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Abstract
The reconstruction of the trajectories of charged particles, or track reconstruction, is a key computational challenge for par-
ticle and nuclear physics experiments. While the tuning of track reconstruction algorithms can depend strongly on details of 
the detector geometry, the algorithms currently in use by experiments share many common features. At the same time, the 
intense environment of the High-Luminosity LHC accelerator and other future experiments is expected to put even greater 
computational stress on track reconstruction software, motivating the development of more performant algorithms. We pre-
sent here A Common Tracking Software (ACTS) toolkit, which draws on the experience with track reconstruction algorithms 
in the ATLAS experiment and presents them in an experiment-independent and framework-independent toolkit. It provides 
a set of high-level track reconstruction tools which are agnostic to the details of the detection technologies and magnetic 
field configuration and tested for strict thread-safety to support multi-threaded event processing. We discuss the conceptual 
design and technical implementation of ACTS, selected applications and performance of ACTS, and the lessons learned.
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Introduction

Track reconstruction will become the most computation-
ally intensive component of event reconstruction, because 
it scales combinatorially with increasing number of charged 
particles. At proton–proton (pp) colliders such as the Large 
Hadron Collider (LHC), the increasing multiplicity is usu-
ally due to an increase in the simultaneous pp interactions 
per event, or pile-up ( � ). For heavy-ion collisions, on the 
other hand, the particle multiplicity is primarily determined 
by the centrality of the event, which depends on the number 
of nucleon participants in each collision. For most tracking 
algorithms, the execution time scales approximately quad-
ratically with the charged particle multiplicity.

In the general-purpose detector at the LHC, ATLAS [1], 
for example, there are currently an average of approxi-
mately 500 charged particles with sufficient momentum to 
be reconstructed within the detector acceptance. However, 
the upgrade of the LHC, the High-Luminosity LHC (HL-
LHC) [2], which is expected to begin data-taking in 2027 
will increase the instantaneous luminosity by a factor of five. 
The higher luminosity will result in an increase of the pile-
up from the current average of 34 to 140–200 in ATLAS and 
the second general-purpose detector at the LHC, CMS [3]. 
The acceptance of the upgraded detectors will approxi-
mately double and additional detector layers will be added 
increasing the number of read-out channels. This means that 
there will be an average of 4000 charged particles within 
the upgraded detector acceptance and current minimum 
momentum requirements 1. The rates at which the detectors 
are read-out will increase by an order of magnitude. In total, 
there are expected to be approximately 300,000 individual 
detector measurements in each event. Furthermore, addi-
tional funding for computing resources is expected to be lim-
ited in the HL-LHC era [4, 5]. Figure 1 shows that the CPU 
resources needed for event reconstruction are expected to 
exceed the available computing budget by at least a factor of 
two. Future pp colliders, such as the hadron–hadron option 
for the Future Circular Collider (FCC-hh), are anticipated 
to have an even larger number of up to 1000 simultaneous 
pp collisions [6].

Future collider-based nuclear physics experiments will 
accumulate several thousands of charged particles from 
heavy-ion collisions that occur both in the nominal inter-
action region and farther down the beam pipe. This leads 
to high occupancy and also out-of-time pile-up that creates 

a challenging track reconstruction environment, similar to 
expectations for the HL-LHC.

Historically, particle and nuclear physics have relied on 
Moore’s Law [8], which is the observation that the number 
of transistors on an integrated circuit approximately dou-
bles every 2 years. However, in the last decade, the current 
processor technologies have become limited in terms of the 
clock speeds that can be obtained due to the power density. 
Therefore, recent increases in speed have been achieved by 
adding processing cores instead of increasing the speed of 
individual cores. Further throughput increases are expected 
to be achieved through the use of different computing archi-
tectures such as Graphics Processing Units (GPUs), Field 
Programmable Gate Arrays (FPGAs), or integrated System 
on a Chip (SoC) circuits. See Ref. [9] for a recent discussion 
about the evolution of these technologies. Exploiting these 
architectures demands increasingly parallelized code and 
changes to programming paradigms. In addition, the rapid 
advances in the fields of artificial intelligence and machine 
learning have resulted in a wide range of new ideas for track-
ing algorithms. These include cellular automata [10], graph 
neural networks [11], and similarity hashing [12] amongst 
many others. While no algorithm has yet emerged to dis-
place existing track reconstruction methods, it is still early 
in the development cycle for such algorithms and the field of 
machine learning is undergoing rapid evolution.

During event processing, the raw signals from the detec-
tors are processed to obtain the reconstructed objects used 
for physics analysis. Using information from dedicated 
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Fig. 1   Estimated CPU resources (in MHS06  [7]) needed for the 
2020–2032 time frame for both data and simulation processing for the 
ATLAS experiment. Three different scenarios considered by ATLAS 
are shown ranging from the baseline to that in which the aggressive 
R&D program is successful (blue points). The common scenario 
agreed between the different experiments as a reference is shown with 
red triangles. The black lines indicate the amount of CPU that can be 
expected based on current budget models. From Ref. [5]

1  As the number of charged particles decreases rapidly with trans-
verse momentum, the transverse momentum requirement can be 
raised to decrease the CPU time of track reconstruction algorithms. 
However, this must be balanced by its impact on the physics program 
of the experiment.
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tracking detectors, sophisticated algorithms are used to 
reconstruct the trajectories of charged particles from the 
energy they deposit in the detector elements, including solid-
state detectors with segmented read-out, gas tubes, or other 
tracking devices. Such track reconstruction algorithms can 
be considered to be part of a more general class of pattern 
recognition algorithms. Track reconstruction algorithms 
have been used in particle and nuclear physics experiments 
for more than half a century.

Track reconstruction methods [13] can be categorized 
as global and local methods, although the two categories 
cannot always be strictly separated. Global methods find 
trajectories using the entire detector’s measurement ensem-
ble, often through conformal mapping or transform meth-
ods, such as the Hough transform [14, 15]. Other global 
approaches use neural networks [16] to find connected sets 
of measurements. Local methods generate track seeds and 
search for additional hits to complete them. Local methods 
include the track road and track following methods such as 
the Kalman filter (KF) [17–19].

A Common Tracking Software (ACTS ) entered this rap-
idly evolving ecosystem in 2016. It began with a small team 
at CERN and has since grown into an international collabo-
ration with approximately 15 regular contributors. ACTS has 
its origins in the track reconstruction algorithms developed 
for and extensively used by the ATLAS experiment [20]. 
ACTS is an attempt to develop community-driven track 
reconstruction software, where community contributions 
and extensions are explicitly encouraged. ACTS provides 
algorithms for track reconstruction within a generic, frame-
work- and experiment-independent open-source software 
toolkit [21–23]. ACTS includes data structures and algo-
rithms for performing track reconstruction in addition to a 
tool for fast track simulation. The ACTS code is designed to 
be inherently thread-safe to support parallel code execution, 
and data structures are optimized for vectorization, which 
will speed up linear algebra operations. The implementa-
tion is designed to be fully agnostic to detection technolo-
gies, detector design, and the event processing framework 
to allow it to be used by a range of experiments. However, 
tuning of the algorithms for specific detectors is required to 
achieve the ultimate physics performance. Experiment-spe-
cific adaptions and tuning of the toolkit, including contextual 
data such as detector conditions and alignment, are made 
possible in ACTS through C++ compile-time specializa-
tions. In addition, ACTS is designed to be highly customiz-
able and extendable to provide an R&D platform for the 
development and study of novel algorithms and techniques.

An early version of ACTS has been used to simulate 
the dataset for the Tracking Machine Learning (TrackML) 
challenge [24–26], which was performed in two stages to 
invite collaborators from within and external to particle 
physics to stimulate the development of new ideas for track 

reconstruction. The dataset produced for this challenge has 
subsequently been used to explore a range of novel track 
reconstruction algorithms [12, 27–30]. We use this data-
set to demonstrate the current performance of the ACTS 
algorithms, although no rigorous performance tuning has 
been done. This document describes the concepts, design, 
and implementation of the ACTS toolkit, and does not 
attempt to quantify its ultimate performance on any spe-
cific detector setup. ACTS has been explored for a range of 
different detectors including Belle II [31], CEPC [32, 33], 
sPHENIX [34–36], PANDA [37, 38], FASER [39], and the 
future ATLAS Inner Tracking system (ITk) [40–42] for the 
HL-LHC data-taking era.

The concepts, design, and implementation of the ACTS 
project are presented here. For further details of the imple-
mentation, see the current release, Ref. [43]. “Conceptual 
Design” discusses the concepts and design of the ACTS 
software. The technical implementation is discussed in 
“Technical Implementation”. Selected applications and early 
performance studies of tracking and vertexing are discussed 
in “Applications and Performance”. “Experience” highlights 
some lessons learned from the experience. The conclusion 
and a brief outlook are covered in “Conclusion”.

Conceptual Design

The ACTS project was initiated to serve three primary goals. 
First, to preserve and advance the well-tested code bases 
from the LHC experiments, while enabling preparation for 
the HL-LHC era and other future particle and nuclear phys-
ics experiments. This requires a state-of-the-art software 
development environment that allows the contributors to 
work with modern programming language standards and 
development workflows. Second, to provide an R&D test bed 
for algorithmic research (including machine learning tech-
niques) and portability to accelerated hardware. Third, to 
ultimately provide a mature track reconstruction toolkit, that 
can be used as a platform for rapid development of tracking 
applications for future tracking detectors.

Software development for particle and nuclear phys-
ics experiments is subject to a number of constraints: an 
event processing framework steers the execution of algo-
rithmic blocks, and a well-defined event data model (EDM) 
holds the event information and defines the communica-
tion between different components. Examples of event pro-
cessing frameworks include Gaudi [44] used by the LHCb 
experiment [45], the Athena [46] extension of Gaudi for the 
ATLAS experiment, CMSSW [47] for the CMS experiment, 
and the ROOT [48] event processing loop. In recent years, 
many of these processing frameworks have been adapted 
and extended to enable multi-processing or multi-threaded 
workflows to accommodate different types of hardware 
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and optimize the usage of memory and computing cores. 
The details of the implementation of such workflows differ 
between the various frameworks and experiments, but the 
overall concepts are the same. If a single data slice, tradi-
tionally called an event, needs to be processed by multiple 
threads, the function calls need to be independent of the cur-
rent data slice or be provided with the appropriate context, as 
discussed in “Concurrent Code Execution”. In this case, the 
method call is fully controlled and defined by the input and 
output data, and the algorithmic module is a stateless engine 
that has no memory of previous calls, configurations, and 
operations. Despite the complex steering and brokering of 
the processing, the actual work load is performed by smaller 
modules or tools, which are not necessarily controlled by the 
framework’s public interface. ACTS aims to provide such 
a toolkit for track and vertex reconstruction, together with 
a high-level EDM definition that can be directly included 
in experiment-specific applications, extended by adding 
additional functionality, and rearranged and adapted to the 
specific needs of an experiment.

To prepare the ACTS toolkit for such general use, its 
design has the following central concepts:

–	 Minimal dependency of the core components on external 
software packages

–	 Abstraction of the EDM and geometry description from 
the specific details of any experiment

–	 General mathematical formulations of algorithms inde-
pendent of specific detector geometry, magnetic field, or 
detector technology

–	 A customizable connection to the algorithm configura-
tion

–	 Transparent import and handling of experiment-specific 
contextual conditional data, such as detector calibration 
and detector alignment

–	 Facilitation of the integration of core functionality 
typically governed by the event processing framework, 
e.g., message logging

–	 A plugin mechanism for extending the toolkit with exter-
nal software packages.

Several of the key concepts of the design of ACTS are 
described in further detail in the following. The implemen-
tation is discussed in “Technical Implementation”.

