
Vol.:(0123456789)1 3

Computing and Software for Big Science (2022) 6:8
https://doi.org/10.1007/s41781-021-00078-8

ORIGINAL ARTICLE

A Common Tracking Software Project

Xiaocong Ai3 · Corentin Allaire5 · Noemi Calace5 · Angéla Czirkos1 · Markus Elsing5 · Irina Ene8 · Ralf Farkas11 ·
Louis‑Guillaume Gagnon8 · Rocky Garg4 · Paul Gessinger5 · Hadrien Grasland6 · Heather M. Gray8,14 ·
Christian Gumpert1 · Julia Hrdinka1 · Benjamin Huth15 · Moritz Kiehn5 · Fabian Klimpel5,16 · Bernadette Kolbinger5 ·
Attila Krasznahorkay5 · Robert Langenberg10 · Charles Leggett14 · Georgiana Mania3,12 · Edward Moyse10 ·
Joana Niermann5,13 · Joseph D. Osborn9 · David Rousseau6 · Andreas Salzburger5  · Bastian Schlag2,5 ·
Lauren Tompkins4 · Tomohiro Yamazaki8 · Beomki Yeo8 · Jin Zhang7

Received: 23 June 2021 / Accepted: 13 December 2021
© The Author(s) 2022

Abstract
The reconstruction of the trajectories of charged particles, or track reconstruction, is a key computational challenge for par-
ticle and nuclear physics experiments. While the tuning of track reconstruction algorithms can depend strongly on details of
the detector geometry, the algorithms currently in use by experiments share many common features. At the same time, the
intense environment of the High-Luminosity LHC accelerator and other future experiments is expected to put even greater
computational stress on track reconstruction software, motivating the development of more performant algorithms. We pre-
sent here A Common Tracking Software (ACTS) toolkit, which draws on the experience with track reconstruction algorithms
in the ATLAS experiment and presents them in an experiment-independent and framework-independent toolkit. It provides
a set of high-level track reconstruction tools which are agnostic to the details of the detection technologies and magnetic
field configuration and tested for strict thread-safety to support multi-threaded event processing. We discuss the conceptual
design and technical implementation of ACTS, selected applications and performance of ACTS, and the lessons learned.

Keywords  Track reconstruction · Software · Pattern recognition · Vertex reconstruction · Collider physics · Concurrent
event reconstruction

 *	 Andreas Salzburger
	 andreas.salzburger@cern.ch

1	 Eötvös Loránd University, Budapest 1053, Hungary
2	 Institut für Physik, Johannes Gutenberg-Universität Mainz,

55128 Mainz, Germany
3	 Deutsches Elektronen Synchrotron, 22607 Hamburg,

Germany
4	 Stanford University, Stanford, CA 94305, USA
5	 CERN, 1211 Geneva, Switzerland
6	 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay,

France
7	 Institute of High Energy Physics, Chinese Academy

of Sciences, Beijing 100 039, China

8	 Department of Physics, University of California, Berkeley,
CA 94720, USA

9	 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
10	 University of Massachussets, Amherst, MA 01003, USA
11	 Universität Bonn, 53012 Bonn, Germany
12	 Universität Hamburg, FB Informatik, 20148 Hamburg,

Germany
13	 Georg-August-Universität Göttingen, 37073 Göttingen,

Germany
14	 Lawrence Berkeley National Laboratory, Berkeley,

CA 94720, USA
15	 Universität Regensburg, 93053 Regensburg, Germany
16	 Technische Universität München, 80333 München, Germany

http://orcid.org/0000-0001-6004-3510
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00078-8&domain=pdf

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 2 of 23

Introduction

Track reconstruction will become the most computation-
ally intensive component of event reconstruction, because
it scales combinatorially with increasing number of charged
particles. At proton–proton (pp) colliders such as the Large
Hadron Collider (LHC), the increasing multiplicity is usu-
ally due to an increase in the simultaneous pp interactions
per event, or pile-up ( � ). For heavy-ion collisions, on the
other hand, the particle multiplicity is primarily determined
by the centrality of the event, which depends on the number
of nucleon participants in each collision. For most tracking
algorithms, the execution time scales approximately quad-
ratically with the charged particle multiplicity.

In the general-purpose detector at the LHC, ATLAS [1],
for example, there are currently an average of approxi-
mately 500 charged particles with sufficient momentum to
be reconstructed within the detector acceptance. However,
the upgrade of the LHC, the High-Luminosity LHC (HL-
LHC) [2], which is expected to begin data-taking in 2027
will increase the instantaneous luminosity by a factor of five.
The higher luminosity will result in an increase of the pile-
up from the current average of 34 to 140–200 in ATLAS and
the second general-purpose detector at the LHC, CMS [3].
The acceptance of the upgraded detectors will approxi-
mately double and additional detector layers will be added
increasing the number of read-out channels. This means that
there will be an average of 4000 charged particles within
the upgraded detector acceptance and current minimum
momentum requirements 1. The rates at which the detectors
are read-out will increase by an order of magnitude. In total,
there are expected to be approximately 300,000 individual
detector measurements in each event. Furthermore, addi-
tional funding for computing resources is expected to be lim-
ited in the HL-LHC era [4, 5]. Figure 1 shows that the CPU
resources needed for event reconstruction are expected to
exceed the available computing budget by at least a factor of
two. Future pp colliders, such as the hadron–hadron option
for the Future Circular Collider (FCC-hh), are anticipated
to have an even larger number of up to 1000 simultaneous
pp collisions [6].

Future collider-based nuclear physics experiments will
accumulate several thousands of charged particles from
heavy-ion collisions that occur both in the nominal inter-
action region and farther down the beam pipe. This leads
to high occupancy and also out-of-time pile-up that creates

a challenging track reconstruction environment, similar to
expectations for the HL-LHC.

Historically, particle and nuclear physics have relied on
Moore’s Law [8], which is the observation that the number
of transistors on an integrated circuit approximately dou-
bles every 2 years. However, in the last decade, the current
processor technologies have become limited in terms of the
clock speeds that can be obtained due to the power density.
Therefore, recent increases in speed have been achieved by
adding processing cores instead of increasing the speed of
individual cores. Further throughput increases are expected
to be achieved through the use of different computing archi-
tectures such as Graphics Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs), or integrated System
on a Chip (SoC) circuits. See Ref. [9] for a recent discussion
about the evolution of these technologies. Exploiting these
architectures demands increasingly parallelized code and
changes to programming paradigms. In addition, the rapid
advances in the fields of artificial intelligence and machine
learning have resulted in a wide range of new ideas for track-
ing algorithms. These include cellular automata [10], graph
neural networks [11], and similarity hashing [12] amongst
many others. While no algorithm has yet emerged to dis-
place existing track reconstruction methods, it is still early
in the development cycle for such algorithms and the field of
machine learning is undergoing rapid evolution.

During event processing, the raw signals from the detec-
tors are processed to obtain the reconstructed objects used
for physics analysis. Using information from dedicated

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

0

10

20

30

40

50

60

70

80
=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - CPU

Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Fig. 1   Estimated CPU resources (in MHS06 [7]) needed for the
2020–2032 time frame for both data and simulation processing for the
ATLAS experiment. Three different scenarios considered by ATLAS
are shown ranging from the baseline to that in which the aggressive
R&D program is successful (blue points). The common scenario
agreed between the different experiments as a reference is shown with
red triangles. The black lines indicate the amount of CPU that can be
expected based on current budget models. From Ref. [5]

1  As the number of charged particles decreases rapidly with trans-
verse momentum, the transverse momentum requirement can be
raised to decrease the CPU time of track reconstruction algorithms.
However, this must be balanced by its impact on the physics program
of the experiment.

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 3 of 23  8

tracking detectors, sophisticated algorithms are used to
reconstruct the trajectories of charged particles from the
energy they deposit in the detector elements, including solid-
state detectors with segmented read-out, gas tubes, or other
tracking devices. Such track reconstruction algorithms can
be considered to be part of a more general class of pattern
recognition algorithms. Track reconstruction algorithms
have been used in particle and nuclear physics experiments
for more than half a century.

Track reconstruction methods [13] can be categorized
as global and local methods, although the two categories
cannot always be strictly separated. Global methods find
trajectories using the entire detector’s measurement ensem-
ble, often through conformal mapping or transform meth-
ods, such as the Hough transform [14, 15]. Other global
approaches use neural networks [16] to find connected sets
of measurements. Local methods generate track seeds and
search for additional hits to complete them. Local methods
include the track road and track following methods such as
the Kalman filter (KF) [17–19].

A Common Tracking Software (ACTS) entered this rap-
idly evolving ecosystem in 2016. It began with a small team
at CERN and has since grown into an international collabo-
ration with approximately 15 regular contributors. ACTS has
its origins in the track reconstruction algorithms developed
for and extensively used by the ATLAS experiment [20].
ACTS is an attempt to develop community-driven track
reconstruction software, where community contributions
and extensions are explicitly encouraged. ACTS provides
algorithms for track reconstruction within a generic, frame-
work- and experiment-independent open-source software
toolkit [21–23]. ACTS includes data structures and algo-
rithms for performing track reconstruction in addition to a
tool for fast track simulation. The ACTS code is designed to
be inherently thread-safe to support parallel code execution,
and data structures are optimized for vectorization, which
will speed up linear algebra operations. The implementa-
tion is designed to be fully agnostic to detection technolo-
gies, detector design, and the event processing framework
to allow it to be used by a range of experiments. However,
tuning of the algorithms for specific detectors is required to
achieve the ultimate physics performance. Experiment-spe-
cific adaptions and tuning of the toolkit, including contextual
data such as detector conditions and alignment, are made
possible in ACTS through C++ compile-time specializa-
tions. In addition, ACTS is designed to be highly customiz-
able and extendable to provide an R&D platform for the
development and study of novel algorithms and techniques.

An early version of ACTS has been used to simulate
the dataset for the Tracking Machine Learning (TrackML)
challenge [24–26], which was performed in two stages to
invite collaborators from within and external to particle
physics to stimulate the development of new ideas for track

reconstruction. The dataset produced for this challenge has
subsequently been used to explore a range of novel track
reconstruction algorithms [12, 27–30]. We use this data-
set to demonstrate the current performance of the ACTS
algorithms, although no rigorous performance tuning has
been done. This document describes the concepts, design,
and implementation of the ACTS toolkit, and does not
attempt to quantify its ultimate performance on any spe-
cific detector setup. ACTS has been explored for a range of
different detectors including Belle II [31], CEPC [32, 33],
sPHENIX [34–36], PANDA [37, 38], FASER [39], and the
future ATLAS Inner Tracking system (ITk) [40–42] for the
HL-LHC data-taking era.

The concepts, design, and implementation of the ACTS
project are presented here. For further details of the imple-
mentation, see the current release, Ref. [43]. “Conceptual
Design” discusses the concepts and design of the ACTS
software. The technical implementation is discussed in
“Technical Implementation”. Selected applications and early
performance studies of tracking and vertexing are discussed
in “Applications and Performance”. “Experience” highlights
some lessons learned from the experience. The conclusion
and a brief outlook are covered in “Conclusion”.

Conceptual Design

The ACTS project was initiated to serve three primary goals.
First, to preserve and advance the well-tested code bases
from the LHC experiments, while enabling preparation for
the HL-LHC era and other future particle and nuclear phys-
ics experiments. This requires a state-of-the-art software
development environment that allows the contributors to
work with modern programming language standards and
development workflows. Second, to provide an R&D test bed
for algorithmic research (including machine learning tech-
niques) and portability to accelerated hardware. Third, to
ultimately provide a mature track reconstruction toolkit, that
can be used as a platform for rapid development of tracking
applications for future tracking detectors.

