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Abstract. A metastable cosmic-string network is a generic consequence of many grand unified
theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not
topologically stable, but decay on cosmic time scales due to pair production of GUT monopoles.
This leads to a network consisting of metastable long strings on superhorizon scales as well
as of string loops and segments on subhorizon scales. We compute for the first time the
complete stochastic gravitational-wave background (SGWB) arising from all these network
constituents, including several technical improvements to both the derivation of the loop and
segment contributions. We find that the gravitational waves emitted by string loops provide
the main contribution to the gravitational-wave spectrum in the relevant parameter space.
The resulting spectrum is consistent with the tentative signal observed by the NANOGrav
and Parkes pulsar timing collaborations for a string tension of Gµ ∼ 10−11...−7 and has
ample discovery space for ground- and space-based detectors. For GUT-scale string tensions,
Gµ ∼ 10−8...−7, metastable strings predict a SGWB in the LIGO-Virgo-KAGRA band that
could be discovered in the near future.
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1 Introduction

The formation of cosmic defects is a generic feature of cosmological phase transitions [1].
Defects such as monopoles and domain walls can easily overclose the universe and must
therefore be avoided. Cosmic strings, on the other hand, evolve towards a scaling regime in
which their relative contribution to the total energy density of the Universe remains constant.
Cosmic strings have characteristic signatures in gravitational lensing, the cosmic microwave
background (CMB), and the stochastic gravitational-wave background (SGWB) and are
therefore a potentially very interesting messenger from the early universe (for reviews and
references, see, e.g., refs. [2, 3]).

During the past two decades, much progress has been made to describe the time evolution
of a cosmic-string network (for a recent review and references, see [4]). Since after an initial
transient period, the characteristic width of cosmic strings is much smaller than the horizon,
cosmic strings are often described by the Nambu-Goto (NG) action. The cosmic-string network
consists of “long” superhorizon strings and “short” subhorizon loops, which are formed in
intercommutation events of long strings and which decay slowly by emitting gravitational
radiation. The approach to the scaling regime can be understood analytically in the velocity-
dependent one-scale (VOS) model [5, 6], and it has also been established by large simulations
of NG string networks [7, 8].

Despite two decades of research, predictions of the SGWB signal from cosmic strings
still have large uncertainties. In a cosmic-string network, gravitational waves (GWs) are
primarily emitted by oscillating string loops as well as in the form of GW bursts emitted by
sharp features propagating on string loops, so-called cusps and kinks [9, 10]. To compute
the SGWB signal, one has to know the number density of non-self-interacting loops per
unit string length, which can be determined by NG string simulations [7, 8], as well as the

– 1 –



J
C
A
P
1
2
(
2
0
2
1
)
0
0
6

average power radiated off in GWs by each loop. Following essentially the same strategy,
different groups have nevertheless obtained significantly different results [4, 11–14]. The main
differences concern the number density of small loops and the treatment of gravitational
backreaction, which can smooth out string singularities. Moreover, the entire picture of
NG string loops decaying by gravitational radiation has been challenged by field-theoretic
simulations suggesting a much faster decay of the network whose origin, however, remains
mysterious [4, 15]. In this paper, we follow the approach in ref. [13], relying on the evidence
for long-string dominance in recent large simulations [12] and assuming suppression of GW
radiation from kinks after gravitational backreaction.

We consider cosmic strings associated with the spontaneous breaking of a local U(1)
symmetry embedded in a grand unified theory (GUT) [2, 16, 17], a prominent example being
the breaking of B−L, the difference of baryon and lepton number [18]. GUT-scale strings
have a string tension in the range Gµ ' 10−8 . . . 10−6, which seems excluded by the SGWB
bound set by pulsar timing array (PTA) experiments [19–21], which constrain topologically
stable cosmic strings to Gµ < 1.5× 10−11 [22] for a standard loop size parameter α ∼ 0.1 (see
below). However, it was recently pointed out that this bound can be avoided for metastable
cosmic strings, which opens a new window for a SGWB signal close to the current upper
limit in the LIGO-Virgo-KAGRA (LVK) frequency band that is consistent with the PTA
bounds [23]. Metastable cosmic strings decay by quantum tunneling into string segments
connecting monopole-antimonopole pairs. In the semiclassical approximation, the decay rate
per string unit length is given by [24–27]

Γd = µ

2π exp (−πκ) , κ = m2

µ
, (1.1)

where m is the monopole mass and µ is the string tension. This suppresses the GW spectrum
at low frequencies, rendering large string tensions compatible with PTA bounds.

