+ 192 ln(1− z)− 40π2 − 256

)
+ CFCA

(
88

3ε
− 352 ln(1− z)

3

− 8π2

3
+

476

9

)
+ CFnf

(
− 16

3ε
+

64 ln(1− z)

3
− 56

9

)
+O(ε)

]
. (C.1)

The terms contributing to the dynamic corrections with a collinear and a hard loop

∆
dyn (2)
NLP−coll(z) =

α2
s

(4π)2

[
C2
F

(
− 16

ε2
+

48 ln(1− z)− 20

ε

−72 ln2(1− z) + 60 ln(1− z) + 8π2 − 24

)

+CFCA

(
20

ε
− 60 ln(1− z) + 8

)
+O(ε)

]
, (C.2)

and

∆
dyn (2)
NLP−hard =

α2
sC

2
F

(4π)2

[
− 32

ε3
+

64 ln(1− z)− 16

ε2

+
−64 ln2(1− z) + 32 ln(1− z) + 80

3
(π2 − 3)

ε

− 8

3

(
− 16 ln3(1− z) + 12 ln2(1− z)

+ 20
(
π2 − 3

)
ln(1− z)− 56ζ3 − 5π2 + 48

)
+O(ε)

]
, (C.3)

respectively.

D Altarelli-Parisi splitting functions

We list in this appendix the Altarelli-Parisi splitting functions needed for the mass
renormalisation of the bare partonic cross section given in Sec. 4.1. The one-loop splitting
function P 0

qq reads

P 0
qq(z) = 4CF

{
2

[
1

1− z

]
+

− 1− z +
3

2
δ(1− z)

}
. (D.1)

The two-loop non-singlet splitting function P 1,NS
qq reads

P 1,NS
qq (z) = nfCF

{
δ(1− z)

[
− 2

3
− 16

3
ζ2

]
− 80

9

[
1

1− z

]
+

− 8

3

1 + z2

1− z ln z − 8

9
+

88

9
z

}
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+C2
F

{
δ(1− z)

[
3− 24ζ2 + 48ζ3

]
− 16

1 + z2

1− z ln z ln(1− z)

− 4(1 + z) ln2 z − 8

(
2z +

3

1− z

)
ln z − 40(1− z)

}
+CACF

{
δ(1− z)

[
17

3
+

88

3
ζ2 − 24ζ3

]
+

(
536

9
− 16ζ2

)[
1

1− z

]
+

+ 4
1 + z2

1− z ln2 z + 8(1 + z)ζ2 −
4

3

(
5 + 5z − 22

1− z

)
ln z

+
4

9

(
53− 187z

)}
. (D.2)
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