Software development for particle and nuclear phys-
ics experiments is subject to a number of constraints: an
event processing framework steers the execution of algo-
rithmic blocks, and a well-defined event data model (EDM)
holds the event information and defines the communica-
tion between different components. Examples of event pro-
cessing frameworks include Gaudi [44] used by the LHCb
experiment [45], the Athena [46] extension of Gaudi for the
ATLAS experiment, CMSSW [47] for the CMS experiment,
and the ROOT [48] event processing loop. In recent years,
many of these processing frameworks have been adapted
and extended to enable multi-processing or multi-threaded
workflows to accommodate different types of hardware

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 4 of 23

and optimize the usage of memory and computing cores.
The details of the implementation of such workflows differ
between the various frameworks and experiments, but the
overall concepts are the same. If a single data slice, tradi-
tionally called an event, needs to be processed by multiple
threads, the function calls need to be independent of the cur-
rent data slice or be provided with the appropriate context, as
discussed in “Concurrent Code Execution”. In this case, the
method call is fully controlled and defined by the input and
output data, and the algorithmic module is a stateless engine
that has no memory of previous calls, configurations, and
operations. Despite the complex steering and brokering of
the processing, the actual work load is performed by smaller
modules or tools, which are not necessarily controlled by the
framework’s public interface. ACTS aims to provide such
a toolkit for track and vertex reconstruction, together with
a high-level EDM definition that can be directly included
in experiment-specific applications, extended by adding
additional functionality, and rearranged and adapted to the
specific needs of an experiment.

To prepare the ACTS toolkit for such general use, its
design has the following central concepts:

–	 Minimal dependency of the core components on external
software packages

–	 Abstraction of the EDM and geometry description from
the specific details of any experiment

–	 General mathematical formulations of algorithms inde-
pendent of specific detector geometry, magnetic field, or
detector technology

–	 A customizable connection to the algorithm configura-
tion

–	 Transparent import and handling of experiment-specific
contextual conditional data, such as detector calibration
and detector alignment

–	 Facilitation of the integration of core functionality
typically governed by the event processing framework,
e.g., message logging

–	 A plugin mechanism for extending the toolkit with exter-
nal software packages.

Several of the key concepts of the design of ACTS are
described in further detail in the following. The implemen-
tation is discussed in “Technical Implementation”.

Concurrent Code Execution

ACTS is designed to accommodate the heterogeneous com-
puting landscape with parallel code execution paths. There-
fore, all algorithmic modules can be called in parallel while
processing an event and between the processing of multi-
ple events without interference, as illustrated in Fig. 2. The
contextual and conditional data are handled transparently as
described in “Contextual Data Handling”. To avoid restrict-
ing the caller code to any predefined pattern, all ACTS
modules are designed, such that each function call has to be
fully controlled by the data input and output flow, and back
channel communication to caller functions is forbidden2. If

Thread 1Thread 1 Alg. 2Alg. 2 Alg. 1Alg. 1 Alg. 2Alg. 2 Alg. 4Alg. 4

Thread 2Thread 2 Alg. 1Alg. 1 Alg. 3Alg. 3 Alg. 4Alg. 4 Alg. 3Alg. 3 Alg. 1Alg. 1

ACTS Comp. AACTS Comp. A ACTS Comp. AACTS Comp. A

ACTS Comp. AACTS Comp. A

ACTS Comp. BACTS Comp. B

ACTS Comp. BACTS Comp. B

Event AEvent A

Event BEvent B

Event CEvent C

Fig. 2   Illustration of multi-threaded event processing with the
sequence proceeding from left to right, in the context of an experi-
mental software framework. Two threads execute different experi-
ment-specific algorithms, which are illustrated by different shapes.
The algorithms are distributed across threads by a scheduler. Execu-
tion occurs out of order for the three events indicated by different

colors. Data flow integrity, drawn as arrows connecting algorithms,
is respected. ACTS components can be used inside the algorithms,
shown as loops attached to individual algorithms instances. They
can optionally increase concurrency by running on parts of the event
simultaneously, as shown for algorithm 4

2  In C++, this is enforced by restricting methods to follow a const-
correct signature and by forbidding mutable data members.

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 5 of 23  8

caching is required, e.g., for performance reasons, the cache
must be provided as part of the input data, as discussed in
“Technical Implementation”. The correct and reproducible
behavior of the code in sequential and concurrent code exe-
cution paths is tested within unit and integration test suites.
These tests include checks for identical results when running
in single-threaded and multi-threaded mode. More advanced
examples test the correct behavior with multiple alignment
or magnetic field conditions during a single execution run.

The actual code execution pattern, e.g., event parallelism, or
intra-event parallelism at different stages of track reconstruc-
tion, is the responsibility of the caller application and thus, no
technology, language, nor dedicated library for parallel code
execution is provided in the ACTS core modules. However,
example applications in the repository rely on the Intel Thread-
ing Building Blocks (TBB) [49] multi-threading library to
demonstrate how concurrent execution can be implemented.
ACTS allows core modules to be wrapped in callable kernel
structures that can be used on accelerators with dedicated tech-
nology back ends. First demonstrators of such an approach have
been successfully deployed [50]; however, further development
and simplification of the code base is needed for ACTS to run
efficiently on different types of computing hardware. This is
one of the dedicated R&D lines of the project as discussed in
“Research and Development Projects”.

Contextual Data Handling

A general track reconstruction toolkit that serves different
experiments must be able to handle a contextual experimen-
tal environment. Detectors may have temporary or permanent
imperfections, suffer from changing alignment and data-taking
conditions, and, in general, operate in a time-dependent manner.
Track reconstruction uses high-precision measurements and
every effect must be accounted for to achieve optimal results.
Detector conditions, on the other hand, are one of the most spe-
cific aspects of any experimental setup, and a general solution

or implementation for such a diverse problem would be very
challenging. Therefore, a transparent handling schema for all
contextual data has been applied throughout the ACTS code
base: a set of contextual objects, defined and implemented in
the experiment’s software stack, are handed through the entire
call structure of ACTS (see Fig. 3). This ensures that each
geometry call that relies on detector information is aware of the
geometry context of that particular call and allows the correct
detector alignment to be applied within that specific call con-
text. Other conditional data, such as the magnetic field status or
detector calibration data, are implemented in the same way. In
all cases, the caller code can be assured that contextuality will
be respected with minimal computational overhead, because
the context information is unpacked and correctly interpreted.
The choice about whether the contextual object carries either
a parameter to identify the context to be applied or the full
contextual data is left to the implementation within a particular
experiment.

See “Selected Applications” for details of a concrete
implementation of a contextual environment.

Research and Development projects

Recent technology advances in both hardware and software
have transformed the computing landscape in the scientific
and private sector. Machine learning is a rapidly growing
field, and hardware-based acceleration becomes increas-
ingly prominent due to the growing use of high-performance
computing centers and limitations in increases in proces-
sor speed. While both areas have already been explored
in particle and nuclear physics, additional R&D is needed
to fully exploit these advances in future data processing,
particularly in the domain of track and vertex reconstruc-
tion. The tracking machine learning challenge has dem-
onstrated that machine learning algorithms can reach the
same order of magnitude in both physics performance and
execution speed compared to the current track reconstruction

Fig. 3   Illustration of contextual
geometry handling. At job ini-
tialization time, only a nominal
(or initially aligned) version of
the ACTS geometry is built.
Three threads execute on events
in parallel. All threads request
details of the ACTS geometry
by providing their event context,
which fully defines the align-
ment of the detector in the cur-
rent call context. The method to
perform the alignment can be
experiment-specific

parallel event loop

Actor Initialization
Detector construction
(Detector software) ACTS Geometry

Thread 0 Thread 1 Thread 2

Alg. A
Event 1

call procedure(event context 1)

return result

Alg. A
Event 2

call procedure(event context 2)

return result

Alg. A
Event 3

call procedure(event context 3)

return result

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 6 of 23

algorithms. End-to-end solutions based on machine learning
are expected to require significant development time. How-
ever, certain aspects of track reconstruction such as track
classification or data segmentation [51], have already shown
promising results. Such smaller components, however, need
to be tested in a realistic data flow. A key element in the
design of ACTS is to provide a playground to facilitate pro-
totyping, development, and testing of such new ideas. The
plugin mechanism of ACTS allows the core track recon-
struction code to be coupled with external libraries from
the machine learning and data science sectors, or with code
with different language backends, which is needed for code
execution on accelerators. The ONNX [52] library for the
deployment of machine learning-based tracking solutions
and the autodiff [53] library for automated compiler-
based differentiation have both been demonstrated within
ACTS. Furthermore, CUDA [54] and SYCL [55] have been
integrated for GPU-based seed finding algorithms.

Technical Implementation

Basic Technology Choices

ACTS targets modern many-core, general-purpose CPUs,
which are widely available and the default computing archi-
tecture currently used by the LHC experiments [56, 57] and
other experiments in particle and nuclear physics. Both x86
and ARM architectures have been demonstrated to work with
ACTS. All recent CPUs have vector units and significant per-
formance improvements can be obtained from vectorizable
code. While hardware accelerators such as GPUs and FPGAs
are not necessarily part of most baseline architectures, they are
actively explored by the ACTS developers and the larger par-
ticle and nuclear physics community, particularly for online
software and when looking ahead towards the HL-LHC.

ACTS is implemented in C++ 17 [58], which is widely
used in the particle and nuclear physics community, and thus
can be easily integrated with existing software. As a compiled
programming language with minimal implicit runtime facili-
ties and a high degree of low-level hardware control, C++
enables achieving excellent execution performance. How-
ever, it is difficult to learn and use correctly, particularly with
regards to memory management. This is mitigated through
guidelines and implementation choices in ACTS, which
include strict ownership handling via movable types and
value-like semantics as well as the adoption of best practices
such as unit tests and continuous integration, which ensure
code quality.

The ACTS code is designed to have minimal dependen-
cies on external packages. Only two third-party libraries are
required: Eigen [59] for linear algebra and Boost [60] for
unit testing, file system handling, and a few key containers.

In addition, CMake [61] is used both as a dependency man-
agement tool and as the build system.

The general strategy for algorithmic development in
ACTS draws on the experience of previous particle and
nuclear physics software efforts and, in particular, the exist-
ing ATLAS offline tracking software [62]. A key choice is to
favor small compile-time interfaces and templates over vir-
tual interfaces for better performance and greater implemen-
tation flexibility. ACTS favors data-oriented programming
over object-oriented programming, which means that the
communication between different parts of the code occurs
through sharing common data structures rather than prede-
fined interfaces.

Code Organization

The ACTS code [43] is a single open-source repository
hosted on GitHub [63]. A single repository allows for the
easy development and integration of components and avoids
version mismatches and accidental incompatibilities. The
test and validation code provides examples of end-to-end
tests and allows development with realistic reconstruction
chains. No additional client application is necessary. The use
of GitHub facilitates collaboration independent of affiliation.
Key components within the repository are the core library,
the plugins, the fast tracking detector simulation, Fatras,
based on the original ATLAS fast track simulation [64], and
the test and validation code. Figure 4 illustrates how ACTS
can be integrated into an experimental framework.

The core library implements the basic tools and key algo-
rithms with minimal external dependencies. The plugins
directory contains core-like functionality that requires
additional external dependencies. The source code of the
core library and the plugins extensions are located in the
Core and Plugins directories. Examples available in
the plugins directory include geometry tools based on the
external TGeo [65] package from the ROOT toolkit, which
is currently used in particle and nuclear physics experiments

Experiment ExperimentACTS

D
et
ec
to
r

A
na

ly
si
s

Tracking,
Vertexing,

...

Context objects

Source links

Measurements

Tracks

Vertices

Fig. 4   Example of the integration of ACTS into an experiment’s
software framework. The experiment- and detector-specific code
(green) is expected to handle low-level data preparation and provide
SourceLinks and Measurements as input to ACTS algorithms.
ACTS provides tracks and vertices as output for further experiment-
specific reconstruction and analysis

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 7 of 23  8

to describe detector geometries, and CUDA or SYCL which
enables code to run on GPUs.

The source code of the Fatras simulation is not located
within the Core folder, because it is not required for recon-
struction. It can be built on demand. Fatras makes heavy use
of the core functionality and, therefore, can be maintained
more easily as part of the same repository, e.g., to adapt to
core interface changes.