This opens up a new window to explore GUT-scale physics with gravitational waves [23,
28–33], which has received considerable attention since the recent report by the NANOGrav
collaboration of evidence for a stochastic common-spectrum process at nanohertz frequen-
cies [34], which has been interpreted as a SGWB in a large number of recent papers. Beyond
the astrophysical interpretation in terms of supermassive black-hole binaries [35], possible
cosmological interpretations include stable [32, 36, 37] as well as metastable strings [29]. In a
first calculation, string tensions in the range 10−10 . Gµ . 10−6 were shown to be consistent
with the NANOGrav data, with a monopole mass to string tension ratio of around

√
κ ' 8 [29].

Such values can indeed be obtained in typical GUT models [38]. Alternatively, quasi-stable
strings with

√
κ� 1 associated with intermediate scales, which occur in symmetry breaking

chains of GUT models [39], may provide a fit to the NANOGrav data while predicting
a suppressed SGWB contribution at LIGO scales. Note that, also independent of grand
unification, a SGWB signal from a cosmic-string network is a well-motivated signature for
physics beyond the Standard Model (SM) [40–42].

In this paper, we will analyze the GW spectrum produced by a metastable string network
in detail. For metastable strings, both long superhorizon strings and short subhorizon loops
decay into string segments. There are then two qualitatively different possibilities. In the
first case, all the monopole magnetic flux is confined to the string, whereas in the second case,
only some of the flux is confined, while the remaining flux is unconfined (for a review and
references, see, for example, [43]). The pattern of GW radiation is very different in the two
cases. In the first one, both loops and segments radiate GWs, with loops typically yielding
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the dominant contribution. In the second one, only loops radiate GWs, whereas segments
loose energy much more rapidly by radiating gauge quanta corresponding to the unconfined
flux [44, 45]. Symmetry breaking in GUTs generically leads to monopoles with partially
unconfined flux (for recent examples, see [28, 38, 46]).

The GW spectrum of oscillating string segments connecting a monopole-antimonopole
pair was first calculated by Martin and Vilenkin in a straight-string approximation [47].
Subsequently, Leblond, Shlaer, and Siemens computed the GW spectrum from bursts and the
SGWB of metastable strings based on string segments [26]. A crucial point in this analysis is
the matching of an early scaling regime, where metastable strings behave like stable strings,
to a decay regime, where new loops are no longer produced, at a time ts = 1/Γ1/2

d , where
the scaling regime ends. In our work, we follow this approach, including also segments from
decaying loops in the analysis. Our analysis of the GW contribution emitted by loops largely
follows the analysis in ref. [23], adding a refined treatment of the time scale of the loop decay.

The paper is organized as follows. In section 2, we outline the derivation of the GW
spectrum emitted by cosmic-string loops and segments, providing simple analytical expressions
for all relevant quantities for GW emission in the radiation era. The more technical components
of this analysis are deferred to the appendix. In section 3, we perform a numerical evaluation
of the GW spectrum, demonstrating the detection prospects for PTAs and ground-based GW
detectors. Section 4 contains our conclusions.

2 Gravitational waves from string loops and segments

The time evolution of a network of stable cosmic strings emitting GWs has been extensively
studied. After an initial transient period, the network reaches a “scaling regime”, where the
number densities of long superhorizon strings and subhorizon loops per Hubble volume are
preserved. The long strings loose their energy mostly by loop formation, whereas the oscillating
loops loose their energy by gravitational radiation. This picture is strongly supported by
analytical models as well as large numerical simulations.