Concurrent Code Execution

ACTS is designed to accommodate the heterogeneous com-
puting landscape with parallel code execution paths. There-
fore, all algorithmic modules can be called in parallel while 
processing an event and between the processing of multi-
ple events without interference, as illustrated in Fig. 2. The 
contextual and conditional data are handled transparently as 
described in “Contextual Data Handling”. To avoid restrict-
ing the caller code to any predefined pattern, all ACTS 
modules are designed, such that each function call has to be 
fully controlled by the data input and output flow, and back 
channel communication to caller functions is forbidden2. If 

Thread 1Thread 1 Alg. 2Alg. 2 Alg. 1Alg. 1 Alg. 2Alg. 2 Alg. 4Alg. 4

Thread 2Thread 2 Alg. 1Alg. 1 Alg. 3Alg. 3 Alg. 4Alg. 4 Alg. 3Alg. 3 Alg. 1Alg. 1

ACTS Comp. AACTS Comp. A ACTS Comp. AACTS Comp. A

ACTS Comp. AACTS Comp. A

ACTS Comp. BACTS Comp. B

ACTS Comp. BACTS Comp. B

Event AEvent A

Event BEvent B

Event CEvent C

Fig. 2   Illustration of multi-threaded event processing with the 
sequence proceeding from left to right, in the context of an experi-
mental software framework. Two threads execute different experi-
ment-specific algorithms, which are illustrated by different shapes. 
The algorithms are distributed across threads by a scheduler. Execu-
tion occurs out of order for the three events indicated by different 

colors. Data flow integrity, drawn as arrows connecting algorithms, 
is respected. ACTS components can be used inside the algorithms, 
shown as loops attached to individual algorithms instances. They 
can optionally increase concurrency by running on parts of the event 
simultaneously, as shown for algorithm 4

2  In C++, this is enforced by restricting methods to follow a const-
correct signature and by forbidding mutable data members.



Computing and Software for Big Science             (2022) 6:8 	

1 3

Page 5 of 23      8 

caching is required, e.g., for performance reasons, the cache 
must be provided as part of the input data, as discussed in 
“Technical Implementation”. The correct and reproducible 
behavior of the code in sequential and concurrent code exe-
cution paths is tested within unit and integration test suites. 
These tests include checks for identical results when running 
in single-threaded and multi-threaded mode. More advanced 
examples test the correct behavior with multiple alignment 
or magnetic field conditions during a single execution run.

The actual code execution pattern, e.g., event parallelism, or 
intra-event parallelism at different stages of track reconstruc-
tion, is the responsibility of the caller application and thus, no 
technology, language, nor dedicated library for parallel code 
execution is provided in the ACTS core modules. However, 
example applications in the repository rely on the Intel Thread-
ing Building Blocks (TBB) [49] multi-threading library to 
demonstrate how concurrent execution can be implemented. 
ACTS allows core modules to be wrapped in callable kernel 
structures that can be used on accelerators with dedicated tech-
nology back ends. First demonstrators of such an approach have 
been successfully deployed [50]; however, further development 
and simplification of the code base is needed for ACTS to run 
efficiently on different types of computing hardware. This is 
one of the dedicated R&D lines of the project as discussed in 
“Research and Development Projects”.

Contextual Data Handling

A general track reconstruction toolkit that serves different 
experiments must be able to handle a contextual experimen-
tal environment. Detectors may have temporary or permanent 
imperfections, suffer from changing alignment and data-taking 
conditions, and, in general, operate in a time-dependent manner. 
Track reconstruction uses high-precision measurements and 
every effect must be accounted for to achieve optimal results. 
Detector conditions, on the other hand, are one of the most spe-
cific aspects of any experimental setup, and a general solution 

or implementation for such a diverse problem would be very 
challenging. Therefore, a transparent handling schema for all 
contextual data has been applied throughout the ACTS code 
base: a set of contextual objects, defined and implemented in 
the experiment’s software stack, are handed through the entire 
call structure of ACTS (see Fig. 3). This ensures that each 
geometry call that relies on detector information is aware of the 
geometry context of that particular call and allows the correct 
detector alignment to be applied within that specific call con-
text. Other conditional data, such as the magnetic field status or 
detector calibration data, are implemented in the same way. In 
all cases, the caller code can be assured that contextuality will 
be respected with minimal computational overhead, because 
the context information is unpacked and correctly interpreted. 
The choice about whether the contextual object carries either 
a parameter to identify the context to be applied or the full 
contextual data is left to the implementation within a particular 
experiment.

See “Selected Applications” for details of a concrete 
implementation of a contextual environment.

Research and Development projects

Recent technology advances in both hardware and software 
have transformed the computing landscape in the scientific 
and private sector. Machine learning is a rapidly growing 
field, and hardware-based acceleration becomes increas-
ingly prominent due to the growing use of high-performance 
computing centers and limitations in increases in proces-
sor speed. While both areas have already been explored 
in particle and nuclear physics, additional R&D is needed 
to fully exploit these advances in future data processing, 
particularly in the domain of track and vertex reconstruc-
tion. The tracking machine learning challenge has dem-
onstrated that machine learning algorithms can reach the 
same order of magnitude in both physics performance and 
execution speed compared to the current track reconstruction 

Fig. 3   Illustration of contextual 
geometry handling. At job ini-
tialization time, only a nominal 
(or initially aligned) version of 
the ACTS geometry is built. 
Three threads execute on events 
in parallel. All threads request 
details of the ACTS geometry 
by providing their event context, 
which fully defines the align-
ment of the detector in the cur-
rent call context. The method to 
perform the alignment can be 
experiment-specific

parallel event loop

Actor Initialization
Detector construction
(Detector software) ACTS Geometry

Thread 0 Thread 1 Thread 2

Alg. A
Event 1

call procedure(event context 1)

return result

Alg. A
Event 2

call procedure(event context 2)

return result

Alg. A
Event 3

call procedure(event context 3)

return result



	 Computing and Software for Big Science             (2022) 6:8 

1 3

    8   Page 6 of 23

algorithms. End-to-end solutions based on machine learning 
are expected to require significant development time. How-
ever, certain aspects of track reconstruction such as track 
classification or data segmentation [51], have already shown 
promising results. Such smaller components, however, need 
to be tested in a realistic data flow. A key element in the 
design of ACTS is to provide a playground to facilitate pro-
totyping, development, and testing of such new ideas. The 
plugin mechanism of ACTS allows the core track recon-
struction code to be coupled with external libraries from 
the machine learning and data science sectors, or with code 
with different language backends, which is needed for code 
execution on accelerators. The ONNX [52] library for the 
deployment of machine learning-based tracking solutions 
and the autodiff  [53] library for automated compiler-
based differentiation have both been demonstrated within 
ACTS. Furthermore, CUDA [54] and SYCL [55] have been 
integrated for GPU-based seed finding algorithms.

Technical Implementation

Basic Technology Choices

ACTS targets modern many-core, general-purpose CPUs, 
which are widely available and the default computing archi-
tecture currently used by the LHC experiments [56, 57] and 
other experiments in particle and nuclear physics. Both x86 
and ARM architectures have been demonstrated to work with 
ACTS. All recent CPUs have vector units and significant per-
formance improvements can be obtained from vectorizable 
code. While hardware accelerators such as GPUs and FPGAs 
are not necessarily part of most baseline architectures, they are 
actively explored by the ACTS developers and the larger par-
ticle and nuclear physics community, particularly for online 
software and when looking ahead towards the HL-LHC.

ACTS is implemented in C++ 17 [58], which is widely 
used in the particle and nuclear physics community, and thus 
can be easily integrated with existing software. As a compiled 
programming language with minimal implicit runtime facili-
ties and a high degree of low-level hardware control, C++ 
enables achieving excellent execution performance. How-
ever, it is difficult to learn and use correctly, particularly with 
regards to memory management. This is mitigated through 
guidelines and implementation choices in ACTS, which 
include strict ownership handling via movable types and 
value-like semantics as well as the adoption of best practices 
such as unit tests and continuous integration, which ensure 
code quality.

The ACTS code is designed to have minimal dependen-
cies on external packages. Only two third-party libraries are 
required: Eigen [59] for linear algebra and Boost [60] for 
unit testing, file system handling, and a few key containers. 

In addition, CMake [61] is used both as a dependency man-
agement tool and as the build system.

The general strategy for algorithmic development in 
ACTS draws on the experience of previous particle and 
nuclear physics software efforts and, in particular, the exist-
ing ATLAS offline tracking software [62]. A key choice is to 
favor small compile-time interfaces and templates over vir-
tual interfaces for better performance and greater implemen-
tation flexibility. ACTS favors data-oriented programming 
over object-oriented programming, which means that the 
communication between different parts of the code occurs 
through sharing common data structures rather than prede-
fined interfaces.

Code Organization

The ACTS code [43] is a single open-source repository 
hosted on GitHub [63]. A single repository allows for the 
easy development and integration of components and avoids 
version mismatches and accidental incompatibilities. The 
test and validation code provides examples of end-to-end 
tests and allows development with realistic reconstruction 
chains. No additional client application is necessary. The use 
of GitHub facilitates collaboration independent of affiliation. 
Key components within the repository are the core library, 
the plugins, the fast tracking detector simulation, Fatras, 
based on the original ATLAS fast track simulation [64], and 
the test and validation code. Figure 4 illustrates how ACTS 
can be integrated into an experimental framework.

The core library implements the basic tools and key algo-
rithms with minimal external dependencies. The plugins 
directory contains core-like functionality that requires 
additional external dependencies. The source code of the 
core library and the plugins extensions are located in the 
Core and Plugins directories. Examples available in 
the plugins directory include geometry tools based on the 
external TGeo [65] package from the ROOT toolkit, which 
is currently used in particle and nuclear physics experiments 
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Fig. 4   Example of the integration of ACTS into an experiment’s 
software framework. The experiment- and detector-specific code 
(green) is expected to handle low-level data preparation and provide 
SourceLinks and Measurements as input to ACTS algorithms. 
ACTS provides tracks and vertices as output for further experiment-
specific reconstruction and analysis
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to describe detector geometries, and CUDA or SYCL which 
enables code to run on GPUs.

The source code of the Fatras simulation is not located 
within the Core folder, because it is not required for recon-
struction. It can be built on demand. Fatras makes heavy use 
of the core functionality and, therefore, can be maintained 
more easily as part of the same repository, e.g., to adapt to 
core interface changes.

Releases of ACTS follow semantic versioning [66], where 
a subset of the interface is considered when determining the 
major version. The software is provided under the Mozilla 
Public License, v. 2.0 (MPLv2) [67]. Common code format-
ting is ensured by requiring submitted code to the repository 
to pass a formatting check using the clang-format [68] 
LLVM [69] extension.

Core Components

The core library of ACTS is organized into modules and each 
module groups tools and algorithms with similar functional-
ity. An overview of key modules is shown in Fig. 5. The com-
munication between algorithms occurs via common event data 
structures defined in the EventData module as described 
in “Event Data Model”. The Geometry module handles the 
tracking geometry, which is the logical and geometric group-
ing of detector surfaces into layers and volumes. The tracking 
geometry uses the Surfaces component, which implements 
different surfaces for detectors and boundaries. The related 
Material component contains tools to describe surface- 
and volume-based material and the algorithms to create such 
a geometrical mapping. See “Geometry” for further details 
about both modules.

The Propagator module provides tools to propagate 
particle states along their trajectories in different magnetic 

fields (see “Propagator”). The TrackFinding  and 
TrackFitting modules use both the Geometry and 
the Propagator modules. The Vertexing module is 
largely standalone, but relies on output from other modules 
as input and the propagation infrastructure. The Seeding 
module contains a geometry independent seeding algo-
rithm that acts purely on global three-dimensional points.

Configuration, State, and Context

class Algorithm {
public:

// Necessary and sufficient
// configuration variables.
struct Config {

double aValue = 0.25;
std::string name = "something";

};

// Construct algorithm from its configuration.
Algorithm(const Config& cfg) : m_cfg(cfg) {}

private:
Config m_cfg;
// ... e.g. values derived from
// the configuration

};

Listing 1: Example of an algorithm implementation
with a nested configuration type. The configuration
type allows settings with default values to be addressed
by name. Plain types mean that no explicit Config con-
structor is required. This pattern is used throughout the
code base to support configuration and construction.
This listing also demonstrates the naming convention
for private member variables and the CamelCase cod-
ing style.