Releases of ACTS follow semantic versioning [66], where
a subset of the interface is considered when determining the
major version. The software is provided under the Mozilla
Public License, v. 2.0 (MPLv2) [67]. Common code format-
ting is ensured by requiring submitted code to the repository
to pass a formatting check using the clang-format [68]
LLVM [69] extension.

Core Components

The core library of ACTS is organized into modules and each
module groups tools and algorithms with similar functional-
ity. An overview of key modules is shown in Fig. 5. The com-
munication between algorithms occurs via common event data
structures defined in the EventData module as described
in “Event Data Model”. The Geometry module handles the
tracking geometry, which is the logical and geometric group-
ing of detector surfaces into layers and volumes. The tracking
geometry uses the Surfaces component, which implements
different surfaces for detectors and boundaries. The related
Material component contains tools to describe surface-
and volume-based material and the algorithms to create such
a geometrical mapping. See “Geometry” for further details
about both modules.

The Propagator module provides tools to propagate
particle states along their trajectories in different magnetic

fields (see “Propagator”). The TrackFinding and
TrackFitting modules use both the Geometry and
the Propagator modules. The Vertexing module is
largely standalone, but relies on output from other modules
as input and the propagation infrastructure. The Seeding
module contains a geometry independent seeding algo-
rithm that acts purely on global three-dimensional points.

Configuration, State, and Context

class Algorithm {
public:

// Necessary and sufficient
// configuration variables.
struct Config {

double aValue = 0.25;
std::string name = "something";

};

// Construct algorithm from its configuration.
Algorithm(const Config& cfg) : m_cfg(cfg) {}

private:
Config m_cfg;
// ... e.g. values derived from
// the configuration

};

Listing 1: Example of an algorithm implementation
with a nested configuration type. The configuration
type allows settings with default values to be addressed
by name. Plain types mean that no explicit Config con-
structor is required. This pattern is used throughout the
code base to support configuration and construction.
This listing also demonstrates the naming convention
for private member variables and the CamelCase cod-
ing style.

Fig. 5   Overview of selected
components in the ACTS
repository and their interactions.
The components are categorized
into modules, such as geometry,
propagation, or event data. A
non-exhaustive number of rela-
tionships where one component
“uses” other components in dif-
ferent modules are indicated by
arrows. The stepper components
are connected to the magnetic
field module, because they are
used to retrieve the magnetic
field information

Magnetic field

Event data model

Propagation

Geometry

Fitting & Finding

ACTS

Utilities

Interpolated

Experiment-specific

Track parameters

Vertex parameters

EigenStepper Array-like Stepper

Actors & Aborters

Straight-line Stepper

Navigator

Material Sensitive elements

Simplified geometry

Seeding Tracks

Vertices

us
esuses

uses

uses
uses

uses

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 8 of 23

class StatefulAlgorithm {
public:

// Cached or intermediate values that
// persist between calls.
struct State {

double lastValue = 0.;
};

// `const` implementation since all mutable
// states are contained within the state object.
void doWork(State& state) const;

};

Listing 2: Example of a stateful algorithm implementa-
tion with a nested state type. All state information, i.e.
either cached or intermediate values, are contained in
the nested state type. The algorithm type itself remains
stateless and const-correct.

Components in ACTS are typically highly configurable. To
enable this flexibility, without being bound to any specific
configuration environment, patterns using a nested C++
structure are used. Listing 1 provides an example of such a
pattern, where a Config structure contains all configuration
parameters as members. The constructor of the outer type
takes an instance of the configuration structure as an argu-
ment, and runs its setup accordingly.

ACTS supports both inter- and intra-event parallelization
without expliciting implementing either. Instead, the explicit
state objects for potentially stateful algorithms must be pro-
vided by the user as demonstrated in listing 2. An example
of a stateful algorithm would be, e.g., a track finding algo-
rithm that uses information about previously found tracks
in the event (provided by the state) to prevent unnecessary
or duplicated track search. By creating these state objects
within their own framework, experiments must explicitly
decide how and at which levels execution is parallelized and
where synchronization might need to occur.

A similar problem exists for detector-related structures
including the geometry, magnetic field, or calibrations
that vary between events. During parallel execution, these
structures cannot be handled as global states. Similar to the
handling of the algorithm state, all algorithms that might
require varying context data take an explicit context object.
These objects are then passed through the full execution
chain and handled by the experiment-specific code where
necessary. An example of an application with contextual
data, changing the detector alignment, is demonstrated in
“CPU Utilization”.

Event Data Model

The event data model binds all modules together by provid-
ing shared data structures. The EDM is used to communicate
between different steps of the reconstruction chain. Thus, it
needs to be both generic enough to hold all possible event
data types, but also minimal enough to avoid overheads, as
it will be used extensively throughout the code base. Event
data consists of measurements, track parameters, and vertex
parameters, which can be represented as vectors.

The two different track parameter spaces in ACTS are
bound and free track parameters. Bound track parameters
describe a track bound to a surface. The surface can be a
real detector surface such as the planar surface of a sili-
con detector or a virtual surface, such as the straw surface
and the perigee 3 surface used to describe a track near an
anode wire in a gaseous tracking detector and a vertex,
respectively. The bound track parameters have six dimen-
sions and comprise of a two-dimensional position on the
local surface, two momentum direction angles (or angle-like
parameters), a curvature parameter, and time. The bound
parameters can only be defined with reference to a surface
and the interpretation of the two local position components
are surface-dependent. At the perigee surface, the bound
track parameters are

where the d0 and z0 represent the transverse and longitudinal
impact parameters, respectively. The remaining parameters
are the azimuthal angle � , the polar angle � , the charged
signed inverse momentum, and the time t. This parameteri-
zation exists for charged and neutral particles. In the latter
case, the inverse momentum representation is changed to
1/p. The time t is transparently respected in track propaga-
tion and potential measurement inclusion.

In contrast, free parameters require no reference surface
and use the same definition everywhere. Within ACTS, they
are described by the 3D position and direction vectors, time,
and a curvature parameter. Therefore, they are eight-dimen-
sional and are used throughout track propagation

and also referred to as free track parameters.
Measurements are treated as vectors in a sub-space of a

(bound) track parameter vector space. Measurements are
typically associated with a surface and only measure a subset
of the available track parameters; most often at least one

(1)� =

(
d0, z0,�, �,

q

p
, t

)
,

(2)� =

(
x, y, z, dx, dy, dz,

q

p
, t

)
,

3  The perigee refers to the point or surface of closest approach.

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 9 of 23  8

local position. Many track reconstruction methods, such as
the Kalman filter (see “Kalman Filter”), include a projection
from a subset of the track parameters to the measurement
space. For ACTS, the measurement space is assumed to
always be consistent with the bound track parameter space
defined by the surface. The inclusion of time information
directly in the track fit is a novel feature of the ACTS algo-
rithms. For example, a pixel detector measurement with time
information �i = (mx,my,mt) can be compared to the esti-
mated track parameterization �i = (lx, ly,�, �,

q

p
, t) on the

same surface i using a projection matrix �i to form a three
dimensional residual vector: �i = �i −�i�i . Time is treated
in the same way as the other track parameters.

Compile-time programming via template substitutions is
used to dispatch execution into highly optimized code paths
for each dimensional measurement type. A separate data-
structure provides an optimized collection of measurements.
This data-structure can also store a tree of track states, each
potentially containing a measurement and/or the estimated
track parameters.

The dedicated event data model used by the vertexing
components is designed to be as flexible as possible and the
input tracks can be of any user-defined type. This approach
facilitates experiment-specific integration while keeping
overhead minimal at the same time.

Geometry

The geometry description used for reconstruction is a sim-
plified version of the detailed detector description used in
Monte Carlo simulation programs such as Geant4 [70].
The description of the sensitive detectors (including mis-
alignment and other contextual information) needs to be
as precise as possible. However, several approximations to
the detector description for the non-sensitive detector ele-
ments are made. During reconstruction, the noise from the

detector material is accounted for either deterministically
or stochastically.

In ACTS, the reconstruction geometry is entirely built
from surface objects. Compound layer objects and volume
objects are based on the surface class. A volume shape is
built from the boundary surfaces. The boundary surfaces
are also referred to as portal surfaces as they connect the
volumes. Layers are defined by their bounding and contained
surfaces. The contained surfaces can either be declared sen-
sitive when they represent detection elements or be passive
material surfaces.

Navigation through the detector proceeds either using
portal surfaces that connect volumes with other volumes or
by performing a local search of layer surfaces after entering
a layer object through its bounding surfaces. All surfaces can
be propagated to, carry material, or refer to sensitive detector
elements, and are thus suitable for both reconstruction and
fast simulation.

Layer Geometry and Plugin Mechanism for Detector
Elements

Tracking detectors are frequently built from physical layer
structures that support the modules, the on-detector electron-
ics, power cabling and cooling units, and often feature stave
structures. The logical division into layer structures is used
in ACTS to restrict the local navigation to an area of interest
instead of attempting to navigate the full detector.

Each layer has a set of approach surfaces, as well as a
representative surface, which is a single surface represent-
ing the layer in a fast navigation search. The approach sur-
faces describe the boundary of the layer and are the entry
point into the local layer navigation. In track propagation,
the intersection of the approach surface is used for finding
possible surface candidates within the layer object that are
then tested for intersection with the trajectory. The different
types of surfaces are illustrated in Fig. 6.

(a) (b)

Approach

Representative Volume bounds

Sensitive Passive

Fig. 6   Illustration of the layer geometry for planar detection modules.
a Highly detailed geometry, in which both sensitive and passive ele-
ments are present. b Simplified version, where all passive elements
are discarded (grayed out). Instead, various virtual surface approxi-

mations of the detailed structure are shown and used in the modeling.
The representative surface is closest to the sensor locations, while
the approach surfaces form an envelope around them. A volume sur-
rounds the layer, which also features boundary surfaces

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 10 of 23

ACTS allows this generic geometry description to be sup-
plemented with experiment-specific information. Each sensi-
tive surface can have an associated object containing spe-
cific information of the particular experiment. For example,
this can be used to interface with an experiment’s geometry
library. In addition, ACTS ships with plugins which can be
used to translate a geometry from an existing representation,
such as DD4Hep [71], TGeo, or GeoModel [72].

Surface and Volume‑Based Material

In addition to defining the exact positions and shapes of
the measurement devices, the detector geometry description
must provide an adequate description of the detector mate-
rial. Because passive and active material is the main source
of uncertainty in track reconstruction, a precise description
of the amount, type, and location of the material in the detec-
tor volume is required. The passive material can be handled
as either deterministic changes to the trajectory estimate or
stochastic addition to the covariance matrix.

While a precise description is required for the simulation
of individual interactions of the particles with the detec-
tor material, it can be simplified for track reconstruction.
The material can usually be approximated as average mate-
rial mixtures, described by an effective amount of traversed
radiation length for evaluating the multiple scattering and
bremsstrahlung contributions, and an effective ionization
loss can be applied. Furthermore, small structures present in
the full simulation geometry can be merged into close-by
approximate material slabs. This simplification speeds up
the track reconstruction algorithms, because navigating and
propagating through a simplified geometry require fewer
CPU cycles, predominantly due to the reduction of surface
candidate intersections and fewer calls to the material inte-
gration calculations. The relative importance of accuracy
and speed must be optimized for each experimental setup.
ACTS deploys a highly configurable approach to this prob-
lem: every surface and every volume can carry an attached
material description, including the auxiliary layer surfaces
and volume boundary surfaces. Depending on the environ-
ment, corrections need to be applied during track propa-
gation as described in “Propagator”, which require a pre-
cise description of the material. Therefore, the dedicated
mapping algorithm in ACTS projects the detailed material
description onto a selected set of surfaces or into a selected
set of volumes. An example of a material mapping applica-
tion is discussed in “Applications and Performance”. The
material description on surfaces or within volumes can be
either homogeneous or binned, using the ACTS grid infra-
structure. When the propagation reaches a surface that car-
ries material, the appropriate material integration methods
will be called. Similarly, if the propagation proceeds within a
volume that carries a material description, the corresponding

extension for the transport equations become active and
query the volume material.