Much less is known for metastable cosmic-string networks characterized by a decay
time ts = 1/Γ1/2

d . It is expected that they behave similarly to stable networks at early
times t < ts. However, they start decaying immediately after the phase transition in the
course of which they are initially formed; and at ts, typical string segments enter the horizon.
These segments then start oscillating under their own tension, radiating off GWs. We expect
that loop production by rapidly oscillating sub-horizon string segments after the end of the
scaling regime is negligible. A more precise analysis would require numerical simulations of a
metastable string network, which at present do not exist. We therefore follow the approach
of Leblond, Shlaer, and Siemens [26] and match at the time ts, which marks the end of the
scaling regime, two different periods to each other:

Period Network constituents GWs from
t < ts Loops, long superhorizon strings Loops
t > ts Loops, short subhorizon segments from long strings and loops Loops and segments

The second period ends at a time te, which marks the end of GW emission, that is, the
time when segments and loops have emitted all their energy in GWs and the string network
disappears. In the following, we shall briefly recall the main ingredients in the computation of
the GW signal from loops and segments. We shall also give explicit formulas for all relevant
quantities in the radiation era, which is where most of the GW emission occurs for a large
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part of the parameter space. For a detailed discussion of the matter era, we refer the reader
to the appendix.

Let us first consider stable cosmic strings, where the approach to scaling can be un-
derstood analytically in the velocity-dependent one-scale (VOS) model [5, 6]. The name of
the VOS model derives from the fact that it assumes several length scales in the network
to coincide up to constant factors: the inter-string separation L = (µ/ρ∞)1/2, the string
correlation length, and the string curvature radius. Here, µ is the energy density per unit of
string length and ρ∞ is the energy density of the long strings. In addition, the VOS model
assumes the initial loop size at the time of formation to be controlled by the universal scale
L ∝ H−1 ∝ t times a constant factor.

The energy density of long strings, ρ∞, is diluted in consequence of the Hubble expansion
and depleted by loop production [2],

dρ∞
dt

= −2H
(
1 + v̄2

)
ρ∞ − µ

∫ ∞
0

d` ` f (`, t) , (2.1)

where H = ȧ/a is the Hubble rate and v̄ = 〈v2
∞〉1/2 denotes the root-mean-square velocity

of long strings, which tends to a constant value in the scaling regime and which affects the
redshift behavior of the network. f (`, t) is the loop production function, which gives the
number density of non-self-interacting loops produced per unit time and unit string length.
The model accounts for scaling as a fixed point of differential equations for L (t) and v̄ (t);
and in the radiation era, one finds L (t)→ ξt, ξ = 0.271 and v̄ (t)→ 0.662 [4]. Using eq. (2.1),
the loop production function then takes the form [6],

f (`, t) = A

αt4
δ (`− αt) , A ∝ c̃v̄

ξ3 , (2.2)

where the constant c̃ parametrizes the efficiency of loop-chopping. As discussed in the
appendix, this loop production function yields the loop number density

◦
n (`, t) = A

α

(α+ ΓGµ)3/2

t3/2 (`+ ΓGµt)5/2 Θ (αt− `) (2.3)

during radiation domination. Here, ΓGµ2 is the total power radiated by a loop, G is Newton’s
constant, and A = 0.54 is obtained from a fit to numerical simulations.

An important quantity is the ratio of the energy densities in loops and long strings.
Using ρ∞ = µ/L2 → µ/ (tξ)2, eq. (2.3) yields for α� ΓGµ,

µ

ρ∞

∫ ∞
0

d` `
◦
n (`, t) = 4

√
αAξ2

3 (ΓGµ)1/2 ∼ 10
(50

Γ

)1/2
(

10−7

Gµ

)1/2

, (2.4)

which increases with decreasing radiated power Γ as well as with decreasing string tension µ.
Large numerical simulations of cosmic-string networks have led to the number density of

the Blanco-Pillado-Olum-Shlaer (BOS) model [12], which is similar to eq. (2.3). Compared to
the VOS model, also the parameter α is determined as α ' 0.1. The BOS number density
describing the loop population in the radiation era is given by [4]

◦
n (`, t) = B

t3/2 (`+ ΓGµt)5/2 Θ (αt− `) Θ (teq − t) (2.5)
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with B ' 0.18 and teq denoting the time of matter-radiation equality. A more general
discussion of loop number densities, accounting also for the loop population after matter-
radiation equality, as well as corresponding references can be found in ref. [4].