Fig. 5   Overview of selected 
components in the ACTS 
repository and their interactions. 
The components are categorized 
into modules, such as geometry, 
propagation, or event data. A 
non-exhaustive number of rela-
tionships where one component 
“uses” other components in dif-
ferent modules are indicated by 
arrows. The stepper components 
are connected to the magnetic 
field module, because they are 
used to retrieve the magnetic 
field information
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class StatefulAlgorithm {
public:

// Cached or intermediate values that
// persist between calls.
struct State {

double lastValue = 0.;
};

// `const` implementation since all mutable
// states are contained within the state object.
void doWork(State& state) const;

};

Listing 2: Example of a stateful algorithm implementa-
tion with a nested state type. All state information, i.e.
either cached or intermediate values, are contained in
the nested state type. The algorithm type itself remains
stateless and const-correct.

Components in ACTS are typically highly configurable. To 
enable this flexibility, without being bound to any specific 
configuration environment, patterns using a nested C++ 
structure are used. Listing 1 provides an example of such a 
pattern, where a Config structure contains all configuration 
parameters as members. The constructor of the outer type 
takes an instance of the configuration structure as an argu-
ment, and runs its setup accordingly.

ACTS supports both inter- and intra-event parallelization 
without expliciting implementing either. Instead, the explicit 
state objects for potentially stateful algorithms must be pro-
vided by the user as demonstrated in listing 2. An example 
of a stateful algorithm would be, e.g., a track finding algo-
rithm that uses information about previously found tracks 
in the event (provided by the state) to prevent unnecessary 
or duplicated track search. By creating these state objects 
within their own framework, experiments must explicitly 
decide how and at which levels execution is parallelized and 
where synchronization might need to occur.

A similar problem exists for detector-related structures 
including the geometry, magnetic field, or calibrations 
that vary between events. During parallel execution, these 
structures cannot be handled as global states. Similar to the 
handling of the algorithm state, all algorithms that might 
require varying context data take an explicit context object. 
These objects are then passed through the full execution 
chain and handled by the experiment-specific code where 
necessary. An example of an application with contextual 
data, changing the detector alignment, is demonstrated in 
“CPU Utilization”.

Event Data Model

The event data model binds all modules together by provid-
ing shared data structures. The EDM is used to communicate 
between different steps of the reconstruction chain. Thus, it 
needs to be both generic enough to hold all possible event 
data types, but also minimal enough to avoid overheads, as 
it will be used extensively throughout the code base. Event 
data consists of measurements, track parameters, and vertex 
parameters, which can be represented as vectors.

The two different track parameter spaces in ACTS are 
bound and free track parameters. Bound track parameters 
describe a track bound to a surface. The surface can be a 
real detector surface such as the planar surface of a sili-
con detector or a virtual surface, such as the straw surface 
and the perigee 3 surface used to describe a track near an 
anode wire in a gaseous tracking detector and a vertex, 
respectively. The bound track parameters have six dimen-
sions and comprise of a two-dimensional position on the 
local surface, two momentum direction angles (or angle-like 
parameters), a curvature parameter, and time. The bound 
parameters can only be defined with reference to a surface 
and the interpretation of the two local position components 
are surface-dependent. At the perigee surface, the bound 
track parameters are

where the d0 and z0 represent the transverse and longitudinal 
impact parameters, respectively. The remaining parameters 
are the azimuthal angle � , the polar angle � , the charged 
signed inverse momentum, and the time t. This parameteri-
zation exists for charged and neutral particles. In the latter 
case, the inverse momentum representation is changed to 
1/p. The time t is transparently respected in track propaga-
tion and potential measurement inclusion.

In contrast, free parameters require no reference surface 
and use the same definition everywhere. Within ACTS, they 
are described by the 3D position and direction vectors, time, 
and a curvature parameter. Therefore, they are eight-dimen-
sional and are used throughout track propagation

and also referred to as free track parameters.
Measurements are treated as vectors in a sub-space of a 

(bound) track parameter vector space. Measurements are 
typically associated with a surface and only measure a subset 
of the available track parameters; most often at least one 

(1)� =

(
d0, z0,�, �,

q

p
, t

)
,

(2)� =

(
x, y, z, dx, dy, dz,

q

p
, t

)
,

3  The perigee refers to the point or surface of closest approach.
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local position. Many track reconstruction methods, such as 
the Kalman filter (see “Kalman Filter”), include a projection 
from a subset of the track parameters to the measurement 
space. For ACTS, the measurement space is assumed to 
always be consistent with the bound track parameter space 
defined by the surface. The inclusion of time information 
directly in the track fit is a novel feature of the ACTS algo-
rithms. For example, a pixel detector measurement with time 
information �i = (mx,my,mt) can be compared to the esti-
mated track parameterization �i = (lx, ly,�, �,

q

p
, t) on the 

same surface i using a projection matrix �i to form a three 
dimensional residual vector: �i = �i −�i�i . Time is treated 
in the same way as the other track parameters.

Compile-time programming via template substitutions is 
used to dispatch execution into highly optimized code paths 
for each dimensional measurement type. A separate data-
structure provides an optimized collection of measurements. 
This data-structure can also store a tree of track states, each 
potentially containing a measurement and/or the estimated 
track parameters.

The dedicated event data model used by the vertexing 
components is designed to be as flexible as possible and the 
input tracks can be of any user-defined type. This approach 
facilitates experiment-specific integration while keeping 
overhead minimal at the same time.

Geometry

The geometry description used for reconstruction is a sim-
plified version of the detailed detector description used in 
Monte Carlo simulation programs such as Geant4 [70]. 
The description of the sensitive detectors (including mis-
alignment and other contextual information) needs to be 
as precise as possible. However, several approximations to 
the detector description for the non-sensitive detector ele-
ments are made. During reconstruction, the noise from the 

detector material is accounted for either deterministically 
or stochastically.

In ACTS, the reconstruction geometry is entirely built 
from surface objects. Compound layer objects and volume 
objects are based on the surface class. A volume shape is 
built from the boundary surfaces. The boundary surfaces 
are also referred to as portal surfaces as they connect the 
volumes. Layers are defined by their bounding and contained 
surfaces. The contained surfaces can either be declared sen-
sitive when they represent detection elements or be passive 
material surfaces.

Navigation through the detector proceeds either using 
portal surfaces that connect volumes with other volumes or 
by performing a local search of layer surfaces after entering 
a layer object through its bounding surfaces. All surfaces can 
be propagated to, carry material, or refer to sensitive detector 
elements, and are thus suitable for both reconstruction and 
fast simulation.

Layer Geometry and Plugin Mechanism for Detector 
Elements

Tracking detectors are frequently built from physical layer 
structures that support the modules, the on-detector electron-
ics, power cabling and cooling units, and often feature stave 
structures. The logical division into layer structures is used 
in ACTS to restrict the local navigation to an area of interest 
instead of attempting to navigate the full detector.

Each layer has a set of approach surfaces, as well as a 
representative surface, which is a single surface represent-
ing the layer in a fast navigation search. The approach sur-
faces describe the boundary of the layer and are the entry 
point into the local layer navigation. In track propagation, 
the intersection of the approach surface is used for finding 
possible surface candidates within the layer object that are 
then tested for intersection with the trajectory. The different 
types of surfaces are illustrated in Fig. 6.

(a) (b)

Approach

Representative Volume bounds

Sensitive Passive

Fig. 6   Illustration of the layer geometry for planar detection modules. 
a Highly detailed geometry, in which both sensitive and passive ele-
ments are present. b Simplified version, where all passive elements 
are discarded (grayed out). Instead, various virtual surface approxi-

mations of the detailed structure are shown and used in the modeling. 
The representative surface is closest to the sensor locations, while 
the approach surfaces form an envelope around them. A volume sur-
rounds the layer, which also features boundary surfaces
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ACTS allows this generic geometry description to be sup-
plemented with experiment-specific information. Each sensi-
tive surface can have an associated object containing spe-
cific information of the particular experiment. For example, 
this can be used to interface with an experiment’s geometry 
library. In addition, ACTS ships with plugins which can be 
used to translate a geometry from an existing representation, 
such as DD4Hep  [71], TGeo, or GeoModel  [72].

Surface and Volume‑Based Material

In addition to defining the exact positions and shapes of 
the measurement devices, the detector geometry description 
must provide an adequate description of the detector mate-
rial. Because passive and active material is the main source 
of uncertainty in track reconstruction, a precise description 
of the amount, type, and location of the material in the detec-
tor volume is required. The passive material can be handled 
as either deterministic changes to the trajectory estimate or 
stochastic addition to the covariance matrix.

While a precise description is required for the simulation 
of individual interactions of the particles with the detec-
tor material, it can be simplified for track reconstruction. 
The material can usually be approximated as average mate-
rial mixtures, described by an effective amount of traversed 
radiation length for evaluating the multiple scattering and 
bremsstrahlung contributions, and an effective ionization 
loss can be applied. Furthermore, small structures present in 
the full simulation geometry can be merged into close-by 
approximate material slabs. This simplification speeds up 
the track reconstruction algorithms, because navigating and 
propagating through a simplified geometry require fewer 
CPU cycles, predominantly due to the reduction of surface 
candidate intersections and fewer calls to the material inte-
gration calculations. The relative importance of accuracy 
and speed must be optimized for each experimental setup. 
ACTS deploys a highly configurable approach to this prob-
lem: every surface and every volume can carry an attached 
material description, including the auxiliary layer surfaces 
and volume boundary surfaces. Depending on the environ-
ment, corrections need to be applied during track propa-
gation as described in “Propagator”, which require a pre-
cise description of the material. Therefore, the dedicated 
mapping algorithm in ACTS projects the detailed material 
description onto a selected set of surfaces or into a selected 
set of volumes. An example of a material mapping applica-
tion is discussed in “Applications and Performance”. The 
material description on surfaces or within volumes can be 
either homogeneous or binned, using the ACTS grid infra-
structure. When the propagation reaches a surface that car-
ries material, the appropriate material integration methods 
will be called. Similarly, if the propagation proceeds within a 
volume that carries a material description, the corresponding 

extension for the transport equations become active and 
query the volume material.

Propagator

A core module of ACTS is the propagation engine, which 
carries out the task of transporting track parameters through 
the detector. Minimum requirements for the propagator 
include reliable navigation through all the detector com-
ponents and the mathematical transportation of the track 
parameters and their associated covariance matrices. Addi-
tional actions can be performed during track parameter 
transport in both track reconstruction and fast simulation. An 
example of such an action is the intersection with additional 
sensitive modules. This can be used to count the number 
of missed sensitive detector element on a track, log several 
parameters, or execute any particular action that can be per-
formed along a particle’s trajectory. The propagation engine 
therefore consists of two components: 

1.	 A Stepper module which performs the mathematical 
transport through the magnetic field

2.	 A Navigator module which predicts the potential candi-
date surfaces in the detector geometry and regulates the 
associated step size for the stepper.

The propagator is steered by a dedicated options object, 
which is provided for each propagation call. It contains two 

y

x

cell 1

cell 2

cell 3

cell 4

cell 5 cell 6

grid
points

Fig. 7   Illustration of the magnetic field cell implementation. A two-
dimensional field map in the xy-plane is shown. The colored circles 
represent propagation steps where magnetic field lookup is per-
formed. Step locations that fall inside each lookup field cell are indi-
cated with the same color. Before crossing the boundary into the next 
cell, each step reuses the previously retrieved field cell
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lists of structures: a list of actors and a list of aborters. Both 
lists can be extended by the client code at compile time and 
are called after each propagation step and can contain sur-
face material interaction logic (as part of the actors), target 
conditions, or restrictions on the maximum allowed path 
length.
// Pre-Stepping: target setting
navigator.target(state);

// Propagation loop: stepping
while (/* step */ ){

// Perform a step & check the result
stepper.step(state);
navigator.status(state);
// Apply the actors
actionList(state, result);
// Check for abort condition
if (abortList(result, state)) break;
// Target after stepping
navigator.target(state);

}

Listing 3: Simplified listing of the propagation loop
showing the interplay of the Navigator, the Stepper, the
actors and the aborters. The state object holds the
cached track parameterization, while the actors collect
information in the result object, which in turn can be
interpreted together with the state object for eventual
abort conditions.