Propagator

A core module of ACTS is the propagation engine, which
carries out the task of transporting track parameters through
the detector. Minimum requirements for the propagator
include reliable navigation through all the detector com-
ponents and the mathematical transportation of the track
parameters and their associated covariance matrices. Addi-
tional actions can be performed during track parameter
transport in both track reconstruction and fast simulation. An
example of such an action is the intersection with additional
sensitive modules. This can be used to count the number
of missed sensitive detector element on a track, log several
parameters, or execute any particular action that can be per-
formed along a particle’s trajectory. The propagation engine
therefore consists of two components:

1.	 A Stepper module which performs the mathematical
transport through the magnetic field

2.	 A Navigator module which predicts the potential candi-
date surfaces in the detector geometry and regulates the
associated step size for the stepper.

The propagator is steered by a dedicated options object,
which is provided for each propagation call. It contains two

y

x

cell 1

cell 2

cell 3

cell 4

cell 5 cell 6

grid
points

Fig. 7   Illustration of the magnetic field cell implementation. A two-
dimensional field map in the xy-plane is shown. The colored circles
represent propagation steps where magnetic field lookup is per-
formed. Step locations that fall inside each lookup field cell are indi-
cated with the same color. Before crossing the boundary into the next
cell, each step reuses the previously retrieved field cell

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 11 of 23  8

lists of structures: a list of actors and a list of aborters. Both
lists can be extended by the client code at compile time and
are called after each propagation step and can contain sur-
face material interaction logic (as part of the actors), target
conditions, or restrictions on the maximum allowed path
length.
// Pre-Stepping: target setting
navigator.target(state);

// Propagation loop: stepping
while (/* step */){

// Perform a step & check the result
stepper.step(state);
navigator.status(state);
// Apply the actors
actionList(state, result);
// Check for abort condition
if (abortList(result, state)) break;
// Target after stepping
navigator.target(state);

}

Listing 3: Simplified listing of the propagation loop
showing the interplay of the Navigator, the Stepper, the
actors and the aborters. The state object holds the
cached track parameterization, while the actors collect
information in the result object, which in turn can be
interpreted together with the state object for eventual
abort conditions.

ACTS includes two steppers based on a fourth-order
Runge–Kutta–Nyström algorithm [73]. One has an array-
like math implementation and the other is based on the
Eigen math library. These steppers receive the mag-
netic field as an input. For the Eigen-based stepper, an

extension for propagation through non-vacuum material
based on the simultaneous track and error propagation
(STEP) algorithm [74] exists and is invoked in presence
of a volume material description. A straight-line stepper
also exists, which can be used in the absence of a magnetic
field. A purely helical stepper is not implemented, but both
Runge–Kutta–Nyström based steppers can provide helical
stepping behavior for a constant magnetic field. Listing 3
provides a simplified listing of the propagation loop showing
the interplay between the different components.

Magnetic Field Access

The magnetic field is accessed via a dedicated provider that
is passed to the stepper modules. The implementation of the
magnetic field (both in memory and in conceptual design)
can be changed and a few standard implementations are pro-
vided. An interpolated magnetic field map, which imple-
ments an internal caching mechanism, is also provided and
can be used to approximate any inhomogeneous magnetic
field by supplying suitable input. When following a particle
through the detector, calls to the magnetic field are often
made in short succession. Therefore, to optimize the lookup
or potential re-use of the magnetic field information, the
steppers access the field via a thread-local cache type. In the
implementation of the interpolated magnetic field map, this
cache contains the current field interpolation cell. A suc-
cessive call to the field interface either results in a renewed
interpolation if the call remains within the same field cell,
or the retrieval of a neighboring field cell. The field cell
concept is visualized in Fig. 7, where a particle trajectory is
shown in the xy-plane with the propagation step locations
color-coded according to their respective field cell.

Figure 8 shows the performance of the ACTS magnetic
field interpolation for different scenarios. A dynamically
calculated solenoidal field is shown as a baseline. From that
field, an interpolation grid is derived during initialization,
and its field lookup performance is measured for a number of
access patterns: a fixed point, random points, and a sequence
of points along a straight line. The last emulates the typical
access pattern of particle propagation. All interpolated field
query strategies are approximately three orders of magni-
tudes faster than the solenoidal field calculation. The impact
of the field cell cache is also shown. For the fixed point, the
caching results in significant performance improvements,
while for fully random points, it degrades the performance.
This is expected, because random point access will almost
always result in a cache miss, while for fixed point, a cache
hit is guaranteed. For the straight-line access pattern, the
cache again improves performance.

Fig. 8   Performance of the magnetic field lookup for a number of dif-
ferent scenarios. Results for the analytical solenoid field and the inter-
polated magnetic field map are shown. Field queries at a fixed point,
at a sequence of random points, and a sequence along a straight line
are measured. Performance with and without field interpolation cell
caching is shown

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 12 of 23

Track Seed Finder

Track seed finding algorithms are used as the first step in
track reconstruction to obtain a coarse estimation of the pos-
sible track candidates and their properties, which are then
used by track following algorithms. The current implemen-
tation of the track seed finder in ACTS creates triplets of
measurements, with the goal of identifying the triplet of
measurements corresponding to a single particle. In track
seed finding, the goal is to maximize the efficiency while
minimizing the number of seeds that do not correspond to a
particle, or fakes, and duplicates. Maximizing the efficiency
is the highest priority, because particles without a seed will
never be reconstructed as tracks, while fakes and duplicates
can be eliminated in subsequent steps of the track recon-
struction chain at the cost of execution time.

The ACTS track seed finding algorithm takes three-
dimensional measurements from specified detector compo-
nents as input, and applies selection criteria to prioritize
measurements which are more likely to have originated from
the same particle. These criteria must be optimized for a
particular detector geometry and play an important role in
determining the physics and technical performance of the
track seed finding algorithm. As track parameters derived
from triplets have limited resolution, approximations are
used in their estimation, including a homogeneous approxi-
mation of the magnetic field. Information about the detector
geometry is not required during execution, because the track
seed finder relies on global measurements.

The efficiency and computational performance of the
track seed finding algorithm depends on the number of
measurements and the event occupancy. The higher the
measurement occupancy, the higher the computational cost
of following all combinatorial paths and higher the num-
ber of fakes. This can be mitigated with tighter selection
criteria at the cost of lower efficiency. Moreover, higher
measurement occupancy results in a higher probability that
a fake measurement, instead of the real one, is assigned
to the track, which leads to additional efficiency loss. As
the number of detector layers increases, more measure-
ment points are available per particle, which increases the
computational requirements and the duplicate rate, but also
the efficiency. The accuracy of the detector alignment also
impacts efficiency.

Kalman Filter

The Kalman filter technique processes a set of discrete
measurements to determine the internal state of a linear
dynamical system. In particular, random perturbations

can be present in both the measurements and the system.
It is commonly used for navigation, but has applications
in many domains including charged particle reconstruc-
tion. The Kalman filter is an excellent choice of algorithm
for charged particle reconstruction, because it facilitates a
straightforward treatment of the motion of charged particles
in magnetic fields and the impact of the detector material
on the particle trajectories including multiple scattering and
energy loss.

Kalman filter algorithms can be used both for track find-
ing and track fitting. In ACTS, the Kalman filter algorithm
estimates the parameters of a track by iteratively incorpo-
rating individual measurements assigned to the track by
track finding algorithms. The implementation in ACTS has
the mathematical filtering and smoothing in configurable
components which can be replaced at compile time. The
Kalman filter class includes a propagator instance which
can be configured with different detector geometries and
magnetic fields. The algorithm is primarily implemented in
an actor that is fed into the propagator when the track fit is
executed. This actor can access the transported track param-
eters and their associated covariance matrices, and operate
on them. It is also configurable in terms of the representation
of the track parameters and measurements, and can include
an outlier 4 identification helper and a calibrator for the cali-
bration of measurements using predicted track parameters
during the fitting. As the time parameter including correla-
tion is included in the track parameters and their associated
covariance, a time measurement, if present, will transpar-
ently be used to update the predicted time parameter. The
time parameter will also be propagated along the trajectory
including its variance and correlations with the remaining
track parameters.

The Kalman filtering method creates a track state if the
propagator reaches a surface with either material or a meas-
urement. If a measurement is found, it is investigated by
the outlier identification helper. Unless the measurement is
tagged as an outlier, it is used to update the track parameters
by applying the filtering procedure. A hole track state is cre-
ated on any traversed sensitive surface that does not have a
measurement on it. Material effects can be included either
before or after the Kalman filtering. When all the measure-
ments have been processed or the navigation reaches the
boundary of the tracking geometry, the Kalman smoothing
procedure is triggered to obtain the smoothed track param-
eters either using the Rauch–Tung–Striebel smoothing for-
malism [75] starting from the last filtered track state or using
the propagator but with the navigation direction reversed.

An extension of the Kalman filter (KF), the Combinato-
rial Kalman filter (CKF) technique [76–78] is implemented

4  A measurement which is not compatible with the predicted track
parameters is term an outlier.

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 13 of 23  8

within ACTS to perform the measurement search at the same
time as performing the fit. If multiple compatible measure-
ments are found on a surface, the track propagation branches
and is repeated for multiple sets of track parameters updated
with each subsequent measurement. The search for compat-
ible measurements is handled by a measurement selector,
which supports custom implementation of the selection cri-
teria. An example of the selection criteria is the maximum
�2 for each selected measurement under the assumption of
the track parameters and the maximum number of branches
on a surface. Those criteria are fully customizable and con-
figurable at different levels of detector geometry, and can
be used to refine the tracking performance, e.g., the track
reconstruction efficiency and the number of fake tracks.

Both the KF and the CKF produce fitted track parameters
at a user-defined target surface and a container object, which
contains all the fitted track states. For a single seed, the KF
and the CKF can provide one set and multiple sets of fitted
track parameters and track states, respectively.

Vertexing

ACTS features a fast and flexible primary vertex reconstruc-
tion suite, comprising a range of components implementing
a full chain from vertex seeding to precision vertex param-
eter estimation. The vertexing module includes an itera-
tive vertex finder (IVF) and an adaptive multi-vertex finder
(AMVF) [79]. The IVF iteratively fits individual vertices
starting from a vertex seed and a seed track collection. The
AMVF fits multiple vertices simultaneously, while dynami-
cally assigning tracks to candidate vertices during fitting.
The AMVF exhibits good performance for high vertex-den-
sity environments such as the HL-LHC, and will be used as
the default vertex reconstruction tool for the ATLAS experi-
ment in Run-3.

The input vertex seeds to both vertex finders are provided
by four different vertex seed finding algorithms: a z-scan ver-
tex seed finder based on a half-sample mode algorithm [80],
a Gaussian track density vertex seed finder [79], as well as
a non-adaptive and adaptive version of a new fast and robust
grid density vertex seed finder. Dedicated vertex fitters for
the different vertex finding approaches, a Billoir fitter [81]
and an adaptive multi-vertex Kalman fitter [82], as well as
auxiliary vertexing tools such as impact point estimators and
track linearizers complement the vertexing toolkit.

The public interfaces of the vertexing components are
designed to be highly configurable and flexible. The ver-
tex finders accept a collection of representations of tracks

Fig. 9   The geometry of the ATLAS ITk (a), the PANDA silicon
detector (b), and the sPHENIX silicon tracking detectors (c), imple-
mented with ACTS. Colors indicate different subsystems; in the top
image, the High Granularity Timing Detector (HGTD) [83] is shown
in orange

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 14 of 23

or particles to be used for vertex finding. In addition, an
option structure which allows the finder to supplied with
a vertex constraint is provided as input. The output of the
vertexing components is a list of all found vertices. Ver-
tex seed finders are regarded as regular vertex finders in
ACTS, and therefore share the same interface. They have
the special characteristic of returning a single-entry list of
vertices, i.e., the vertice obtained from the current vertex
seed only, at a time. The vertexing can run on ACTS bound
track parameter objects as well as on any user-defined input
track type to allow maximum flexibility. The only require-
ment for using an arbitrary input track type is to provide a
std::function that unwraps and returns ACTS bound
track parameters.