Number densities for stable as well as decaying loops and string segments satisfy kinetic
equations. Their general form and solutions are described in the appendix. The number
densities for decaying loops and segments can be obtained by matching the early scaling
regime to a decay regime at ts = 1/Γ1/2

d . This procedure leads to the result for decaying loops
in eq. (A.13),

◦
n> (`, t) = B

t3/2 (`+ ΓGµt)5/2 e
−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ

(
αts − ¯̀(ts)

)
Θ (teq − t) , (2.6)

where
¯̀(ts) = `+ ΓGµ (t− ts) ' `+ ΓGµ t (2.7)

denotes the length of a loop at time ts that evolves to the length ` at time t due to the
emission of GWs. The number density differs from the one for stable loops by two damping
terms, which become effective for `t > 1/Γd and t >

√
2 (ΓGµ)−1/2 ts ≡ te, respectively. The

first Heaviside theta function reflects the fact that only loops produced before ts contribute
to the number density; the second theta function indicates that this expression is only valid
during the radiation era.

The number density of segments, ñ, can be obtained in a similar way. It receives
contributions from long strings decaying into segments as well as from loops decaying into
segments, leading to the kinetic equation given in eq. (A.29). The former has the analytic
solution [26],

ñ
(s)
> (`, t) = C

Γ2
d

4
(t+ ts)2
√
t3ts

e−Γd[`(t+ts)+1/2 Γ̃Gµ(t−ts)(t+3ts)] Θ (teq − t) , (2.8)

where Γ̃ parametrizes the GW emission of the segments and correspondingly t̃e =√
2
(
Γ̃Gµ

)−1/2
ts is the time after which segments have disappeared. Since in the scaling

regime, t < ts, superhorizon segments behave like stable long strings, the normalization factor
C can be determined by matching the energy density of segments to the energy density ρ∞
at time t = ts,

ρ∞ (ts) = µ

t2sξ
2 = µ

∫ ∞
0

d` ` ñ(s) (`, ts) = µ
C

4t2s
, (2.9)

which yields C = 4/ξ2. For the contribution to segments from decaying loops, ñ(l), the
kinetic equation obtains the form of a partial integro-differential equation. We provide an
exact analytical solution to this equation in terms of an infinite series in the appendix. We,
moreover, find that this exact result can be reproduced to good approximation, as far as the
consequences for the GW spectrum are concerned, by multiplying the first term in the series
by an overall numerical (“fudge”) factor σ,

ñ
(l)
> (`, t)→ σ

t2s

[
` (t− ts) + 1

2 ΓGµ (t− ts)2
]
◦
n> (`, t) = −σ Γd

d

dΓd
◦
n> (`, t) , (2.10)

where σ ' 5. The total segment number density in the radiation era for t > ts thus reads

ñ> (`, t) = ñ
(s)
> (`, t) + ñ

(l)
> (`, t) . (2.11)
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Here and below, we follow ref. [26] and set Γ̃ ' Γ ' 50, for simplicity. The corresponding
number densities in the matter era, which enter our numerical results in section 3, are derived
in the appendix.

In view of their contributions to GWs, it is interesting to compare the energy densities
at te. From eqs. (2.6) and (2.11), one obtains

◦
ρ> (te) ∼

µ

t2e

B

(ΓGµ)1/2 , ρ̃
(s)
> (te) ∼

µ

t2e

1/ξ2

(ΓGµ)1/4 , ρ̃
(l)
> (te) ∼

µ

t2e

α1/2Bσ

(ΓGµ)3/4 . (2.12)

For typical numbers, B = 0.18, σ = 5, ξ = 0.271, Γ = 50, α = 0.1, and large tensions,
Gµ ∼ 10−7, all contributions are roughly of similar size. For smaller string tensions, the
energy density stored in segments sourced by cosmic-string loops dominates over the other
two contributions at te.