ACTS includes two steppers based on a fourth-order 
Runge–Kutta–Nyström algorithm [73]. One has an array-
like math implementation and the other is based on the 
Eigen math library. These steppers receive the mag-
netic field as an input. For the Eigen-based stepper, an 

extension for propagation through non-vacuum material 
based on the simultaneous track and error propagation 
(STEP) algorithm [74] exists and is invoked in presence 
of a volume material description. A straight-line stepper 
also exists, which can be used in the absence of a magnetic 
field. A purely helical stepper is not implemented, but both 
Runge–Kutta–Nyström based steppers can provide helical 
stepping behavior for a constant magnetic field. Listing 3 
provides a simplified listing of the propagation loop showing 
the interplay between the different components.

Magnetic Field Access

The magnetic field is accessed via a dedicated provider that 
is passed to the stepper modules. The implementation of the 
magnetic field (both in memory and in conceptual design) 
can be changed and a few standard implementations are pro-
vided. An interpolated magnetic field map, which imple-
ments an internal caching mechanism, is also provided and 
can be used to approximate any inhomogeneous magnetic 
field by supplying suitable input. When following a particle 
through the detector, calls to the magnetic field are often 
made in short succession. Therefore, to optimize the lookup 
or potential re-use of the magnetic field information, the 
steppers access the field via a thread-local cache type. In the 
implementation of the interpolated magnetic field map, this 
cache contains the current field interpolation cell. A suc-
cessive call to the field interface either results in a renewed 
interpolation if the call remains within the same field cell, 
or the retrieval of a neighboring field cell. The field cell 
concept is visualized in Fig. 7, where a particle trajectory is 
shown in the xy-plane with the propagation step locations 
color-coded according to their respective field cell.

Figure 8 shows the performance of the ACTS magnetic 
field interpolation for different scenarios. A dynamically 
calculated solenoidal field is shown as a baseline. From that 
field, an interpolation grid is derived during initialization, 
and its field lookup performance is measured for a number of 
access patterns: a fixed point, random points, and a sequence 
of points along a straight line. The last emulates the typical 
access pattern of particle propagation. All interpolated field 
query strategies are approximately three orders of magni-
tudes faster than the solenoidal field calculation. The impact 
of the field cell cache is also shown. For the fixed point, the 
caching results in significant performance improvements, 
while for fully random points, it degrades the performance. 
This is expected, because random point access will almost 
always result in a cache miss, while for fixed point, a cache 
hit is guaranteed. For the straight-line access pattern, the 
cache again improves performance.

Fig. 8   Performance of the magnetic field lookup for a number of dif-
ferent scenarios. Results for the analytical solenoid field and the inter-
polated magnetic field map are shown. Field queries at a fixed point, 
at a sequence of random points, and a sequence along a straight line 
are measured. Performance with and without field interpolation cell 
caching is shown
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Track Seed Finder

Track seed finding algorithms are used as the first step in 
track reconstruction to obtain a coarse estimation of the pos-
sible track candidates and their properties, which are then 
used by track following algorithms. The current implemen-
tation of the track seed finder in ACTS creates triplets of 
measurements, with the goal of identifying the triplet of 
measurements corresponding to a single particle. In track 
seed finding, the goal is to maximize the efficiency while 
minimizing the number of seeds that do not correspond to a 
particle, or fakes, and duplicates. Maximizing the efficiency 
is the highest priority, because particles without a seed will 
never be reconstructed as tracks, while fakes and duplicates 
can be eliminated in subsequent steps of the track recon-
struction chain at the cost of execution time.

The ACTS track seed finding algorithm takes three-
dimensional measurements from specified detector compo-
nents as input, and applies selection criteria to prioritize 
measurements which are more likely to have originated from 
the same particle. These criteria must be optimized for a 
particular detector geometry and play an important role in 
determining the physics and technical performance of the 
track seed finding algorithm. As track parameters derived 
from triplets have limited resolution, approximations are 
used in their estimation, including a homogeneous approxi-
mation of the magnetic field. Information about the detector 
geometry is not required during execution, because the track 
seed finder relies on global measurements.

The efficiency and computational performance of the 
track seed finding algorithm depends on the number of 
measurements and the event occupancy. The higher the 
measurement occupancy, the higher the computational cost 
of following all combinatorial paths and higher the num-
ber of fakes. This can be mitigated with tighter selection 
criteria at the cost of lower efficiency. Moreover, higher 
measurement occupancy results in a higher probability that 
a fake measurement, instead of the real one, is assigned 
to the track, which leads to additional efficiency loss. As 
the number of detector layers increases, more measure-
ment points are available per particle, which increases the 
computational requirements and the duplicate rate, but also 
the efficiency. The accuracy of the detector alignment also 
impacts efficiency.

Kalman Filter

The Kalman filter technique processes a set of discrete 
measurements to determine the internal state of a linear 
dynamical system. In particular, random perturbations 

can be present in both the measurements and the system. 
It is commonly used for navigation, but has applications 
in many domains including charged particle reconstruc-
tion. The Kalman filter is an excellent choice of algorithm 
for charged particle reconstruction, because it facilitates a 
straightforward treatment of the motion of charged particles 
in magnetic fields and the impact of the detector material 
on the particle trajectories including multiple scattering and 
energy loss.

Kalman filter algorithms can be used both for track find-
ing and track fitting. In ACTS, the Kalman filter algorithm 
estimates the parameters of a track by iteratively incorpo-
rating individual measurements assigned to the track by 
track finding algorithms. The implementation in ACTS has 
the mathematical filtering and smoothing in configurable 
components which can be replaced at compile time. The 
Kalman filter class includes a propagator instance which 
can be configured with different detector geometries and 
magnetic fields. The algorithm is primarily implemented in 
an actor that is fed into the propagator when the track fit is 
executed. This actor can access the transported track param-
eters and their associated covariance matrices, and operate 
on them. It is also configurable in terms of the representation 
of the track parameters and measurements, and can include 
an outlier 4 identification helper and a calibrator for the cali-
bration of measurements using predicted track parameters 
during the fitting. As the time parameter including correla-
tion is included in the track parameters and their associated 
covariance, a time measurement, if present, will transpar-
ently be used to update the predicted time parameter. The 
time parameter will also be propagated along the trajectory 
including its variance and correlations with the remaining 
track parameters.

The Kalman filtering method creates a track state if the 
propagator reaches a surface with either material or a meas-
urement. If a measurement is found, it is investigated by 
the outlier identification helper. Unless the measurement is 
tagged as an outlier, it is used to update the track parameters 
by applying the filtering procedure. A hole track state is cre-
ated on any traversed sensitive surface that does not have a 
measurement on it. Material effects can be included either 
before or after the Kalman filtering. When all the measure-
ments have been processed or the navigation reaches the 
boundary of the tracking geometry, the Kalman smoothing 
procedure is triggered to obtain the smoothed track param-
eters either using the Rauch–Tung–Striebel smoothing for-
malism [75] starting from the last filtered track state or using 
the propagator but with the navigation direction reversed.

An extension of the Kalman filter (KF), the Combinato-
rial Kalman filter (CKF) technique [76–78] is implemented 

4  A measurement which is not compatible with the predicted track 
parameters is term an outlier.
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within ACTS to perform the measurement search at the same 
time as performing the fit. If multiple compatible measure-
ments are found on a surface, the track propagation branches 
and is repeated for multiple sets of track parameters updated 
with each subsequent measurement. The search for compat-
ible measurements is handled by a measurement selector, 
which supports custom implementation of the selection cri-
teria. An example of the selection criteria is the maximum 
�2 for each selected measurement under the assumption of 
the track parameters and the maximum number of branches 
on a surface. Those criteria are fully customizable and con-
figurable at different levels of detector geometry, and can 
be used to refine the tracking performance, e.g., the track 
reconstruction efficiency and the number of fake tracks.

Both the KF and the CKF produce fitted track parameters 
at a user-defined target surface and a container object, which 
contains all the fitted track states. For a single seed, the KF 
and the CKF can provide one set and multiple sets of fitted 
track parameters and track states, respectively.

Vertexing

ACTS features a fast and flexible primary vertex reconstruc-
tion suite, comprising a range of components implementing 
a full chain from vertex seeding to precision vertex param-
eter estimation. The vertexing module includes an itera-
tive vertex finder (IVF) and an adaptive multi-vertex finder 
(AMVF) [79]. The IVF iteratively fits individual vertices 
starting from a vertex seed and a seed track collection. The 
AMVF fits multiple vertices simultaneously, while dynami-
cally assigning tracks to candidate vertices during fitting. 
The AMVF exhibits good performance for high vertex-den-
sity environments such as the HL-LHC, and will be used as 
the default vertex reconstruction tool for the ATLAS experi-
ment in Run-3.

The input vertex seeds to both vertex finders are provided 
by four different vertex seed finding algorithms: a z-scan ver-
tex seed finder based on a half-sample mode algorithm [80], 
a Gaussian track density vertex seed finder  [79], as well as 
a non-adaptive and adaptive version of a new fast and robust 
grid density vertex seed finder. Dedicated vertex fitters for 
the different vertex finding approaches, a Billoir fitter [81] 
and an adaptive multi-vertex Kalman fitter [82], as well as 
auxiliary vertexing tools such as impact point estimators and 
track linearizers complement the vertexing toolkit.

The public interfaces of the vertexing components are 
designed to be highly configurable and flexible. The ver-
tex finders accept a collection of representations of tracks 

Fig. 9   The geometry of the ATLAS ITk (a), the PANDA silicon 
detector (b), and the sPHENIX silicon tracking detectors (c), imple-
mented with ACTS. Colors indicate different subsystems; in the top 
image, the High Granularity Timing Detector (HGTD) [83] is shown 
in orange
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or particles to be used for vertex finding. In addition, an 
option structure which allows the finder to supplied with 
a vertex constraint is provided as input. The output of the 
vertexing components is a list of all found vertices. Ver-
tex seed finders are regarded as regular vertex finders in 
ACTS, and therefore share the same interface. They have 
the special characteristic of returning a single-entry list of 
vertices, i.e., the vertice obtained from the current vertex 
seed only, at a time. The vertexing can run on ACTS bound 
track parameter objects as well as on any user-defined input 
track type to allow maximum flexibility. The only require-
ment for using an arbitrary input track type is to provide a 
std::function that unwraps and returns ACTS bound 
track parameters.

Fig. 10   Geometries of Belle  II (a) and FASER (b) implemented in 
ACTS. Colors indicate the different subsystems

(a)

(b)

Fig. 11   A projection of the magnetic field implemented with ACTS 
for the ATLAS tracking system into the x − y plane (a). The strength 
of the magnetic field at each point is indicated in color. The r − z 
coordinates of the intersections of propagated pion tracks with the 
ATLAS ITk detector elements, using the ATLAS magnetic field (b). 
Boundary intersections are shown in blue, while intersections with 
sensors are shown in orange. Green lines indicate a subset of extrap-
olated particle tracks. Gray points are the intermediate integration 
steps, required within a predefined tolerance threshold

Fig. 12   Comparison of the mapped material obtained from ACTS 
material mapping tool (orange line) and the Geant4 material (blue 
line) as a function of � for the Open Data Pixel Detector. The ratio of 
the material in ACTS to Geant4 is indicated in the panel below and 
the statistical uncertainty is indicated with the gray band. Agreement 
is within about 2%, with excellent agreement seen in the central part 
of the detector
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Applications and Performance

Selected Applications

ACTS is integrated or being integrated into a number of par-
ticle and nuclear physics experiments. Here, we presented 
selected examples of experiments that either use or have 
explored the use of ACTS. Figure 9a shows the geometry 
of the ATLAS ITk. The ACTS vertexing algorithms have 
already been integrated into the ATLAS Athena framework 
and the integration of the ACTS tracking algorithms is ongo-
ing. At the same time, preliminary optimization of the ACTS 
tracking algorithms for ITk is in progress. Figure 9b shows 
the geometry for the silicon tracker of the PANDA experi-
ment, which is a planned particle physics experiment at the 
FAIR facility in Germany.