Fig. 10   Geometries of Belle II (a) and FASER (b) implemented in
ACTS. Colors indicate the different subsystems

(a)

(b)

Fig. 11   A projection of the magnetic field implemented with ACTS
for the ATLAS tracking system into the x − y plane (a). The strength
of the magnetic field at each point is indicated in color. The r − z
coordinates of the intersections of propagated pion tracks with the
ATLAS ITk detector elements, using the ATLAS magnetic field (b).
Boundary intersections are shown in blue, while intersections with
sensors are shown in orange. Green lines indicate a subset of extrap-
olated particle tracks. Gray points are the intermediate integration
steps, required within a predefined tolerance threshold

Fig. 12   Comparison of the mapped material obtained from ACTS
material mapping tool (orange line) and the Geant4 material (blue
line) as a function of � for the Open Data Pixel Detector. The ratio of
the material in ACTS to Geant4 is indicated in the panel below and
the statistical uncertainty is indicated with the gray band. Agreement
is within about 2%, with excellent agreement seen in the central part
of the detector

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 15 of 23  8

Applications and Performance

Selected Applications

ACTS is integrated or being integrated into a number of par-
ticle and nuclear physics experiments. Here, we presented
selected examples of experiments that either use or have
explored the use of ACTS. Figure 9a shows the geometry
of the ATLAS ITk. The ACTS vertexing algorithms have
already been integrated into the ATLAS Athena framework
and the integration of the ACTS tracking algorithms is ongo-
ing. At the same time, preliminary optimization of the ACTS
tracking algorithms for ITk is in progress. Figure 9b shows
the geometry for the silicon tracker of the PANDA experi-
ment, which is a planned particle physics experiment at the
FAIR facility in Germany.

The sPHENIX experiment is the next-generation jet and
heavy-flavor detector currently under construction at the
Relativistic Heavy Ion Collider at Brookhaven National
Laboratory. Figure 9c shows the geometry for the silicon
tracker of sPHENIX. ACTS components for seeding, track
fitting, and vertexing have been successfully deployed in the
sPHENIX production software chain.

Belle II is the next-generation B-factory experiment
located at the SuperKEKB accelerator complex [84] in
Japan. A critical requirement is to reliably reconstruct low-
momentum tracks with pT ≈ 100 − 300MeV [85]. This is
achieved with a combination of silicon pixel and strip detec-
tors, whose placement is shown in Fig. 10a. The Belle II
collaboration is currently exploring in what form ACTS can
supplement or replace existing tracking code.

Figure 10b shows the FASER detector, which is an exper-
iment at the LHC, located ≃ 480 m downstream the ATLAS
interaction point, featuring extremely forward acceptance
( 𝜂 > 9.2 ). The FASER tracker is designed to detect two
high-momentum charged tracks originating from a decay
vertex inside the decay volume, using three tracking sta-
tions with silicon strip sensors, in a 0.55T magnetic field.
FASER will fully rely on ACTS for its track reconstruction
and fitting. The implementation is well progressed and first
performance studies with the ACTS CKF are in preparation.

Figure 11a shows the magnetic field of the ATLAS exper-
iment described using ACTS. Track parameter propagation
based on the detector geometry and magnetic field is used
to determine the coordinates of intersections of tracks with
detectors. An example of track propagation with the ATLAS
ITk Detector is shown in Fig. 11c.

When using the simplified tracking geometry described in
Fig. 3.6, the detector material is modeled using a dedicated
mapping algorithm that remaps the detailed Geant4 mate-
rial. A comparison of the mapped material with the mate-
rial used in the full simulation geometry for the Open Data

Detector [86] is shown in Fig. 12. The geometry of the Open
Data Detector is described with a realistic passive material
model based on DD4hep, which translates into a Geant4
detector model. The agreement between the material budget
described in Geant4 and by the ACTS geometry is within
a few percent, and can be further improved using higher
granular binning of the material maps and additional place-
ment of material surfaces if needed.

Examples of a Track and Vertex Reconstruction
Chain for the LHC

At the LHC, track reconstruction typically proceeds through
a multi-step process, which we briefly outline here. The pro-
cedure is largely similar for different experiments, but with
some key differences in strategy. For example, the CMS
experiment uses an iterative tracking approach [87] in which
the full track reconstruction pass is repeated a number of
times, but with different configurations, and the measure-
ments corresponding to tracks that have already been recon-
structed are removed. ATLAS instead relies to a large extent
on a single track reconstruction pass, but with loose track
candidate search and an ambiguity resolution step to resolve
between the multiple track candidates. Additional passes are
used to target particular topologies, e.g., tracks produced at
large radii.

As the first step, the energy deposited in the silicon detec-
tors is grouped into clusters with each cluster ideally cor-
responding to the energy deposited by a single particle. The
clusters are three-dimensional space-points formed from
either a single pixel cluster or a pair of strip clusters with
stereo angle between them from each side of a module,
depending on the sensor technology.

Next, seed finding algorithms are used to reconstruct the
seeds. The seeds passing a set of selection cuts are used
to initiate the track finding and following algorithms, such
as the CKF. After track following, the ATLAS experiment
runs an ambiguity resolution algorithm to resolve duplicate

Fig. 13   Schematic layout of the TrackML detector showing the cover-
age of the pixel detector in blue, short strip detector in red, and long
strip detector in green

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 16 of 23

tracks and remove fakes [62]. Track candidates are scored
based on track properties such as the number of clusters,
holes, shared clusters, and fitting quality. The scoring pro-
cedure is iterated until the selected set of track candidates
are obtained. Next, the track candidates are extended into the
Transition Radiation Tracker, consisting of gas-filled drift
tubes, to search for additional measurements to improve the
momentum resolution.

As the final track reconstruction step, if needed, a precise
estimate of the track parameters is determined from track
fitting algorithms, including the KF and Global �2 methods.
The final track candidates are selected based on a set of track
quality metrics, e.g., the number of clusters and holes, and
the estimated track parameters. For example, the track can-
didates are usually required to satisfy a set of requirements
for the momentum and impact parameters.

After track reconstruction, primary vertex candidates are
reconstructed using the reconstructed tracks with estimated
perigee track parameters at the beam line. Both ATLAS and
CMS use an adaptive approach for primary vertex recon-
struction [87, 88] similar to the ACTS Adaptive Multi-Ver-
tex Finder (AMVF).

Track and Vertex Reconstruction Performance

As discussed in “Examples of a Track and Vertex Recon-
struction Chain for the LHC”, experimental applications of
track reconstruction usually include many steps depending
on the algorithms used, the collision environment, and the
required precision. Here, an example of simplified track
reconstruction chain based on a combined effort of track
seeding and the CKF is discussed. The detector used for the
TrackML challenge has the layout, as shown in Fig. 13, and
a solenoidal magnetic field with a strength of 2 T centered
on the beam line is used to demonstrate the ACTS track and
vertex reconstruction performance.

Particles generated using a particle gun, both muons and
charged pions, and particles from the tt̄physics process gen-
erated in pp collisions at a center-of-mass energy of 14 TeV,
the energy target for the HL-LHC, with the PYTHIA 8 gen-
erator [89, 90] are used for the performance studies. The
single particle samples either contain a single particle per
event for physics performance studies or a thousand particles
within a single event for timing performance studies. As
muons have little sensitivity to detector material, they are
used to study the technical performance of the track recon-
struction algorithms, while the pions are used to study the
sensitivity of the track reconstruction algorithms to mate-
rial. No pile-up is included in the single particle events.
Two tt̄samples are produced: one with ⟨�⟩ = 200 to match
the highest pile-up foreseen for the HL-LHC and the other
with ⟨�⟩ varying from 0 to 300 to allow the dependence of
the performance on pile-up to be studied. The interactions

of the generated particles with transverse momentum,
pT > 400 MeV and pseudorapidity, �5, within |𝜂| < 2.5 with
the detector are simulated with Fatras, the ACTS fast simula-
tion library.

Detector read-out and measurement creation are detector-
specific6; hence, a smearing algorithm applies module-spe-
cific resolutions to emulate the input measurements based
on the simulated hits. The space-points constructed from the
emulated measurements in the innermost four pixel layers
are grouped into seeds using the ACTS seeding algorithm
as described in “Track Seed Finder”. Both truth and recon-
structed seeds are used. Truth seeds eliminate the pattern
recognition step in the seed finding, i.e., the truth informa-
tion is used to identify the hits for a seed corresponding
to a true particle. Truth-generated seeds are produced by
smearing the particle properties at its point of generation.
Truth-propagated seeds are produced by smearing the true
particle information at the first detector layer. Reconstructed
seeds are the output of the seed finding algorithm based on
the simulated hits.

While each truth seed is a set of initial track parameters
with associated covariance matrix, estimation of the track
parameters with associated covariance matrix at the surface
of the innermost space point is performed for each recon-
structed seed. These initial track parameters based on either
the truth seeds or the reconstructed seeds and are used to
seed the CKF algorithm. After the CKF algorithm has been
run, the reconstructed track candidates must satisfy a set
of track quality cuts. The reconstructed tracks are required
to have at least six measurements based on expectations
from the TrackML detector layout and to allow initial track
parameters to be located in any of the first three layers of
the pixel detector. Four different types of tracks are stud-
ied, which allows the effects of the different steps in the
track reconstruction sequence to be disentangled. The truth
tracks ignore the pattern recognition entirely and are based
on the properties of the simulated hits of the true particles.
The truth-generated-seeded tracks, truth-propagated-seeded
tracks, and reco-seeded tracks are reconstructed by running
the CKF on the truth-generated seeds, the truth-propagated
seeds, and the reconstructed seeds, respectively.

The performance of the ACTS primary vertex recon-
struction module is evaluated using truth tracks with fitted
perigee track parameters defined at the beam line using the
same detector, magnetic field, and simulation configuration
as used for the studies of the track reconstruction.

5  Pseudorapidity is an angular quantity calculated as follows
� = − ln

[
tan

(
�

2

)]
 from the polar angle � . � = ±∞ corresponds to

directions along the beam axis.
6  For silicon detectors, this often requires finding connected read-out
cells and either processing or emulating the detector signal.

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 17 of 23  8

Track Reconstruction Efficiency and Fake and Duplicate
Rates

Key indicators of the performance of a track reconstruc-
tion algorithm are the track reconstruction efficiency, the
track duplicate rate, and the rate at which fake tracks are
reconstructed. Their definitions require reconstructed tracks
to be associated with generated particles. A reconstructed
track is associated with a generated particle if the largest
fraction of measurements on the track is from this simulated
particle and the fraction of associated measurements is at
least 50%. A track that is not associated with any simulated
particle is considered to be a fake track. Duplicate tracks
occur when multiple tracks are associated with the same
generated particle.

The track reconstruction efficiency is defined as the frac-
tion of generated particles which have made at least nine
measurements on the traversed detectors and are associated
with tracks. The fake rate and duplicate rate of the tracks are
defined as the fraction of fake and duplicate tracks among
all the reconstructed tracks, respectively. Figure 14 shows
the preliminary track reconstruction efficiency as a func-
tion of the � of the simulated true particle as well as the
fraction of fakes and duplicates as a function of the � of the
reconstructed track with the CKF for 1000 tt̄ events with
⟨�⟩ = 200. Results are shown for both the truth-propagated-
seeded tracks and the reco-seeded tracks. The results for
the truth-propagated-seeded tracks are excellent; however,
inefficiencies and high duplicate rates are observed for the
reconstructed tracks. This is because no detector-specific
tuning has been performed for the TrackML detector and the
performance would be improved by tuning the seed finding
criteria as a function of � . The tuning of track reconstruction
algorithms for a particular geometry is typically performed
with several iterations and is beyond the scope of this paper.

Track Parameter Resolution

Track fitting in ACTS can be performed using either the KF
or the CKF. Here, we study the track parameter resolution
using the KF based on the truth tracks to remove the impact
of any fake or duplicate tracks. Single muons are used to
minimize the impact of detector material.