2.1 Stable loops
We first consider stable loops and the corresponding GW spectrum from a network in the
scaling regime following the discussion in ref. [13]. The GW energy density relative to the
critical density per logarithmic frequency unit at cosmic time t is given by

Ωgw (t, f) = 8πG
3H2 (t)fρgw (t, f) . (2.13)

Here, H(t) is the Hubble rate and ρgw (t, f) is the energy density in GWs per frequency unit,

ρgw (t, f) =
∫ t

ti

dt′

(1 + z (t′))4 Pgw
(
t′, f ′

) ∂f ′
∂f

, (2.14)

which is obtained from the redshifted power density in GWs integrated from some initial
time ti to the time of observation t, with f ′ = (1 + z (t′)) f ≡ (1 + z′) f . Loops of length
` oscillating in their kth harmonic emit GWs with frequency f ′ = 2k/`. Hence, the power
density per unit frequency is related to a loop number density ◦n (`, t′) and the power Gµ2Pk
per unit length as1

Pgw
(
t′, f ′

)
= Gµ2

kmax∑
k=1

`

f ′
◦
n
(
`, t′

)
Pk . (2.15)

In the following, we focus on the contribution from cusps, which corresponds to

Pk = P1
k4/3 , P1 = Γ

ζ (4/3) , Γ ' 50 . (2.16)

Integrating from ti to t and changing variables, dt′ = −dz′/ (H (z′) (1 + z′)), eq. (2.14) yields

ρgw (t, f) = Gµ2
kmax∑
k=1

Ck (t, f)Pk , (2.17)

with

Ck (t, f) = 2k
f2

∫ t

ti

dt′

(1 + z′)5
◦
n

(2k
f ′
, t′
)

= 2k
f2

∫ zi

z(t)

dz′

H (z′) (1 + z′)6
◦
n

(2k
f ′
, t
(
z′
))

. (2.18)

Note that the z′ integral depends only very weakly on the upper limit zi.
1The sum has to terminate at some finite kmax in order to avoid unphysical infinite energies related to the

longest loops ever produced and also related to the finite width of a physical string.
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The loop density is diluted by the expansion of the universe and sourced by the interac-
tions of long strings, which is encoded in the loop production function f (`, t),

◦
n (`, t) =

∫ t

ti

dt′
(
a (t′)
a (t)

)3
f
(

¯̀(t′) , t′) , (2.19)

where a (t) is the scale factor and where the function ¯̀ has been introduced in eq. (2.7),
¯̀(t′) = `+ ΓGµ (t− t′). In the VOS model, and approximately also in the BOS model, strings
are formed with a fixed fraction α of the horizon, ¯̀(t′) ≈ αt′. For a particular choice of `
and t, the formation time t′ is fixed by eq. (2.7), which then determines the loop number
density (2.19) via the value of the scale factor at the formation time, yielding eqs. (2.3)
and (2.5), respectively.

In the following, we discuss the resulting GW spectrum observed today, at t = t0,
resulting from loops emitting GWs during the radiation era. The computation of the GW
contribution emitted during the matter era is fully analogous and can be performed numerically
by inserting the corresponding loop and segment number densities derived in the appendix
into eq. (2.18). For pedagogical reasons, we focus on the radiation epoch in this section;
however, the numerical results shown in section 3 will contain also the contributions from the
matter era.

During radiation domination, the Hubble rate and cosmic time are given by

H (z) = (1 + z)2Hr , t (z) = 1
2 (1 + z)2Hr

, Hr = H0
√

Ωr , (2.20)

with h2Ωr = 4.15× 10−5, h = 0.68 [48], where the increase of the effective number of degrees
of freedom with z has been neglected. Using the BOS loop number density in eq. (2.5), this
yields for the coefficient functions defined in eq. (2.18),

Ck (t0, f) = 16BH2
r

3f

[(4kHr

f
(1 + zeq) + ΓGµ

)−3/2
−
(4kHr

f
(1 + zi) + ΓGµ

)−3/2]
,

(2.21)
where zeq occurs as lower integration limit in eq. (2.18) for GWs produced in the radiation
era. From this expression, one reads off the main qualitative features of the GW spectrum
today. For2

f < fhigh ≡ fp (zi) , fp (z) ≡ 4Hr

ΓGµ (1 + z) , (2.22)

only the first of the two terms in the square bracket contributes, and the behavior of this
term as a function of frequency depends on whether f is larger or smaller than feq ≡ fp (zeq).
For small frequencies, i.e., f < feq, the GW spectrum increases as Ωgw ∝ f3/2, as one reads
off from eqs. (2.13) and (2.21). Starting at around feq, the GW spectrum then begins to
approach a flat plateau, with the turnover frequency feq being inversely proportional to Gµ.3
In between feq and kmax feq, the behavior of the spectrum is controlled by the sum over the