The sPHENIX experiment is the next-generation jet and 
heavy-flavor detector currently under construction at the 
Relativistic Heavy Ion Collider at Brookhaven National 
Laboratory. Figure 9c shows the geometry for the silicon 
tracker of sPHENIX. ACTS components for seeding, track 
fitting, and vertexing have been successfully deployed in the 
sPHENIX production software chain.

Belle  II is the next-generation B-factory experiment 
located at the SuperKEKB accelerator complex  [84] in 
Japan. A critical requirement is to reliably reconstruct low-
momentum tracks with pT ≈ 100 − 300MeV [85]. This is 
achieved with a combination of silicon pixel and strip detec-
tors, whose placement is shown in Fig. 10a. The Belle II 
collaboration is currently exploring in what form ACTS can 
supplement or replace existing tracking code.

Figure 10b shows the FASER detector, which is an exper-
iment at the LHC, located ≃ 480 m downstream the ATLAS 
interaction point, featuring extremely forward acceptance 
( 𝜂 > 9.2 ). The FASER tracker is designed to detect two 
high-momentum charged tracks originating from a decay 
vertex inside the decay volume, using three tracking sta-
tions with silicon strip sensors, in a 0.55T magnetic field. 
FASER will fully rely on ACTS for its track reconstruction 
and fitting. The implementation is well progressed and first 
performance studies with the ACTS CKF are in preparation.

Figure 11a shows the magnetic field of the ATLAS exper-
iment described using ACTS. Track parameter propagation 
based on the detector geometry and magnetic field is used 
to determine the coordinates of intersections of tracks with 
detectors. An example of track propagation with the ATLAS 
ITk Detector is shown in Fig. 11c.

When using the simplified tracking geometry described in 
Fig. 3.6, the detector material is modeled using a dedicated 
mapping algorithm that remaps the detailed Geant4 mate-
rial. A comparison of the mapped material with the mate-
rial used in the full simulation geometry for the Open Data 

Detector [86] is shown in Fig. 12. The geometry of the Open 
Data Detector is described with a realistic passive material 
model based on DD4hep, which translates into a Geant4 
detector model. The agreement between the material budget 
described in Geant4 and by the ACTS geometry is within 
a few percent, and can be further improved using higher 
granular binning of the material maps and additional place-
ment of material surfaces if needed.

Examples of a Track and Vertex Reconstruction 
Chain for the LHC

At the LHC, track reconstruction typically proceeds through 
a multi-step process, which we briefly outline here. The pro-
cedure is largely similar for different experiments, but with 
some key differences in strategy. For example, the CMS 
experiment uses an iterative tracking approach [87] in which 
the full track reconstruction pass is repeated a number of 
times, but with different configurations, and the measure-
ments corresponding to tracks that have already been recon-
structed are removed. ATLAS instead relies to a large extent 
on a single track reconstruction pass, but with loose track 
candidate search and an ambiguity resolution step to resolve 
between the multiple track candidates. Additional passes are 
used to target particular topologies, e.g., tracks produced at 
large radii.

As the first step, the energy deposited in the silicon detec-
tors is grouped into clusters with each cluster ideally cor-
responding to the energy deposited by a single particle. The 
clusters are three-dimensional space-points formed from 
either a single pixel cluster or a pair of strip clusters with 
stereo angle between them from each side of a module, 
depending on the sensor technology.

Next, seed finding algorithms are used to reconstruct the 
seeds. The seeds passing a set of selection cuts are used 
to initiate the track finding and following algorithms, such 
as the CKF. After track following, the ATLAS experiment 
runs an ambiguity resolution algorithm to resolve duplicate 

Fig. 13   Schematic layout of the TrackML detector showing the cover-
age of the pixel detector in blue, short strip detector in red, and long 
strip detector in green
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tracks and remove fakes [62]. Track candidates are scored 
based on track properties such as the number of clusters, 
holes, shared clusters, and fitting quality. The scoring pro-
cedure is iterated until the selected set of track candidates 
are obtained. Next, the track candidates are extended into the 
Transition Radiation Tracker, consisting of gas-filled drift 
tubes, to search for additional measurements to improve the 
momentum resolution.

As the final track reconstruction step, if needed, a precise 
estimate of the track parameters is determined from track 
fitting algorithms, including the KF and Global �2 methods. 
The final track candidates are selected based on a set of track 
quality metrics, e.g., the number of clusters and holes, and 
the estimated track parameters. For example, the track can-
didates are usually required to satisfy a set of requirements 
for the momentum and impact parameters.

After track reconstruction, primary vertex candidates are 
reconstructed using the reconstructed tracks with estimated 
perigee track parameters at the beam line. Both ATLAS and 
CMS use an adaptive approach for primary vertex recon-
struction [87, 88] similar to the ACTS Adaptive Multi-Ver-
tex Finder (AMVF).

Track and Vertex Reconstruction Performance

As discussed in “Examples of a Track and Vertex Recon-
struction Chain for the LHC”, experimental applications of 
track reconstruction usually include many steps depending 
on the algorithms used, the collision environment, and the 
required precision. Here, an example of simplified track 
reconstruction chain based on a combined effort of track 
seeding and the CKF is discussed. The detector used for the 
TrackML challenge has the layout, as shown in Fig. 13, and 
a solenoidal magnetic field with a strength of 2 T centered 
on the beam line is used to demonstrate the ACTS track and 
vertex reconstruction performance.

Particles generated using a particle gun, both muons and 
charged pions, and particles from the tt̄physics process gen-
erated in pp collisions at a center-of-mass energy of 14 TeV, 
the energy target for the HL-LHC, with the PYTHIA 8 gen-
erator [89, 90] are used for the performance studies. The 
single particle samples either contain a single particle per 
event for physics performance studies or a thousand particles 
within a single event for timing performance studies. As 
muons have little sensitivity to detector material, they are 
used to study the technical performance of the track recon-
struction algorithms, while the pions are used to study the 
sensitivity of the track reconstruction algorithms to mate-
rial. No pile-up is included in the single particle events. 
Two tt̄samples are produced: one with ⟨�⟩ = 200 to match 
the highest pile-up foreseen for the HL-LHC and the other 
with ⟨�⟩ varying from 0 to 300 to allow the dependence of 
the performance on pile-up to be studied. The interactions 

of the generated particles with transverse momentum, 
pT > 400 MeV and pseudorapidity, �5, within |𝜂| < 2.5 with 
the detector are simulated with Fatras, the ACTS fast simula-
tion library.

Detector read-out and measurement creation are detector-
specific6; hence, a smearing algorithm applies module-spe-
cific resolutions to emulate the input measurements based 
on the simulated hits. The space-points constructed from the 
emulated measurements in the innermost four pixel layers 
are grouped into seeds using the ACTS seeding algorithm 
as described in “Track Seed Finder”. Both truth and recon-
structed seeds are used. Truth seeds eliminate the pattern 
recognition step in the seed finding, i.e., the truth informa-
tion is used to identify the hits for a seed corresponding 
to a true particle. Truth-generated seeds are produced by 
smearing the particle properties at its point of generation. 
Truth-propagated seeds are produced by smearing the true 
particle information at the first detector layer. Reconstructed 
seeds are the output of the seed finding algorithm based on 
the simulated hits.

While each truth seed is a set of initial track parameters 
with associated covariance matrix, estimation of the track 
parameters with associated covariance matrix at the surface 
of the innermost space point is performed for each recon-
structed seed. These initial track parameters based on either 
the truth seeds or the reconstructed seeds and are used to 
seed the CKF algorithm. After the CKF algorithm has been 
run, the reconstructed track candidates must satisfy a set 
of track quality cuts. The reconstructed tracks are required 
to have at least six measurements based on expectations 
from the TrackML detector layout and to allow initial track 
parameters to be located in any of the first three layers of 
the pixel detector. Four different types of tracks are stud-
ied, which allows the effects of the different steps in the 
track reconstruction sequence to be disentangled. The truth 
tracks ignore the pattern recognition entirely and are based 
on the properties of the simulated hits of the true particles. 
The truth-generated-seeded tracks, truth-propagated-seeded 
tracks, and reco-seeded tracks are reconstructed by running 
the CKF on the truth-generated seeds, the truth-propagated 
seeds, and the reconstructed seeds, respectively.

The performance of the ACTS primary vertex recon-
struction module is evaluated using truth tracks with fitted 
perigee track parameters defined at the beam line using the 
same detector, magnetic field, and simulation configuration 
as used for the studies of the track reconstruction.

5  Pseudorapidity is an angular quantity calculated as follows 
� = − ln

[
tan

(
�

2

)]
 from the polar angle � . � = ±∞ corresponds to 

directions along the beam axis.
6  For silicon detectors, this often requires finding connected read-out 
cells and either processing or emulating the detector signal.



Computing and Software for Big Science             (2022) 6:8 	

1 3

Page 17 of 23      8 

Track Reconstruction Efficiency and Fake and Duplicate 
Rates

Key indicators of the performance of a track reconstruc-
tion algorithm are the track reconstruction efficiency, the 
track duplicate rate, and the rate at which fake tracks are 
reconstructed. Their definitions require reconstructed tracks 
to be associated with generated particles. A reconstructed 
track is associated with a generated particle if the largest 
fraction of measurements on the track is from this simulated 
particle and the fraction of associated measurements is at 
least 50%. A track that is not associated with any simulated 
particle is considered to be a fake track. Duplicate tracks 
occur when multiple tracks are associated with the same 
generated particle.

The track reconstruction efficiency is defined as the frac-
tion of generated particles which have made at least nine 
measurements on the traversed detectors and are associated 
with tracks. The fake rate and duplicate rate of the tracks are 
defined as the fraction of fake and duplicate tracks among 
all the reconstructed tracks, respectively. Figure 14 shows 
the preliminary track reconstruction efficiency as a func-
tion of the � of the simulated true particle as well as the 
fraction of fakes and duplicates as a function of the � of the 
reconstructed track with the CKF for 1000 tt̄ events with 
⟨�⟩ = 200. Results are shown for both the truth-propagated-
seeded tracks and the reco-seeded tracks. The results for 
the truth-propagated-seeded tracks are excellent; however, 
inefficiencies and high duplicate rates are observed for the 
reconstructed tracks. This is because no detector-specific 
tuning has been performed for the TrackML detector and the 
performance would be improved by tuning the seed finding 
criteria as a function of � . The tuning of track reconstruction 
algorithms for a particular geometry is typically performed 
with several iterations and is beyond the scope of this paper.

Track Parameter Resolution

Track fitting in ACTS can be performed using either the KF 
or the CKF. Here, we study the track parameter resolution 
using the KF based on the truth tracks to remove the impact 
of any fake or duplicate tracks. Single muons are used to 
minimize the impact of detector material.

Gaussian fits are performed to the distributions of the 
pull values defined as the (vf it − vtruth)∕�v . Here, vf it and 
vtruth are the estimated value of the track parameter and its 
true simulated value, and �v is the estimated uncertainty of 
the reconstructed track parameter. The distributions of the 

Fig. 14   The track reconstruction efficiency (top), fake rate (mid-
dle), and duplicate rate (bottom) for 1000 tt̄ events with ⟨�⟩ = 200 
obtained using ACTS CKF on the TrackML detector. The blue dots 
and orange triangles represent results using starting parameters based 
on truth track parameters and those estimated from seeds found the 
ACTS seed finding algorithm, respectively. The truth particles used 
to calculate the track reconstruction efficiency are required to have 
pT > 1 GeVand have nine measurements on the traversed detectors. 
The reconstructed tracks are required to have pT > 1 GeVand have six 
measurements in the detector

▸



	 Computing and Software for Big Science             (2022) 6:8 

1 3

    8   Page 18 of 23

Fig. 15   The pull distributions of the six bound track parameters, d0 , 
z0 , � , � , q

p
 , and t, as obtained with the KF on the TrackML detector. 