Gaussian fits are performed to the distributions of the
pull values defined as the (vf it − vtruth)∕�v . Here, vf it and
vtruth are the estimated value of the track parameter and its
true simulated value, and �v is the estimated uncertainty of
the reconstructed track parameter. The distributions of the

Fig. 14   The track reconstruction efficiency (top), fake rate (mid-
dle), and duplicate rate (bottom) for 1000 tt̄ events with ⟨�⟩ = 200
obtained using ACTS CKF on the TrackML detector. The blue dots
and orange triangles represent results using starting parameters based
on truth track parameters and those estimated from seeds found the
ACTS seed finding algorithm, respectively. The truth particles used
to calculate the track reconstruction efficiency are required to have
pT > 1 GeVand have nine measurements on the traversed detectors.
The reconstructed tracks are required to have pT > 1 GeVand have six
measurements in the detector

▸

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 18 of 23

Fig. 15   The pull distributions of the six bound track parameters, d0 ,
z0 , � , � , q

p
 , and t, as obtained with the KF on the TrackML detector.

The blue dots are the obtained pull values and the orange lines are the
fitted Gaussian curves. For each Gaussian fit, the fitted values (with

negligible uncertainties) for the parameters mean ( � ) and standard
deviation ( � ) are shown in the legend. Truth-generated seeds are used
for the KF. A sample of 100,000 single muons with 500 MeV
< pT < 10 GeVand at least nine measurements on the detector is used

Fig. 16   Number of reconstructed primary vertices with the ACTS
AMVF for different numbers of true pp collisions in simulated tt̄
events. For reference, the gray dashed line indicates a 100% vertex
reconstruction efficiency and the blue dots indicate the vertex recon-
struction efficiency given a detector acceptance of |𝜂| < 2.5 and
pT > 400 MeV

Fig. 17   The fraction of wall time during which different numbers of
threads were running simultaneously while running track propaga-
tion through the TrackML detector. Either a static (blue) or contextual
(orange) geometry is used for 100,000 events with 1000 pions per
event using multi-threads on a Cori–Haswell node

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 19 of 23  8

pulls of the track parameters at the perigee surface defined
at the beam line are shown in Fig. 15. The parameters of
the Gaussian distributions are approximately consistent
with standard normal distributions, which demonstrates
that the track parameters and their uncertainties are esti-
mated properly by the ACTS KF. The fitted standard devia-
tions of the Gaussian curves deviate slightly from one for
the impact parameters and the momentum direction angle
� due to the impact of non-linear effect of the measure-
ment model.

Primary Vertex Reconstruction Efficiency

Figure 16 shows the number of reconstructed primary ver-
tices as a function of ⟨�⟩ of the tt̄ sample using the ACTS
AMVF based on the truth tracks. The AMVF efficiency is
optimized for a mid-range working point of expected pile-
up conditions for the upcoming data-taking run of the LHC,
Run-3. These have

⟨
�
⟩
≈ 60 , but the performance extrapo-

lates well to higher numbers of simultaneous pp interac-
tions. When used by an experiment, the AMVF configura-
tion would be optimized for the small pile-up range targeting
the experiment’s needs and accelerator conditions.

CPU Performance

The CPU performance, including the CPU utilization and
time performance, was tested on a Haswell node at the

National Energy Research Scientific Computing Center
(NERSC) [91] (Cori-Haswell). The node has 32 physical
cores and 64 threads at a clock rate of 2.3 GHz.

The TrackML detector is used to benchmark the CPU
performance. The pion samples are used to evaluate the
CPU utilization and the timing performance of the propa-
gator with different numerical integration methods, and
the tt̄ samples with ⟨�⟩ varying from 0 to 300 are used
to evaluate the time performance of the seed finder and
CKF.

Fig. 18   The mean number of propagation steps (top), propagation
time for 1000 pions (middle), and mean propagation time per step
(bottom) of the track parameter propagation as a function of the pT
of the pions ( |𝜂| < 2.5 ) with the array-like math implementation
(blue dots), the main Eigen-based stepper (orange triangles), and the
straight-line stepper (green stars)

Fig. 19   The CPU time of track fitting per event using ACTS KF (blue
dots) and combined track finding and track fitting (orange triangles)
per event using the ACTS CKF as a function of the ⟨�⟩ of the tt̄ sam-
ple. Truth-generated seeds are used for both the KF and the CKF.
Only simulated particles with pT > 500 MeVand having at least nine
measurements on the detector are considered

Fig. 20   The average CPU time for seed finding (blue dots) per event,
and combined track finding and track fitting (orange triangles) per
event with ACTS CKF using reconstructed seeds as a function of ⟨�⟩
of the tt̄ sample. Only seeds with pT > 500 MeV are considered

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 20 of 23

CPU Utilization

The CPU utilization of ACTS was analyzed using the
Intel VTune profiler [92]. Figure 17 shows the
CPU utilization for running track propagation through the
TrackML detector with a static geometry, and a contex-
tual geometry in which the detector alignment changes for
100,000 events with 1000 pions per event using multiple
threads on the Cori–Haswell node. All 64 threads are uti-
lized during 91% of the total execution time for both the
static and the contextual geometry. This demonstrates highly
efficient multi-threaded execution.

Timing Performance

Figure 18 shows the CPU time of the ACTS track parameter
propagation through the TrackML detector as a function of
pion pT . Three different steppers to perform the numerical
integration are shown: the main EigenStepper in ACTS,
the stepper using manual array mathematical operations, and
the straight-line stepper.

The straight-line stepper is used as the baseline, because
it executes the minimal number of integration steps, even
though it yields a geometrically incorrect solution, due to
presence of the 2 T magnetic field. For increasing trans-
verse momentum, the CPU time of the other two steppers
approaches this theoretical best-case scenario. The other two
steppers have very similar results, demonstrating that the
Eigen-based implementation has nearly optimal compu-
tational performance.

Figure 19 shows the CPU time as a function of the ⟨�⟩ of
the tt̄ samples for track fitting with the KF, and the combined
track finding and track fitting with the CKF. Both the KF
and CKF are using truth-generated seeds. Only simulated
particles with transverse momentum greater than 500 MeV
are included. The KF and CKF require 0.74 s and 2.25 s
per event, respectively, for a tt̄ sample at ⟨�⟩ = 200. The
additional amount of time for the CKF is spent on the search
of the compatible measurements on each measurement sur-
face and the possible branching of the track propagation into
multiple branches when more than one compatible measure-
ments are found.

Figure 20 shows the CPU time as a function of the ⟨�⟩
of the tt̄ samples for seed finding, and combined track find-
ing and fitting with CKF using the reconstructed seeds. The
seed finding and CKF require 0.11 s and 3.97 s per event,
respectively, for a tt̄ sample at ⟨�⟩ = 200. The increase in
time for the CKF in Fig. 20 compared to Fig. 19 is due to the
presence of duplicate seeds among the reconstructed seeds,
which would be improved by dedicated tuning of the track
reconstruction algorithms.

Experience

ACTS has been initiated to preserve and evolve the well-
tested track reconstruction software of the LHC era that has
been used for many outstanding physics results, while also
creating a research and development toolkit for algorithm
optimization and design. Through the use of ACTS as the
fast track simulation engine for the TrackML challenge, a
wider community has become familiar with the ACTS pro-
ject. The resulting R&D projects sparked by the TrackML
challenge are still ongoing and have introduced new con-
cepts and algorithms into the core ACTS software. This
section discusses selected topics from experience of the
development of the ACTS project.

Successful and less successful design choices typically
become evident when integrating the software within experi-
ments’ software stacks. The less restrictive the initial soft-
ware design, the easier such an integration is. However, this
needs to be balanced against the performance of the track
reconstruction software.

An example of successful design choice for ACTS is the
contextual data handling: detector conditional data, such as
alignment parameters, calibration constants, or other chang-
ing parameters, are usually very specific to the experiment
code and a common solution for these data objects is hard to
find. Due to the evolution and aging of running experiments,
details of calibration data may not necessarily be known
when an experiment begins. Within ACTS, the implementa-
tion of the contextual data and the data flow through the soft-
ware are split. This allows experiments to implement specific
data objects for conditions and the ACTS software handles
them throughout the entire call chain. This also allows the
conditions to be unpacked at the appropriate time by the
detector-specific code. As the object type is known and spec-
ified on both ends of the call chain, this guarantees minimum
conversion overhead. The contextual data handling was first
demonstrated within the ACTS examples, and has also been
demonstrated while integrating ACTS in Athena.

A similar example of a successful design choice is the
implementation of screen logging. Messages output on the
screen are commonly for debugging and quality control with
particle and nuclear physics software; hence, a seamless
integration of ACTS with the experiments logging infra-
structure has been a priority during development. The inte-
gration has been achieved by allowing the logging instance
in ACTS to be replaced with a custom logger connected
to the experiments framework logging facility. The logging
has been proven to work within the Gaudi-based software
frameworks of ATLAS and FCC-hh. In addition, a generic
demonstrator showing how to change the logging instance
is included in the ACTS test suite.

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 21 of 23  8

The choice of using C++ was easy, given the current
landscape of particle and nuclear physics software. C++ is
an extremely powerful language, but comes, like any lan-
guage choice, with its shortcomings. Initially, extensive use
of template expressions in the ACTS core software led to
huge resource requirements during compilation. Therefore,
this has been revised to reduce the resource requirements.
Care is needed to maintain simplicity within the code, which
will also be important for an eventual re-use of parts of the
ACTS software on heterogeneous hardware. While writing
code for heterogeneous hardware has not been an immediate
target of the ACTS project, compatibility should be foreseen,
allowing ACTS to adapt to future particle and nuclear phys-
ics computing landscapes.

Given that the origin of ACTS lies in the ATLAS Com-
mon Tracking Software, several initial design choices
focused towards general-purpose collider experiments.
Weaknesses relating to the use of ACTS for different geom-
etry types, particularly for forward detectors, time projection
chambers, drift tube, and telescope setups, have been identi-
fied. While some of them have already been resolved, these
remain active areas of development.

Conclusion

The development of efficient and maintainable track recon-
struction is a challenge for current and future particle and
nuclear physics experiments. We have introduced the ACTS
toolkit, which provides a set of open-source, experiment-
independent and framework-independent reconstruction
algorithms for tracking detectors. The high-level track recon-
struction tools do not depend on the details of the detection
technologies and magnetic field configuration, and have
been tested for thread-safety to support concurrent event
processing.

We have demonstrated that ACTS is maturing as a toolkit
and currently provides a range of algorithms for track and
vertex reconstruction, which have been or are actively being
integrated into a range of experimental frameworks. Geom-
etries for a number of particle and nuclear physics detectors
have been included in ACTS. Initial studies of the phys-
ics and computational performance of the track and vertex
reconstruction algorithms using the TrackML detector were
presented. A detailed tuning of the algorithms is required
to achieve full performance for any specific detector, which
is beyond the scope of this paper and is expected to be per-
formed by the individual experimental collaborations.

A discussion of selected experiences obtained during the
ACTS project has been presented. Future development direc-
tions for the ACTS project are expected to include further
deployment into experimental frameworks and increasing
investment into the R&D lines. The authors would welcome

contact from other experiments interested in exploring the
use of and contributions to ACTS.

Acknowledgements  This work was supported by the CERN Strate-
gic R&D Program on Technologies for Future Experiments (CERN-
OPEN-2018-006), the National Science Foundation under Cooperative
Agreement OAC-1836650, the Office of Nuclear Physics within the
U.S. DOE Office of Science under Contract No. DE-SC0012704, and
the German Federal Ministry of Education and Research (BMBF).

Funding  Open access funding provided by CERN (European
Organization for Nuclear Research). This work was supported by the
CERN Strategic R&D Program on Technologies for Future Experi-
ments (CERN-OPEN-2018-006), the National Science Foundation
under Cooperative Agreement OAC-1836650, the Office of Nuclear
Physics within the U.S. DOE Office of Science under Contract No.
DE-SC0012704, and the German Federal Ministry of Education and
Research (BMBF).

Data Availability Statement  This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There are no
associated data available.]