2In the following, fp (zcut) will always denote the frequency that corresponds to a lower or upper cutoff zcut in
the z′ integral and that provides an approximate lower or upper boundary of the frequency plateau, respectively.

3The existence of a plateau is an inherent feature of the radiation era. A hypothetical observer within the
radiation era would drop the second theta function in eq. (2.5) and hence replace feq by 4Hr/ (ΓGµ), with
Hr = (ρr/3)1/2 /MPl.
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harmonic oscillation modes,

keq∑
k=1

1
k4/3 = H

(4/3)
keq

= ζ (4/3)− 3
k

1/3
eq

[
1 +O

(
1
keq

)]
, (2.23)

where keq is the largest integer that is smaller than f/feq and H(4/3)
k is the kth harmonic

number of order 4/3. For feq < f < kmax feq, the deviation of the spectrum from a flat plateau
therefore decays like f−1/3. Once the top of the plateau is reached around f ' kmax feq,
we have

kmax∑
k=1

Pk =
H

(4/3)
kmax

ζ (4/3) Γ ' Γ , (2.24)

which, together with eqs. (2.13), (2.17), and (2.21), yields the familiar result [4],

Ωplateau
gw ' 128π

9 B Ωr

(
Gµ

Γ

)1/2
. (2.25)

The summation over all modes also plays an important role at high frequencies. For
fhigh < f < kmax fhigh, all modes between khigh and kmax contribute with a flat plateau to the
GW spectrum, where khigh is the smallest integer that is larger than f/fhigh, while all modes
n < f/fhigh decay like f−1 (see below). The sum over k can then be expressed in terms of
the Hurwitz zeta function [49],

kmax∑
k=khigh

1
k4/3 = −ζ (4/3, kmax + 1) + ζ (4/3, khigh) (2.26)

= −ζ (4/3, kmax + 1) + 3
k

1/3
high

[
1 +O

(
1

khigh

)]
, (2.27)

indicating that the spectrum decreases like f−1/3 in the interval fhigh < f < kmax fhigh. At
even higher frequencies, the two terms in the square bracket of eq. (2.21) are always of similar
size, for all values of k. Expanding Ck at large f then shows that the spectrum only receives
contributions falling off like f−1, resulting in a total spectrum summed over all modes also
falling off like f−1.

2.2 Decaying loops

Loops are produced in the early scaling regime, t < ts. At later times, the produced loops
shrink by emitting GWs. Their number density ◦n> satisfies a kinetic equation discussed in the
appendix. Matching ◦n> at t = ts to

◦
n< in the scaling regime by requiring ◦n>

(
¯̀(ts) , ts

)
=

◦
n<
(

¯̀(ts) , ts
)
, one obtains the number density in eq. (A.13), which corresponds to the number

density in eq. (2.6).
Knowing the loop number densities, we can evaluate the coefficient functions Ck (t, f),

see eq. (2.18), which determine the GW spectrum. For GWs generated in the radiation era,
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one obtains

Ck (t0, f) = 2k
f2

[∫ zs

0

dz′

H (z′) (1 + z′)6
◦
n>

(2k
f ′
, t
(
z′
))

+
∫ zi

zs

dz′

H (z′) (1 + z′)6
◦
n<

(2k
f ′
, t
(
z′
))]

= 32BH3
r k

f2

∫ zs

zeq
dz′

e
−Γd

[
k

fHr
(1+z′)−3+ ΓGµ

8H2
r

(1+z′)−4
]

[
4kHr
f (1 + z′) + ΓGµ

]5/2 +
∫ zi

zs
dz′

1[
4kHr
f (1 + z′) + ΓGµ

]5/2
 .
(2.28)