The blue dots are the obtained pull values and the orange lines are the 
fitted Gaussian curves. For each Gaussian fit, the fitted values (with 

negligible uncertainties) for the parameters mean ( � ) and standard 
deviation ( � ) are shown in the legend. Truth-generated seeds are used 
for the KF. A sample of 100,000 single muons with 500 MeV 
< pT < 10 GeVand at least nine measurements on the detector is used

Fig. 16   Number of reconstructed primary vertices with the ACTS 
AMVF for different numbers of true pp collisions in simulated tt̄ 
events. For reference, the gray dashed line indicates a 100% vertex 
reconstruction efficiency and the blue dots indicate the vertex recon-
struction efficiency given a detector acceptance of |𝜂| < 2.5 and 
pT > 400 MeV

Fig. 17   The fraction of wall time during which different numbers of 
threads were running simultaneously while running track propaga-
tion through the TrackML detector. Either a static (blue) or contextual 
(orange) geometry is used for 100,000 events with 1000 pions per 
event using multi-threads on a Cori–Haswell node
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pulls of the track parameters at the perigee surface defined 
at the beam line are shown in Fig. 15. The parameters of 
the Gaussian distributions are approximately consistent 
with standard normal distributions, which demonstrates 
that the track parameters and their uncertainties are esti-
mated properly by the ACTS KF. The fitted standard devia-
tions of the Gaussian curves deviate slightly from one for 
the impact parameters and the momentum direction angle 
� due to the impact of non-linear effect of the measure-
ment model.

Primary Vertex Reconstruction Efficiency

Figure 16 shows the number of reconstructed primary ver-
tices as a function of ⟨�⟩ of the tt̄ sample using the ACTS 
AMVF based on the truth tracks. The AMVF efficiency is 
optimized for a mid-range working point of expected pile-
up conditions for the upcoming data-taking run of the LHC, 
Run-3. These have 

⟨
�
⟩
≈ 60 , but the performance extrapo-

lates well to higher numbers of simultaneous pp interac-
tions. When used by an experiment, the AMVF configura-
tion would be optimized for the small pile-up range targeting 
the experiment’s needs and accelerator conditions.

CPU Performance

The CPU performance, including the CPU utilization and 
time performance, was tested on a Haswell node at the 

National Energy Research Scientific Computing Center 
(NERSC) [91] (Cori-Haswell). The node has 32 physical 
cores and 64 threads at a clock rate of 2.3 GHz.

The TrackML detector is used to benchmark the CPU 
performance. The pion samples are used to evaluate the 
CPU utilization and the timing performance of the propa-
gator with different numerical integration methods, and 
the tt̄ samples with ⟨�⟩ varying from 0 to 300 are used 
to evaluate the time performance of the seed finder and 
CKF.

Fig. 18   The mean number of propagation steps (top), propagation 
time for 1000 pions (middle), and mean propagation time per step 
(bottom) of the track parameter propagation as a function of the pT 
of the pions ( |𝜂| < 2.5 ) with the array-like math implementation 
(blue dots), the main Eigen-based stepper (orange triangles), and the 
straight-line stepper (green stars)

Fig. 19   The CPU time of track fitting per event using ACTS KF (blue 
dots) and combined track finding and track fitting (orange triangles) 
per event using the ACTS CKF as a function of the ⟨�⟩ of the tt̄ sam-
ple. Truth-generated seeds are used for both the KF and the CKF. 
Only simulated particles with pT > 500 MeVand having at least nine 
measurements on the detector are considered

Fig. 20   The average CPU time for seed finding (blue dots) per event, 
and combined track finding and track fitting (orange triangles) per 
event with ACTS CKF using reconstructed seeds as a function of ⟨�⟩ 
of the tt̄ sample. Only seeds with pT > 500 MeV are considered
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CPU Utilization

The CPU utilization of ACTS was analyzed using the 
Intel VTune profiler [92]. Figure 17 shows the 
CPU utilization for running track propagation through the 
TrackML detector with a static geometry, and a contex-
tual geometry in which the detector alignment changes for 
100,000 events with 1000 pions per event using multiple 
threads on the Cori–Haswell node. All 64 threads are uti-
lized during 91% of the total execution time for both the 
static and the contextual geometry. This demonstrates highly 
efficient multi-threaded execution.

Timing Performance

Figure 18 shows the CPU time of the ACTS track parameter 
propagation through the TrackML detector as a function of 
pion pT . Three different steppers to perform the numerical 
integration are shown: the main EigenStepper in ACTS, 
the stepper using manual array mathematical operations, and 
the straight-line stepper.

The straight-line stepper is used as the baseline, because 
it executes the minimal number of integration steps, even 
though it yields a geometrically incorrect solution, due to 
presence of the 2 T magnetic field. For increasing trans-
verse momentum, the CPU time of the other two steppers 
approaches this theoretical best-case scenario. The other two 
steppers have very similar results, demonstrating that the 
Eigen-based implementation has nearly optimal compu-
tational performance.

Figure 19 shows the CPU time as a function of the ⟨�⟩ of 
the tt̄ samples for track fitting with the KF, and the combined 
track finding and track fitting with the CKF. Both the KF 
and CKF are using truth-generated seeds. Only simulated 
particles with transverse momentum greater than 500 MeV 
are included. The KF and CKF require 0.74 s and 2.25 s 
per event, respectively, for a tt̄ sample at ⟨�⟩ = 200. The 
additional amount of time for the CKF is spent on the search 
of the compatible measurements on each measurement sur-
face and the possible branching of the track propagation into 
multiple branches when more than one compatible measure-
ments are found.

Figure 20 shows the CPU time as a function of the ⟨�⟩ 
of the tt̄ samples for seed finding, and combined track find-
ing and fitting with CKF using the reconstructed seeds. The 
seed finding and CKF require 0.11 s and 3.97 s per event, 
respectively, for a tt̄ sample at ⟨�⟩ = 200. The increase in 
time for the CKF in Fig. 20 compared to Fig. 19 is due to the 
presence of duplicate seeds among the reconstructed seeds, 
which would be improved by dedicated tuning of the track 
reconstruction algorithms.

Experience

ACTS has been initiated to preserve and evolve the well-
tested track reconstruction software of the LHC era that has 
been used for many outstanding physics results, while also 
creating a research and development toolkit for algorithm 
optimization and design. Through the use of ACTS as the 
fast track simulation engine for the TrackML challenge, a 
wider community has become familiar with the ACTS pro-
ject. The resulting R&D projects sparked by the TrackML 
challenge are still ongoing and have introduced new con-
cepts and algorithms into the core ACTS software. This 
section discusses selected topics from experience of the 
development of the ACTS project.

Successful and less successful design choices typically 
become evident when integrating the software within experi-
ments’ software stacks. The less restrictive the initial soft-
ware design, the easier such an integration is. However, this 
needs to be balanced against the performance of the track 
reconstruction software.

An example of successful design choice for ACTS is the 
contextual data handling: detector conditional data, such as 
alignment parameters, calibration constants, or other chang-
ing parameters, are usually very specific to the experiment 
code and a common solution for these data objects is hard to 
find. Due to the evolution and aging of running experiments, 
details of calibration data may not necessarily be known 
when an experiment begins. Within ACTS, the implementa-
tion of the contextual data and the data flow through the soft-
ware are split. This allows experiments to implement specific 
data objects for conditions and the ACTS software handles 
them throughout the entire call chain. This also allows the 
conditions to be unpacked at the appropriate time by the 
detector-specific code. As the object type is known and spec-
ified on both ends of the call chain, this guarantees minimum 
conversion overhead. The contextual data handling was first 
demonstrated within the ACTS examples, and has also been 
demonstrated while integrating ACTS in Athena.

A similar example of a successful design choice is the 
implementation of screen logging. Messages output on the 
screen are commonly for debugging and quality control with 
particle and nuclear physics software; hence, a seamless 
integration of ACTS with the experiments logging infra-
structure has been a priority during development. The inte-
gration has been achieved by allowing the logging instance 
in ACTS to be replaced with a custom logger connected 
to the experiments framework logging facility. The logging 
has been proven to work within the Gaudi-based software 
frameworks of ATLAS and FCC-hh. In addition, a generic 
demonstrator showing how to change the logging instance 
is included in the ACTS test suite.
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The choice of using C++ was easy, given the current 
landscape of particle and nuclear physics software. C++ is 
an extremely powerful language, but comes, like any lan-
guage choice, with its shortcomings. Initially, extensive use 
of template expressions in the ACTS core software led to 
huge resource requirements during compilation. Therefore, 
this has been revised to reduce the resource requirements. 
Care is needed to maintain simplicity within the code, which 
will also be important for an eventual re-use of parts of the 
ACTS software on heterogeneous hardware. While writing 
code for heterogeneous hardware has not been an immediate 
target of the ACTS project, compatibility should be foreseen, 
allowing ACTS to adapt to future particle and nuclear phys-
ics computing landscapes.

Given that the origin of ACTS lies in the ATLAS Com-
mon Tracking Software, several initial design choices 
focused towards general-purpose collider experiments. 
Weaknesses relating to the use of ACTS for different geom-
etry types, particularly for forward detectors, time projection 
chambers, drift tube, and telescope setups, have been identi-
fied. While some of them have already been resolved, these 
remain active areas of development.

Conclusion

The development of efficient and maintainable track recon-
struction is a challenge for current and future particle and 
nuclear physics experiments. We have introduced the ACTS 
toolkit, which provides a set of open-source, experiment-
independent and framework-independent reconstruction 
algorithms for tracking detectors. The high-level track recon-
struction tools do not depend on the details of the detection 
technologies and magnetic field configuration, and have 
been tested for thread-safety to support concurrent event 
processing.

We have demonstrated that ACTS is maturing as a toolkit 
and currently provides a range of algorithms for track and 
vertex reconstruction, which have been or are actively being 
integrated into a range of experimental frameworks. Geom-
etries for a number of particle and nuclear physics detectors 
have been included in ACTS. Initial studies of the phys-
ics and computational performance of the track and vertex 
reconstruction algorithms using the TrackML detector were 
presented. A detailed tuning of the algorithms is required 
to achieve full performance for any specific detector, which 
is beyond the scope of this paper and is expected to be per-
formed by the individual experimental collaborations.

A discussion of selected experiences obtained during the 
ACTS project has been presented. Future development direc-
tions for the ACTS project are expected to include further 
deployment into experimental frameworks and increasing 
investment into the R&D lines. The authors would welcome 

contact from other experiments interested in exploring the 
use of and contributions to ACTS.

Acknowledgements  This work was supported by the CERN Strate-
gic R&D Program on Technologies for Future Experiments (CERN-
OPEN-2018-006), the National Science Foundation under Cooperative 
Agreement OAC-1836650, the Office of Nuclear Physics within the 
U.S. DOE Office of Science under Contract No. DE-SC0012704, and 
the German Federal Ministry of Education and Research (BMBF).

Funding  Open access funding provided by CERN (European 
Organization for Nuclear Research). This work was supported by the 
CERN Strategic R&D Program on Technologies for Future Experi-
ments (CERN-OPEN-2018-006), the National Science Foundation 
under Cooperative Agreement OAC-1836650, the Office of Nuclear 
Physics within the U.S. DOE Office of Science under Contract No. 
DE-SC0012704, and the German Federal Ministry of Education and 
Research (BMBF).

Data Availability Statement  This manuscript has no associated data 
or the data will not be deposited. [Authors’ comment: There are no 
associated data available.]

Code Availability  The code used for this research is available open 
source [63].