Code Availability  The code used for this research is available open
source [63].

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 ATLAS Collaboration. The ATLAS experiment at the CERN large
hadron collider. In: JINST 3 (2008), p S08003. https://​doi.​org/​10.​
1088/​1748-​0221/3/​08/​S08003

	 2.	 Apollinari G et al (2017) High-luminosity large hadron collider
(HL-LHC): technical design report V. 0.1. https://​doi.​org/​10.​
23731/​CYRM-​2017-​004

	 3.	 CMS Collaboration (2008) The CMS experiment at the CERN
LHC. In: JINST 3, p S08004. https://​doi.​org/​10.​1088/​1748-​
0221/3/​08/​s08004

	 4.	 CMS Collaboration (2021) Evolution of the CMS computing
model towards phase-2. Technical report. Geneva: CERN. https://​
cds.​cern.​ch/​ record/​27515​65

	 5.	 Calafiura P et al (2020) ATLAS HL-LHC Computing conceptual
design report. Technical report CERN-LHCC-2020-015, LHCC-
G-178. CERN, Geneva. http://​cds.​cern.​ch/​record/​27296​68

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://cds.cern.ch/%20record/2751565
https://cds.cern.ch/%20record/2751565
http://cds.cern.ch/record/2729668

	 Computing and Software for Big Science (2022) 6:8

1 3

 8   Page 22 of 23

	 6.	 Collaboration FCC (2019) FCC-hh: the hadron collider. Eur
Phys J ST 228(4):755–1107. https://​doi.​org/​10.​1140/​epjst/​
e2019-​900087-0

	 7.	 HEP-SPEC06 Benchmark. https://​w3.​hepix.​org/​bench​marki​ng.​
html. Accessed 17 May 2021

	 8.	 Moore GE (1965) Cramming more components onto integrated
circuits. Electronics 38:8. https://​doi.​org/​10.​1109/​JPROC.​1998.​
658762

	 9.	 Hennessy JL, Patterson DA (2019) A new golden age for computer
architecture. Commun ACM 62(2):48–60. https://​doi.​org/​10.​1145/​
32823​07

	10.	 Pantaleo F (2017) New track seeding techniques for the CMS
experiment. PhD thesis. Hamburg U. https://​cds.​cern.​ch/​record/​
22934​35

	11.	 Ju X et al (2020) Graph neural networks for particle reconstruction
in high energy physics detectors. In: NeurIPS 2019. arXiv:​ 2003.​
11603 [physics.ins-det]

	12.	 Amrouche S et al (2019) Similarity hashing for charged particle
tracking. In: IEEE international conference on big data 2019, pp
1595–1600. https://​doi.​org/​10.​1109/​BigDa​ta470​90.​2019.​90063​16

	13.	 Strandlie A, Frühwirth R (2010) Track and vertex reconstruction:
from classical to adaptive methods. Rev Mod Phys 82:1419–1458.
https://​doi.​org/​10.​1103/​RevMo​dPhys.​82.​1419

	14.	 Hough P (1959) Machine analysis of bubble chamber pictures. In:
Kowarski L (eds) Conference proceedings C 590914, pp 554–558

	15.	 Duda R, Hart P (1972) Use of the Hough transformation to detect
lines and curves in pictures. Commun ACM 15:11–15

	16.	 Hopfield J (1982) Neural networks and physical systems with
emergent collective computational abilities. Proc Natl Acad Sci
79:2554–2558. https://​doi.​org/​10.​1073/​pnas.​79.8.​2554

	17.	 Kalman RE (1960) A new approach to linear filtering and predic-
tion problems. J Basic Eng 82(1):35–45. https://​doi.​org/​10.​1115/1.​
36625​52

	18.	 Billoir P (1984) Track fitting with multiple scattering: a new
method. Nucl Instrum Methods A 225:352–366. https://​doi.​org/​
10.​1016/​0167-​5087(84)​90274-6

	19.	 Frühwirth R (1987) Application of Kalman filtering to track and
vertex fitting. Nucl Instrum Methods A 262:444–450. https://​doi.​
org/​10.​1016/​0168-​9002(87)​90887-4

	20.	 Gumpert C et al (2017) ACTS: from ATLAS software towards a
common track reconstruction software. Technical report. ATL-
SOFT-PROC-2017-030. 4. CERN, Geneva. https://​doi.​org/​10.​
1088/​1742-​6596/​898/4/​042011

	21.	 Ai X (2019) Acts: a common tracking software’. In: Meeting of
the division of particles and fields of the American Physical Soci-
ety. arXiv:​ 1910.​03128 [physics.ins-det]

	22.	 Ai X (2020) Tracking with a common tracking software. arXiv:​
2007.​01239 [physics.ins-det]

	23.	 Gessinger P et al (2020) The Acts project: track reconstruction
software for HL-LHC and beyond. In: Doglioni C (eds) EPJ web
conference 245: 10003. https://​doi.​org/​10.​1051/​epjco​nf/​20202​
45100​03

	24.	 Amrouche S et al. (2020) The tracking machine learning chal-
lenge: accuracy phase. In: The NeurIPS ’18 competition, pp
31-264. https://​doi.​org/​10.​1007/​978-3-​030-​29135-8_9

	25.	 Kiehn M et al (2019) The TrackML high-energy physics tracking
challenge on Kaggle. In: Forti A (eds) EPJ web conference 214:
06037. https://​doi.​org/​10.​1051/​epjco​nf/​20192​14060​37

	26.	 Amrouche S et al (2021) The tracking machine learning challenge:
throughput phase. arXiv:​ 2105.​01160 [cs.LG]

	27.	 Tüysüz C et al (2020) Performance of particle tracking using a
quantum graph neural network. In: BASARIM 2020 conference
proceedings. arXiv:​ 2012.​01379 [quant-ph]

	28.	 Fox PJ et al (2020) Beyond 4D tracking: using cluster shapes for
track seeding. arXiv:​ 2012.​04533 [physics.ins-det]

	29.	 Heintz A et al (2020) Accelerated charged particle tracking with
graph neural networks on FPGAs. In: NeurIPS 2020. arXiv:​ 2012.​
01563 [physics.ins-det]

	30.	 Bapst F et al (2020) A pattern recognition algorithm for quantum
annealers. In: Comput Softw Big Sci 4(1) 1. https://​doi.​org/​10.​
1007/​s41781-​019-​0032-5. arXiv:​ 1902.​08324 [quant-ph]

	31.	 Abe T et al (2010) Belle II technical design report. arXiv:​ 1011.​
0352 [physics.ins-det]

	32.	 The CEPC Study Group (2018) CEPC conceptual design report:
volume 1—accelerator. arXiv:​ 1809.​00285 [physics.acc-ph]

	33.	 The CEPC Study Group (2018) CEPC conceptual design report:
volume 2—physics and detector. arXiv:​ 1811.​10545 [hep-ex]

	34.	 Adare A et al (2015) An upgrade proposal from the PHENIX col-
laboration. arXiv:​ 1501.​06197 [nucl-ex]

	35.	 sPHENIX Collaboration (2020) Requirements, status, and plans
for track reconstruction at the sPHENIX experiment. In: Proceed-
ings for the connecting the dots workshop. arXiv:​ 2007.​00771
[physics.ins-det]. Accessed 24 June 2021

	36.	 sPHENIX Collaboration (2021) Implementation of ACTS into
sPHENIX track reconstruction. In: 25th International conference
on computing in high-energy and nuclear physics. arXiv:​ 2103.​
06703 [physics.ins-det]

	37.	 PANDA Collaboration (2012) Technical design report for the:
PANDA micro vertex detector. Technical report. arXiv:​1207.​6581
[physics.ins-det]

	38.	 Bettoni D (2007) The PANDA experiment at FAIR. In: Mahlke
H, Napolitano J (eds) eConf C070805, p 39. arXiv:​ 0710.​5664
[hep-ex]

	39.	 FASER Collaboration (2019) FASER: ForwArd Search ExpeRi-
ment at the LHC. arXiv:​ 1901.​04468 [hep-ex]

	40.	 ATLAS Collaboration (2017) Technical design report for the
ATLAS inner tracker pixel detector. Technical report CERN-
LHCC-2017- 021, ATLAS-TDR-030. https://​cds.​cern.​ch/​record/​
22855​85

	41.	 ATLAS Collaboration (2017) Technical design report for the
ATLAS inner tracker strip detector. Technical report CERN-
LHCC-2017-005, ATLAS-TDR-025. https://​cds.​cern.​ch/​record/​
22577​55

	42.	 ATLAS Collaboration (2019) Expected tracking performance
of the ATLAS inner tracker at the HL-LHC. Technical report.
Geneva: CERN. https://​cds.​cern.​ch/​record/​26695​40

	43.	 Ai X et al (2020) Acts project: v3.0.0. version v3.0.0. Nov. https://​
doi.​org/​10.​5281/​zenodo.​39374​54. Accessed 24 June 2021

	44.	 Barrand G et al (2001) GAUDI–a software architecture and frame-
work for building HEP data processing applications. Comput Phys
Commun 40:45–55. https://​doi.​org/​10.​1016/​S0010-​4655(01)​
00254-5

	45.	 LHCb Collaboration (2008) The LHCb detector at the LHC. In:
JINST 3, S08005. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​s08005

	46.	 Athena (2019) Version 22.0.1. https://​doi.​org/​10.​5281/​zenodo.​
26419​96. Accessed 24 June 2021

	47.	 CMS Offine Software. http://​cms-​sw.​github.​io/. Accessed 02 Mar
2021

	48.	 Brun R, Gheata A, Gheata M (2003) The ROOT geometry pack-
age. Nucl Instrum Methods Phys Res A 502(2):676–680. https://​
doi.​org/​10.​1016/​S0168-​9002(03)​00541-2

	49.	 Threading building blocks. https://​github.​com/​oneapi-​src/​
oneTBB. Accessed 03 Feb 2021

	50.	 Ai X et al (2021) A GPU-based Kalman Filter for track fitting.
arXiv:​ 2105.​ 01796 [physics.ins-det]

	51.	 Amrouche S et al (2021) Hashing and metric learning for charged
particle tracking. In: 33rd Annual conference on neural informa-
tion processing systems. arXiv:​ 2101.​06428 [hep-ex]

	52.	 Open neural network exchange. https://​www.​github.​com/​onnx.
Accessed 17 May 2021

	53.	 autodiff. https://​autod​iff.​github.​io/. Accessed 02 Mar 2021

https://doi.org/10.1140/epjst/e2019-900087-0
https://doi.org/10.1140/epjst/e2019-900087-0
https://w3.hepix.org/benchmarking.html
https://w3.hepix.org/benchmarking.html
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://cds.cern.ch/record/2293435
https://cds.cern.ch/record/2293435
http://arxiv.org/abs/2003.11603
http://arxiv.org/abs/2003.11603
https://doi.org/10.1109/BigData47090.2019.9006316
https://doi.org/10.1103/RevModPhys.82.1419
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1088/1742-6596/898/4/042011
https://doi.org/10.1088/1742-6596/898/4/042011
http://arxiv.org/abs/1910.03128
http://arxiv.org/abs/2007.01239
http://arxiv.org/abs/2007.01239
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.1051/epjconf/201921406037
http://arxiv.org/abs/2105.01160
http://arxiv.org/abs/2012.01379
http://arxiv.org/abs/2012.04533
http://arxiv.org/abs/2012.01563
http://arxiv.org/abs/2012.01563
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5
http://arxiv.org/abs/1902.08324
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1011.0352
http://arxiv.org/abs/1809.00285
http://arxiv.org/abs/1811.10545
http://arxiv.org/abs/1501.06197
http://arxiv.org/abs/2007.00771
http://arxiv.org/abs/2103.06703
http://arxiv.org/abs/2103.06703
http://arxiv.org/abs/1207.6581
http://arxiv.org/abs/0710.5664
http://arxiv.org/abs/1901.04468
https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2257755
https://cds.cern.ch/record/2257755
https://cds.cern.ch/record/2669540
https://doi.org/10.5281/zenodo.3937454
https://doi.org/10.5281/zenodo.3937454
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.5281/zenodo.2641996
https://doi.org/10.5281/zenodo.2641996
http://cms-sw.github.io/
https://doi.org/10.1016/S0168-9002(03)00541-2
https://doi.org/10.1016/S0168-9002(03)00541-2
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
http://arxiv.org/abs/2105.%2001796
http://arxiv.org/abs/2101.06428
https://www.github.com/onnx
https://autodiff.github.io/