The exponential factor yields frequency-independent and frequency-dependent cutoffs ze
and zf ,

1 + ze =
( 1√

8Hr

)1/2
(Γd ΓGµ)1/4 ≡ (2Hrte)−1/2 , 1 + zf =

( Γd
fHr

)1/3
, (2.29)

so that the range z′ < zm = max {ze, zf} does not contribute4 to the integral for Ck (t0, f).
In this section, we will for simplicity focus on the regime ze > zeq, ensuring that the GW
production is limited to the radiation-dominated regime. This is the case for [see eq. (1.1)],

κ . 81 + 0.32 ln (Gµ) . (2.30)

Cutting off the first integral in eq. (2.28) at zm, the coefficients Ck are approximately
given by

Ck (t0, f) = 32BH3
r k

f2

∫ zi

zm
dz′

1[
4kHr
f (1 + z′) + ΓGµ

]5/2
= 16BH2

r

3f

[(4kHr

f
(1 + zm) + ΓGµ

)−3/2
−
(4kHr

f
(1 + zi) + ΓGµ

)−3/2]
.

(2.31)

Compared to eq. (2.21) for stable loops, the redshift zeq has been replaced by the cutoff zm.
Above the frequency 2 flow, with

flow ≡ fp (ze) ∼ 10−8 Hz
(50

Γ

)3/4
(

10−7

Gµ

)1/2

exp
(
−π

(
κ

4 − 16
))

, (2.32)

one has zm = ze, and for f > flow, the first term in the square brackets in eq. (2.31)
approaches a constant. Hence, the GW spectrum today approximately features a plateau
for flow < f < fhigh. On the other hand, at smaller frequencies, one has zm = zf > ze, and
consequently the GW spectrum falls off as f2 for f < flow. For frequencies above kmax fhigh,
the GW spectrum falls off again like 1/f , where for reference eq. (2.22) can be expressed as

fhigh ∼ 1015 Hz
(50

Γ

)(10−7

Gµ

)(
zi

1023

)
exp

(
−π

(
κ

4 − 16
))

, (2.33)

with a redshift zi ∼ 1023 corresponding to a reheating temperature of Trh ∼ 1010 GeV.
4With Hr ' 10−2H0, one has ze ' (60/H0)1/2 (Γd ΓGµ)1/4, which numerically coincides with the cutoffs

z∗∗ and zmin that were defined and employed in ref. [26] and ref. [23], respectively.
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Figure 1. GW spectrum from metastable cosmic-string loops (left) and segments (right) for different
values of Gµ and κ. The dark gray-shaded regions indicate existing bounds from pulsar timing
arrays [21] and the LIGO/VIRGO collaboration [50], the lighter shaded regions show the prospective
reach of SKA [51], LISA [52], LIGO and the Einstein Telescope (ET) [53]. The orange shaded region
indicates the region preferred by the NANOGrav hint [34]. In this figure (unlike figures 2 and 4),
we fix the number of SM degrees of freedom to its high-temperature value, g∗ = 106.75, in order to
facilitate the comparison with the analytical expressions derived the text.

Note that the decaying loops have to be created before ts, i.e., the argument of the first
theta function in the number density in eq. (2.6) has to be positive. This implies

k < kΘ (f) ≡ f

4Hr

[
2αHr

Γ1/2
d

(1 + zm)− ΓGµ
1 + zm

]
. (2.34)

For the parameters given in eq. (2.32), one finds kΘ (f) ∼ 100 f/flow. To obtain the GW
spectrum, one has to sum over all modes. We focus on the contribution from cusps given in
eq. (2.16). From eqs. (2.13), (2.17), (2.31), and (2.34), one then obtains

Ωgw (f) ' 128π
9 B Ωr (Gµ)2 Γ

ζ(4/3)

kΘ(f)∑
k=1

1

k4/3
[

4kHr
f (1 + zm) + ΓGµ

]3/2 . (2.35)

For large enough frequencies, i.e., kΘ (f) � 1, and f > flow, the GW spectrum reaches a
plateau as for stable loops,

Ωplateau
gw (f) ' 128π

9 B Ωr

(
Gµ

Γ

)1/2
, (2.36)

where now kΘ (f) states contribute to the total power Γ.
The final GW spectrum sourced by loops decaying during radiation domination is shown

in the left panel of figure 1 for Gµ = 10−11 . . . 10−7 with
√
κ = 8 (solid) and

√
κ = 7 (dashed).