Declarations 

Conflict of Interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 ATLAS Collaboration. The ATLAS experiment at the CERN large 
hadron collider. In: JINST 3 (2008), p S08003. https://​doi.​org/​10.​
1088/​1748-​0221/3/​08/​S08003

	 2.	 Apollinari G et al (2017) High-luminosity large hadron collider 
(HL-LHC): technical design report V. 0.1. https://​doi.​org/​10.​
23731/​CYRM-​2017-​004

	 3.	 CMS Collaboration (2008) The CMS experiment at the CERN 
LHC. In: JINST 3, p S08004. https://​doi.​org/​10.​1088/​1748-​
0221/3/​08/​s08004

	 4.	 CMS Collaboration (2021) Evolution of the CMS computing 
model towards phase-2. Technical report. Geneva: CERN. https://​
cds.​cern.​ch/​ record/​27515​65

	 5.	 Calafiura P et al (2020) ATLAS HL-LHC Computing conceptual 
design report. Technical report CERN-LHCC-2020-015, LHCC-
G-178. CERN, Geneva. http://​cds.​cern.​ch/​record/​27296​68

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://cds.cern.ch/%20record/2751565
https://cds.cern.ch/%20record/2751565
http://cds.cern.ch/record/2729668


	 Computing and Software for Big Science             (2022) 6:8 

1 3

    8   Page 22 of 23

	 6.	 Collaboration FCC (2019) FCC-hh: the hadron collider. Eur 
Phys J ST 228(4):755–1107. https://​doi.​org/​10.​1140/​epjst/​
e2019-​900087-0

	 7.	 HEP-SPEC06 Benchmark. https://​w3.​hepix.​org/​bench​marki​ng.​
html. Accessed 17 May 2021

	 8.	 Moore GE (1965) Cramming more components onto integrated 
circuits. Electronics 38:8. https://​doi.​org/​10.​1109/​JPROC.​1998.​
658762

	 9.	 Hennessy JL, Patterson DA (2019) A new golden age for computer 
architecture. Commun ACM 62(2):48–60. https://​doi.​org/​10.​1145/​
32823​07

	10.	 Pantaleo F (2017) New track seeding techniques for the CMS 
experiment. PhD thesis. Hamburg U. https://​cds.​cern.​ch/​record/​
22934​35

	11.	 Ju X et al (2020) Graph neural networks for particle reconstruction 
in high energy physics detectors. In: NeurIPS 2019. arXiv:​ 2003.​
11603 [physics.ins-det]

	12.	 Amrouche S et al (2019) Similarity hashing for charged particle 
tracking. In: IEEE international conference on big data 2019, pp 
1595–1600. https://​doi.​org/​10.​1109/​BigDa​ta470​90.​2019.​90063​16

	13.	 Strandlie A, Frühwirth R (2010) Track and vertex reconstruction: 
from classical to adaptive methods. Rev Mod Phys 82:1419–1458. 
https://​doi.​org/​10.​1103/​RevMo​dPhys.​82.​1419

	14.	 Hough P (1959) Machine analysis of bubble chamber pictures. In: 
Kowarski L (eds) Conference proceedings C 590914, pp 554–558

	15.	 Duda R, Hart P (1972) Use of the Hough transformation to detect 
lines and curves in pictures. Commun ACM 15:11–15

	16.	 Hopfield J (1982) Neural networks and physical systems with 
emergent collective computational abilities. Proc Natl Acad Sci 
79:2554–2558. https://​doi.​org/​10.​1073/​pnas.​79.8.​2554

	17.	 Kalman RE (1960) A new approach to linear filtering and predic-
tion problems. J Basic Eng 82(1):35–45. https://​doi.​org/​10.​1115/1.​
36625​52

	18.	 Billoir P (1984) Track fitting with multiple scattering: a new 
method. Nucl Instrum Methods A 225:352–366. https://​doi.​org/​
10.​1016/​0167-​5087(84)​90274-6

	19.	 Frühwirth R (1987) Application of Kalman filtering to track and 
vertex fitting. Nucl Instrum Methods A 262:444–450. https://​doi.​
org/​10.​1016/​0168-​9002(87)​90887-4

	20.	 Gumpert C et al (2017) ACTS: from ATLAS software towards a 
common track reconstruction software. Technical report. ATL-
SOFT-PROC-2017-030. 4. CERN, Geneva. https://​doi.​org/​10.​
1088/​1742-​6596/​898/4/​042011

	21.	 Ai X (2019) Acts: a common tracking software’. In: Meeting of 
the division of particles and fields of the American Physical Soci-
ety. arXiv:​ 1910.​03128 [physics.ins-det]

	22.	 Ai X (2020) Tracking with a common tracking software. arXiv:​ 
2007.​01239 [physics.ins-det]

	23.	 Gessinger P et al (2020) The Acts project: track reconstruction 
software for HL-LHC and beyond. In: Doglioni C (eds) EPJ web 
conference 245: 10003. https://​doi.​org/​10.​1051/​epjco​nf/​20202​
45100​03

	24.	 Amrouche S et al. (2020) The tracking machine learning chal-
lenge: accuracy phase. In: The NeurIPS ’18 competition, pp 
31-264. https://​doi.​org/​10.​1007/​978-3-​030-​29135-8_9

	25.	 Kiehn M et al (2019) The TrackML high-energy physics tracking 
challenge on Kaggle. In: Forti A (eds) EPJ web conference 214: 
06037. https://​doi.​org/​10.​1051/​epjco​nf/​20192​14060​37

	26.	 Amrouche S et al (2021) The tracking machine learning challenge: 
throughput phase. arXiv:​ 2105.​01160 [cs.LG]

	27.	 Tüysüz C et al (2020) Performance of particle tracking using a 
quantum graph neural network. In: BASARIM 2020 conference 
proceedings. arXiv:​ 2012.​01379 [quant-ph]

	28.	 Fox PJ et al (2020) Beyond 4D tracking: using cluster shapes for 
track seeding. arXiv:​ 2012.​04533 [physics.ins-det]

	29.	 Heintz A et al (2020) Accelerated charged particle tracking with 
graph neural networks on FPGAs. In: NeurIPS 2020. arXiv:​ 2012.​
01563 [physics.ins-det]

	30.	 Bapst F et al (2020) A pattern recognition algorithm for quantum 
annealers. In: Comput Softw Big Sci 4(1) 1. https://​doi.​org/​10.​
1007/​s41781-​019-​0032-5. arXiv:​ 1902.​08324 [quant-ph]

	31.	 Abe T et al (2010) Belle II technical design report. arXiv:​ 1011.​
0352 [physics.ins-det]

	32.	 The CEPC Study Group (2018) CEPC conceptual design report: 
volume 1—accelerator. arXiv:​ 1809.​00285 [physics.acc-ph]

	33.	 The CEPC Study Group (2018) CEPC conceptual design report: 
volume 2—physics and detector. arXiv:​ 1811.​10545 [hep-ex]

	34.	 Adare A et al (2015) An upgrade proposal from the PHENIX col-
laboration. arXiv:​ 1501.​06197 [nucl-ex]

	35.	 sPHENIX Collaboration (2020) Requirements, status, and plans 
for track reconstruction at the sPHENIX experiment. In: Proceed-
ings for the connecting the dots workshop. arXiv:​ 2007.​00771 
[physics.ins-det]. Accessed 24 June 2021

	36.	 sPHENIX Collaboration (2021) Implementation of ACTS into 
sPHENIX track reconstruction. In: 25th International conference 
on computing in high-energy and nuclear physics. arXiv:​ 2103.​
06703 [physics.ins-det]

	37.	 PANDA Collaboration (2012) Technical design report for the: 
PANDA micro vertex detector. Technical report. arXiv:​1207.​6581 
[physics.ins-det]

	38.	 Bettoni D (2007) The PANDA experiment at FAIR. In: Mahlke 
H, Napolitano J (eds) eConf C070805, p 39. arXiv:​ 0710.​5664 
[hep-ex]

	39.	 FASER Collaboration (2019) FASER: ForwArd Search ExpeRi-
ment at the LHC. arXiv:​ 1901.​04468 [hep-ex]

	40.	 ATLAS Collaboration (2017) Technical design report for the 
ATLAS inner tracker pixel detector. Technical report CERN-
LHCC-2017- 021, ATLAS-TDR-030. https://​cds.​cern.​ch/​record/​
22855​85

	41.	 ATLAS Collaboration (2017) Technical design report for the 
ATLAS inner tracker strip detector. Technical report CERN-
LHCC-2017-005, ATLAS-TDR-025. https://​cds.​cern.​ch/​record/​
22577​55

	42.	 ATLAS Collaboration (2019) Expected tracking performance 
of the ATLAS inner tracker at the HL-LHC. Technical report. 
Geneva: CERN. https://​cds.​cern.​ch/​record/​26695​40

	43.	 Ai X et al (2020) Acts project: v3.0.0. version v3.0.0. Nov. https://​
doi.​org/​10.​5281/​zenodo.​39374​54. Accessed 24 June 2021

	44.	 Barrand G et al (2001) GAUDI–a software architecture and frame-
work for building HEP data processing applications. Comput Phys 
Commun 40:45–55. https://​doi.​org/​10.​1016/​S0010-​4655(01)​
00254-5

	45.	 LHCb Collaboration (2008) The LHCb detector at the LHC. In: 
JINST 3, S08005. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​s08005

	46.	 Athena (2019) Version 22.0.1. https://​doi.​org/​10.​5281/​zenodo.​
26419​96. Accessed 24 June 2021

	47.	 CMS Offine Software. http://​cms-​sw.​github.​io/. Accessed 02 Mar 
2021

	48.	 Brun R, Gheata A, Gheata M (2003) The ROOT geometry pack-
age. Nucl Instrum Methods Phys Res A 502(2):676–680. https://​
doi.​org/​10.​1016/​S0168-​9002(03)​00541-2

	49.	 Threading building blocks. https://​github.​com/​oneapi-​src/​
oneTBB. Accessed 03 Feb 2021

	50.	 Ai X et al (2021) A GPU-based Kalman Filter for track fitting. 
arXiv:​ 2105.​ 01796 [physics.ins-det]

	51.	 Amrouche S et al (2021) Hashing and metric learning for charged 
particle tracking. In: 33rd Annual conference on neural informa-
tion processing systems. arXiv:​ 2101.​06428 [hep-ex]

	52.	 Open neural network exchange. https://​www.​github.​com/​onnx. 
Accessed 17 May 2021

	53.	 autodiff. https://​autod​iff.​github.​io/. Accessed 02 Mar 2021

https://doi.org/10.1140/epjst/e2019-900087-0
https://doi.org/10.1140/epjst/e2019-900087-0
https://w3.hepix.org/benchmarking.html
https://w3.hepix.org/benchmarking.html
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://cds.cern.ch/record/2293435
https://cds.cern.ch/record/2293435
http://arxiv.org/abs/2003.11603
http://arxiv.org/abs/2003.11603
https://doi.org/10.1109/BigData47090.2019.9006316
https://doi.org/10.1103/RevModPhys.82.1419
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1088/1742-6596/898/4/042011
https://doi.org/10.1088/1742-6596/898/4/042011
http://arxiv.org/abs/1910.03128
http://arxiv.org/abs/2007.01239
http://arxiv.org/abs/2007.01239
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.1051/epjconf/201921406037
http://arxiv.org/abs/2105.01160
http://arxiv.org/abs/2012.01379
http://arxiv.org/abs/2012.04533
http://arxiv.org/abs/2012.01563
http://arxiv.org/abs/2012.01563
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5
http://arxiv.org/abs/1902.08324
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1809.00285
http://arxiv.org/abs/1811.10545
http://arxiv.org/abs/1501.06197
http://arxiv.org/abs/2007.00771
http://arxiv.org/abs/2103.06703
http://arxiv.org/abs/2103.06703
http://arxiv.org/abs/1207.6581
http://arxiv.org/abs/0710.5664
http://arxiv.org/abs/1901.04468
https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2257755
https://cds.cern.ch/record/2257755
https://cds.cern.ch/record/2669540
https://doi.org/10.5281/zenodo.3937454
https://doi.org/10.5281/zenodo.3937454
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.5281/zenodo.2641996
https://doi.org/10.5281/zenodo.2641996
http://cms-sw.github.io/
https://doi.org/10.1016/S0168-9002(03)00541-2
https://doi.org/10.1016/S0168-9002(03)00541-2
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
http://arxiv.org/abs/2105.%2001796
http://arxiv.org/abs/2101.06428
https://www.github.com/onnx
https://autodiff.github.io/