Computing and Software for Big Science (2022) 6:8 	

1 3

Page 23 of 23  8

	54.	 Nickolls J et al (2008) Scalable parallel programming with CUDA:
is CUDA the parallel programming model that application devel-
opers have been waiting for? Queue 6(2):40–53. https://​doi.​org/​
10.​1145/​13654​90.​13655​00

	55.	 SYCL: C++ single-source heterogeneous pro-gramming for
OpenCL. https://​www.​khron​os.​org/​sycl/. Accessed 02 Mar 2021

	56.	 ATLAS Collaboration (2005) ATLAS computing: technical
design report. Technical report. Geneva: CERN. http://​cds.​cern.​
ch/​record/​ 837738

	57.	 CMS Collaboration (2005) CMS: the computing project. Techni-
cal design report. Technical report. Geneva: CERN. http://​cds.​
cern.​ch/​record/​838359

	58.	 ISO/IEC 14882:2017 (2017) Programming languages - C++.
Standard. International Organization for Standardization, Geneva.
https://​www.​iso.​org/​stand​ard/​68564.​html. Accessed 17 May 2021

	59.	 Guennebaud G, Jacob B et al (2010) Eigen v3. http://​eigen.​tuxfa​
mily.​org

	60.	 Boost. https://​www.​boost.​org. Accessed 02 Mar 2021
	61.	 CMake. https://​cmake.​org. Accessed 02 Mar 2021
	62.	 Cornelissen T et al (2008) The new ATLAS track reconstruction

(NEWT). J Phys Conf Ser 119:3. https://​doi.​org/​10.​1088/​1742-​
6596/​119/3/​032014

	63.	 ACTS on Github. https://​github.​com/​acts-​ proje​ct/​acts. Accessed
05 Apr 2021

	64.	 Edmonds K et al (2008) The fast ATLAS track simulation
(FATRAS). Technical report ATL-SOFTPUB- 2008-001. ATL-
COM-SOFT-2008-002. Geneva: CERN. https://​cds.​cern.​ch/​
record/​10919​69

	65.	 Brun R, Rademakers F (1997) ROOT: an object oriented data
analysis framework. In: Werlen M, Perret-Gallix D (eds) Nuclear
instruments and Methods A 389, pp 81-86. https://​doi.​org/​10.​
1016/​S0168-​9002(97)​00048-X

	66.	 Semantic versioning. https://​semver.​org/. Accessed 17 May 2021
	67.	 Mozilla Public License Version 2. https://​www.​mozil​la.​org/​en-​

US/​MPL/2.​0/. Accessed 02 Mar 2021
	68.	 clang-format. https://​clang.​llvm.​org/​docs/​Clang​Format.​html.

Accessed 14 June 2021
	69.	 The LLVM compiler infrastructure. https://​www.​llvm.​org.

Accessed 14 June 2021
	70.	 GEANT4 Collaboration (2003) GEANT4: a simulation toolkit.

Nucl Instrum Methods A 506:250–303. https://​doi.​org/​10.​1016/​
S0168-​9002(03)​01368-8

	71.	 Petrič M et al (2017) Detector simulations with DD4hep. J Phys
Conf Ser. https://​doi.​org/​10.​1088/​1742-​6596/​898/4/​042015

	72.	 Tsulaia V, Boudreau J (2004) The GeoModel Toolkit for detector
description. https://​indico.​cern.​ch/​event/0/​contr​ibuti​ons/​12941​52/.
CHEP 2004 (Interlaken)

	73.	 Myrheim J, Bugge L (1979) A fast Runge-Kutta method for fitting
tracks in a magnetic field. Nucl Instrum Methods 160(1):43–48.
https://​doi.​org/​10.​1016/​0029-​554X(79)​90163-0

	74.	 Lund E et al (2009) Track parameter propagation through the
application of a new adaptive Runge-Kutta-Nyström method in
the ATLAS experiment. In: JINST 4: P04001. https://​doi.​org/​10.​
1088/​1748-​0221/4/​04/​P04001

	75.	 Rauch HE, Tung F, Striebel CT (1965) Maximum likelihood esti-
mates of linear dynamic systems. AIAA J 3(8):1445–1450. https://​
doi.​org/​10.​2514/3.​3166

	76.	 Billoir P (1989) Progressive track recognition with a Kalman-like
fitting procedure. Comput Phys Commun 57(1):390–394. https://​
doi.​org/​10.​1016/​0010-​4655(89)​90249-X

	77.	 Billoir P, Qian S (1990) Simultaneous pattern recognition and
track fitting by the Kalman filtering method. Nucl Instrum Meth-
ods Phys Res A 294(1):219–228. https://​doi.​org/​10.​1016/​0168-​
9002(90)​91835-Y

	78.	 Mankel R (1997) A concurrent track evolution algorithm for
pattern recognition in the HERA-B main tracking system. Nucl
Instrum Methods Phys Res A 395(2):169–184. https://​doi.​org/​10.​
1016/​S0168-​9002(97)​00705-5

	79.	 ATLAS Collaboration (2019) Development of ATLAS primary
vertex reconstruction for LHC Run 3. Technical report. ATL-
PHYS-PUB-2019-015. CERN, Geneva. https://​cds.​cern.​ch/​record/​
26703​80

	80.	 Bickel DR, Frühwirth R (2006) On a fast, robust estimator of the
mode: comparisons to other robust estimators with applications.
Comput Stat Data Anal 50(12):3500–3530. https://​doi.​org/​10.​
1016/j.​csda.​2005.​07.​011

	81.	 Billoir P, Qian S (1992) Fast vertex fitting with a local parametri-
zation of tracks. Nucl Instrum Methods Phys Res A 311(1):139–
150. https://​doi.​org/​10.​1016/​0168-​9002(92)​90859-3

	82.	 Piacquadio G (2010) Identification of b-jets and investigation of
the discovery potential of a Higgs boson in the WH → lvbb̄ chan-
nel with the ATLAS experiment. PhD thesis. Freiburg U. https://​
cds.​cern.​ch/​record/​12437​71

	83.	 ATLAS Collaboration (2020) Technical design report: a high-
granularity timing detector for the ATLAS phase-II upgrade.
Technical report. CERN-LHCC-2020-007; ATLAS-TDR-031.
Geneva: CERN. https://​cds.​cern.​ch/​record/​27198​55. Accessed
24 June 2021

	84.	 SuperKEKB Collaboration (2018) SuperKEKB collider. Nucl
Instrum Methods A 907: 188-199. https://​doi.​org/​10.​1016/j.​nima.​
2018.​08.​017. arXiv:​ 1809.​01958 [physics.acc-ph]

	85.	 Belle II Tracking Group Collaboration (2021) Track finding at
Belle II. Comput Phys Commun 259:107610. https://​doi.​org/​10.​
1016/j.​cpc.​2020.​107610. arXiv:​ 2003.​12466 [physics.ins-det]

	86.	 Allaire C et al (2021) OpenDataDetector. Version v1. https://​doi.​
org/​10.​5281/​zenodo.​46744​01. Accessed 24 June 2021

	87.	 CMS Collaboration (2014) Description and performance of track
and primary-vertex reconstruction with the CMS tracker. JINST
9(10):P10009. https://​doi.​org/​10.​1088/​1748-​0221/9/​10/​P10009

	88.	 Borissov G et al (2015) ATLAS strategy for primary vertex recon-
struction during Run-2 of the LHC. J Phys Conf Ser. https://​doi.​
org/​10.​1088/​1742-​6596/​664/7/​072041

	89.	 Sjöstrand T, Mrenna S, Skands P (2008) A brief introduction to
PYTHIA 8.1. Comput Phys Commun 178(11):852–867. https://​
doi.​org/​10.​1016/j.​cpc.​2008.​01.​036

	90.	 Sjöstrand T, Mrenna S, Skands P (2006) PYTHIA 6.4 physics
and manual. J High Energy Phys 05:026. https://​doi.​org/​10.​1088/​
1126-​6708/​2006/​05/​026

	91.	 NERSC Cori system specification. https://​docs.​nersc.​gov/​syste​ms/​
cori/#​system-​speci​ficat​ion. Accessed 02 Apr 2021

	92.	 Intel VTune Profiler. https://​softw​are.​intel.​com/​conte​nt/​www/​us/​
en/​devel​op/​tools/​vtune-​profi​ler.​html. Accessed 17 May 2021

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://www.khronos.org/sycl/
http://cds.cern.ch/record/%20837738
http://cds.cern.ch/record/%20837738
http://cds.cern.ch/record/838359
http://cds.cern.ch/record/838359
https://www.iso.org/standard/68564.html
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://www.boost.org
https://cmake.org
https://doi.org/10.1088/1742-6596/119/3/032014
https://doi.org/10.1088/1742-6596/119/3/032014
https://github.com/acts-%20project/acts
https://cds.cern.ch/record/1091969
https://cds.cern.ch/record/1091969
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://semver.org/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://clang.llvm.org/docs/ClangFormat.html
https://www.llvm.org
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1088/1742-6596/898/4/042015
https://indico.cern.ch/event/0/contributions/1294152/
https://doi.org/10.1016/0029-554X(79)90163-0
https://doi.org/10.1088/1748-0221/4/04/P04001
https://doi.org/10.1088/1748-0221/4/04/P04001
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166
https://doi.org/10.1016/0010-4655(89)90249-X
https://doi.org/10.1016/0010-4655(89)90249-X
https://doi.org/10.1016/0168-9002(90)91835-Y
https://doi.org/10.1016/0168-9002(90)91835-Y
https://doi.org/10.1016/S0168-9002(97)00705-5
https://doi.org/10.1016/S0168-9002(97)00705-5
https://cds.cern.ch/record/2670380
https://cds.cern.ch/record/2670380
https://doi.org/10.1016/j.csda.2005.07.011
https://doi.org/10.1016/j.csda.2005.07.011
https://doi.org/10.1016/0168-9002(92)90859-3
https://cds.cern.ch/record/1243771
https://cds.cern.ch/record/1243771
https://cds.cern.ch/record/2719855
https://doi.org/10.1016/j.nima.2018.08.017
https://doi.org/10.1016/j.nima.2018.08.017
http://arxiv.org/abs/1809.01958
https://doi.org/10.1016/j.cpc.2020.107610
https://doi.org/10.1016/j.cpc.2020.107610
http://arxiv.org/abs/2003.12466
https://doi.org/10.5281/zenodo.4674401
https://doi.org/10.5281/zenodo.4674401
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1088/1742-6596/664/7/072041
https://doi.org/10.1088/1742-6596/664/7/072041
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://docs.nersc.gov/systems/cori/#system-specification
https://docs.nersc.gov/systems/cori/#system-specification
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

	A Common Tracking Software Project
	Abstract
	Introduction
	Conceptual Design
	Concurrent Code Execution
	Contextual Data Handling
	Research and Development projects

	Technical Implementation
	Basic Technology Choices
	Code Organization
	Core Components
	Configuration, State, and Context
	Event Data Model
	Geometry
	Layer Geometry and Plugin Mechanism for Detector Elements
	Surface and Volume-Based Material

	Propagator
	Magnetic Field Access

	Track Seed Finder
	Kalman Filter
	Vertexing

	Applications and Performance
	Selected Applications
	Examples of a Track and Vertex Reconstruction Chain for the LHC
	Track and Vertex Reconstruction Performance
	Track Reconstruction Efficiency and Fake and Duplicate Rates
	Track Parameter Resolution
	Primary Vertex Reconstruction Efficiency

	CPU Performance
	CPU Utilization
	Timing Performance

	Experience
	Conclusion
	Acknowledgements
	References