Computing and Software for Big Science             (2022) 6:8 	

1 3

Page 23 of 23      8 

	54.	 Nickolls J et al (2008) Scalable parallel programming with CUDA: 
is CUDA the parallel programming model that application devel-
opers have been waiting for? Queue 6(2):40–53. https://​doi.​org/​
10.​1145/​13654​90.​13655​00

	55.	 SYCL: C++ single-source heterogeneous pro-gramming for 
OpenCL. https://​www.​khron​os.​org/​sycl/. Accessed 02 Mar 2021

	56.	 ATLAS Collaboration (2005) ATLAS computing: technical 
design report. Technical report. Geneva: CERN. http://​cds.​cern.​
ch/​record/​ 837738

	57.	 CMS Collaboration (2005) CMS: the computing project. Techni-
cal design report. Technical report. Geneva: CERN. http://​cds.​
cern.​ch/​record/​838359

	58.	 ISO/IEC 14882:2017 (2017) Programming languages - C++. 
Standard. International Organization for Standardization, Geneva. 
https://​www.​iso.​org/​stand​ard/​68564.​html. Accessed 17 May 2021

	59.	 Guennebaud G, Jacob B et al (2010) Eigen v3. http://​eigen.​tuxfa​
mily.​org

	60.	 Boost. https://​www.​boost.​org. Accessed 02 Mar 2021
	61.	 CMake. https://​cmake.​org. Accessed 02 Mar 2021
	62.	 Cornelissen T et al (2008) The new ATLAS track reconstruction 

(NEWT). J Phys Conf Ser 119:3. https://​doi.​org/​10.​1088/​1742-​
6596/​119/3/​032014

	63.	 ACTS on Github. https://​github.​com/​acts-​ proje​ct/​acts. Accessed 
05 Apr 2021

	64.	 Edmonds K et  al (2008) The fast ATLAS track simulation 
(FATRAS). Technical report ATL-SOFTPUB- 2008-001. ATL-
COM-SOFT-2008-002. Geneva: CERN. https://​cds.​cern.​ch/​
record/​10919​69

	65.	 Brun R, Rademakers F (1997) ROOT: an object oriented data 
analysis framework. In: Werlen M, Perret-Gallix D (eds) Nuclear 
instruments and Methods A 389, pp 81-86. https://​doi.​org/​10.​
1016/​S0168-​9002(97)​00048-X

	66.	 Semantic versioning. https://​semver.​org/. Accessed 17 May 2021
	67.	 Mozilla Public License Version 2. https://​www.​mozil​la.​org/​en-​

US/​MPL/2.​0/. Accessed 02 Mar 2021
	68.	 clang-format. https://​clang.​llvm.​org/​docs/​Clang​Format.​html. 

Accessed 14 June 2021
	69.	 The LLVM compiler infrastructure. https://​www.​llvm.​org. 

Accessed 14 June 2021
	70.	 GEANT4 Collaboration (2003) GEANT4: a simulation toolkit. 

Nucl Instrum Methods A 506:250–303. https://​doi.​org/​10.​1016/​
S0168-​9002(03)​01368-8

	71.	 Petrič M et al (2017) Detector simulations with DD4hep. J Phys 
Conf Ser. https://​doi.​org/​10.​1088/​1742-​6596/​898/4/​042015

	72.	 Tsulaia V, Boudreau J (2004) The GeoModel Toolkit for detector 
description. https://​indico.​cern.​ch/​event/0/​contr​ibuti​ons/​12941​52/. 
CHEP 2004 (Interlaken)

	73.	 Myrheim J, Bugge L (1979) A fast Runge-Kutta method for fitting 
tracks in a magnetic field. Nucl Instrum Methods 160(1):43–48. 
https://​doi.​org/​10.​1016/​0029-​554X(79)​90163-0

	74.	 Lund E et al (2009) Track parameter propagation through the 
application of a new adaptive Runge-Kutta-Nyström method in 
the ATLAS experiment. In: JINST 4: P04001. https://​doi.​org/​10.​
1088/​1748-​0221/4/​04/​P04001

	75.	 Rauch HE, Tung F, Striebel CT (1965) Maximum likelihood esti-
mates of linear dynamic systems. AIAA J 3(8):1445–1450. https://​
doi.​org/​10.​2514/3.​3166

	76.	 Billoir P (1989) Progressive track recognition with a Kalman-like 
fitting procedure. Comput Phys Commun 57(1):390–394. https://​
doi.​org/​10.​1016/​0010-​4655(89)​90249-X

	77.	 Billoir P, Qian S (1990) Simultaneous pattern recognition and 
track fitting by the Kalman filtering method. Nucl Instrum Meth-
ods Phys Res A 294(1):219–228. https://​doi.​org/​10.​1016/​0168-​
9002(90)​91835-Y

	78.	 Mankel R (1997) A concurrent track evolution algorithm for 
pattern recognition in the HERA-B main tracking system. Nucl 
Instrum Methods Phys Res A 395(2):169–184. https://​doi.​org/​10.​
1016/​S0168-​9002(97)​00705-5

	79.	 ATLAS Collaboration (2019) Development of ATLAS primary 
vertex reconstruction for LHC Run 3. Technical report. ATL-
PHYS-PUB-2019-015. CERN, Geneva. https://​cds.​cern.​ch/​record/​
26703​80

	80.	 Bickel DR, Frühwirth R (2006) On a fast, robust estimator of the 
mode: comparisons to other robust estimators with applications. 
Comput Stat Data Anal 50(12):3500–3530. https://​doi.​org/​10.​
1016/j.​csda.​2005.​07.​011

	81.	 Billoir P, Qian S (1992) Fast vertex fitting with a local parametri-
zation of tracks. Nucl Instrum Methods Phys Res A 311(1):139–
150. https://​doi.​org/​10.​1016/​0168-​9002(92)​90859-3

	82.	 Piacquadio G (2010) Identification of b-jets and investigation of 
the discovery potential of a Higgs boson in the WH → lvbb̄ chan-
nel with the ATLAS experiment. PhD thesis. Freiburg U. https://​
cds.​cern.​ch/​record/​12437​71

	83.	 ATLAS Collaboration (2020) Technical design report: a high-
granularity timing detector for the ATLAS phase-II upgrade. 
Technical report. CERN-LHCC-2020-007; ATLAS-TDR-031. 
Geneva: CERN. https://​cds.​cern.​ch/​record/​27198​55. Accessed 
24 June 2021

	84.	 SuperKEKB Collaboration (2018) SuperKEKB collider. Nucl 
Instrum Methods A 907: 188-199. https://​doi.​org/​10.​1016/j.​nima.​
2018.​08.​017. arXiv:​ 1809.​01958 [physics.acc-ph]

	85.	 Belle II Tracking Group Collaboration (2021) Track finding at 
Belle II. Comput Phys Commun 259:107610. https://​doi.​org/​10.​
1016/j.​cpc.​2020.​107610. arXiv:​ 2003.​12466 [physics.ins-det]

	86.	 Allaire C et al (2021) OpenDataDetector. Version v1. https://​doi.​
org/​10.​5281/​zenodo.​46744​01. Accessed 24 June 2021

	87.	 CMS Collaboration (2014) Description and performance of track 
and primary-vertex reconstruction with the CMS tracker. JINST 
9(10):P10009. https://​doi.​org/​10.​1088/​1748-​0221/9/​10/​P10009

	88.	 Borissov G et al (2015) ATLAS strategy for primary vertex recon-
struction during Run-2 of the LHC. J Phys Conf Ser. https://​doi.​
org/​10.​1088/​1742-​6596/​664/7/​072041

	89.	 Sjöstrand T, Mrenna S, Skands P (2008) A brief introduction to 
PYTHIA 8.1. Comput Phys Commun 178(11):852–867. https://​
doi.​org/​10.​1016/j.​cpc.​2008.​01.​036

	90.	 Sjöstrand T, Mrenna S, Skands P (2006) PYTHIA 6.4 physics 
and manual. J High Energy Phys 05:026. https://​doi.​org/​10.​1088/​
1126-​6708/​2006/​05/​026

	91.	 NERSC Cori system specification. https://​docs.​nersc.​gov/​syste​ms/​
cori/#​system-​speci​ficat​ion. Accessed 02 Apr 2021

	92.	 Intel VTune Profiler. https://​softw​are.​intel.​com/​conte​nt/​www/​us/​
en/​devel​op/​tools/​vtune-​profi​ler.​html. Accessed 17 May 2021

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://www.khronos.org/sycl/
http://cds.cern.ch/record/%20837738
http://cds.cern.ch/record/%20837738
http://cds.cern.ch/record/838359
http://cds.cern.ch/record/838359
https://www.iso.org/standard/68564.html
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://www.boost.org
https://cmake.org
https://doi.org/10.1088/1742-6596/119/3/032014
https://doi.org/10.1088/1742-6596/119/3/032014
https://github.com/acts-%20project/acts
https://cds.cern.ch/record/1091969
https://cds.cern.ch/record/1091969
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://semver.org/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://clang.llvm.org/docs/ClangFormat.html
https://www.llvm.org
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1088/1742-6596/898/4/042015
https://indico.cern.ch/event/0/contributions/1294152/
https://doi.org/10.1016/0029-554X(79)90163-0
https://doi.org/10.1088/1748-0221/4/04/P04001
https://doi.org/10.1088/1748-0221/4/04/P04001
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166
https://doi.org/10.1016/0010-4655(89)90249-X
https://doi.org/10.1016/0010-4655(89)90249-X
https://doi.org/10.1016/0168-9002(90)91835-Y
https://doi.org/10.1016/0168-9002(90)91835-Y
https://doi.org/10.1016/S0168-9002(97)00705-5
https://doi.org/10.1016/S0168-9002(97)00705-5
https://cds.cern.ch/record/2670380
https://cds.cern.ch/record/2670380
https://doi.org/10.1016/j.csda.2005.07.011
https://doi.org/10.1016/j.csda.2005.07.011
https://doi.org/10.1016/0168-9002(92)90859-3
https://cds.cern.ch/record/1243771
https://cds.cern.ch/record/1243771
https://cds.cern.ch/record/2719855
https://doi.org/10.1016/j.nima.2018.08.017
https://doi.org/10.1016/j.nima.2018.08.017
http://arxiv.org/abs/1809.01958
https://doi.org/10.1016/j.cpc.2020.107610
https://doi.org/10.1016/j.cpc.2020.107610
http://arxiv.org/abs/2003.12466
https://doi.org/10.5281/zenodo.4674401
https://doi.org/10.5281/zenodo.4674401
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1088/1742-6596/664/7/072041
https://doi.org/10.1088/1742-6596/664/7/072041
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://docs.nersc.gov/systems/cori/#system-specification
https://docs.nersc.gov/systems/cori/#system-specification
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

	A Common Tracking Software Project
	Abstract
	Introduction
	Conceptual Design
	Concurrent Code Execution
	Contextual Data Handling
	Research and Development projects

	Technical Implementation
	Basic Technology Choices
	Code Organization
	Core Components
	Configuration, State, and Context
	Event Data Model
	Geometry
	Layer Geometry and Plugin Mechanism for Detector Elements
	Surface and Volume-Based Material

	Propagator
	Magnetic Field Access

	Track Seed Finder
	Kalman Filter
	Vertexing

	Applications and Performance
	Selected Applications
	Examples of a Track and Vertex Reconstruction Chain for the LHC
	Track and Vertex Reconstruction Performance
	Track Reconstruction Efficiency and Fake and Duplicate Rates
	Track Parameter Resolution
	Primary Vertex Reconstruction Efficiency

	CPU Performance
	CPU Utilization
	Timing Performance


	Experience
	Conclusion
	Acknowledgements 
	References