These results are obtained by inserting the loop number density in eq. (2.6) into eq. (2.18),
leading to the GW energy density in eq. (2.17). It suffices to take into account the loop
number density at t > ts, since the GW spectrum is sourced largely at t ∼ te � ts. For easier
comparison with the analytical results, we have fixed the number of SM degrees of freedom
to its high-temperature value in this figure, g∗ = 106.75. The resulting agreement with the
analytical expressions is very good.
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2.3 Decaying segments
At early times, t < ts, the superhorizon strings decay and loose energy by chopping off loops.
As discussed in the appendix, the segment density ñ(s)

< sourced by long strings satisfies the
kinetic equation [26]

∂t ñ
(s)
< (`, t) = −∂`

[
u (`, t) ñ(s)

< (`, t)
]
−[3H (t) + Γd `] ñ

(s)
< (`, t)+2 Γd

∫
`
d`′ ñ

(s)
<

(
`′, t

)
, (2.37)

where u (`, t) = 3H (t) ` − 2`/t, and where the decay of segments acts as a source term for
smaller segments. The rate for producing a segment with length between ` and `+ d`′ in the
decay of a segment of length `′ is Γd d`′. The segment with length ` can be chopped off at
either side, hence the factor of 2. In the case `′ = 2`, one breaking produces two segments of
length `. The solution

ñ
(s)
< (`, t) = C Γ2

d e
−2 Γd ` t (2.38)

exhibits the expected scaling behaviour ρcs (t) ∼ µ
∫
d` ` ñ

(s)
< (`, t) ∼ µ/t2. The normalization

constant C = 4/ξ2 is determined by the scaling solution.
At t = ts, typical segments enter the horizon, loop production terminates and GW

radiation begins. Now the relevant kinetic equation reads

∂t ñ
(s)
> (`, t) = Γ̃Gµ∂` ñ

(s)
> (`, t)− [3H (t) + Γd `] ñ

(s)
> (`, t) + 2 Γd

∫
`
d`′ ñ

(s)
>

(
`′, t

)
, (2.39)

and the solution of this integro-differential equation satisfying the initial condition
ñ

(s)
>

(
¯̀(ts) , ts

)
= ñ

(s)
<

(
¯̀(ts) , ts

)
is given by eq. (2.8). In addition, the segment number

density obtains a second contribution, ñ(l), from loop decays. The exact solution of the full
kinetic equation (A.29) is given in the appendix. To good approximation their contribution is
described by eq. (2.10), so that the full segment number density is then given by the sum of
both contributions, see eq. (2.11).

Given the number density of decaying segments, we can evaluate the GW spectrum as in
the previous section. Using eq. (2.18) but replacing the loop number density with the segment
number densities given in eqs. (2.8) and (2.10), one obtains for the coefficient functions

C̃k (t0, f) ' 2k
f2

∫ zs

0

dz′

H (z′) (1 + z′)6 ñ>

(2k
f ′
, t
(
z′
))

(2.40)

' 2k
f2

∫ zs

0

dz′

H (z′) (1 + z′)6

[
−σ Γd

∂

∂Γd
◦
n>

(2k
f ′
, t
(
z′
))

+ ñ
(s)
>

(2k
f ′
, t
(
z′
))]

' −σ Γd
∂

∂Γd
Ck (t0, f) + 2k Γ2

d

f2Hrξ2

∫ zs

zeq

dz′ (1 + zs)
(1 + z′)9 e

−Γd
[

k
fHr

(1+z′)−3+ Γ̃Gµ
8H2
r

(1+z′)−4
]

Now the exponential yields the frequency-independent cutoff z̃e,

1 + z̃e =
( 1√

8Hr

)1/2 (
Γd Γ̃Gµ

)1/4
≡
(
2Hr t̃e

)−1/2 =
(1

2 Γ̃Gµ
)1/4

(1 + zs) , (2.41)

and the range z′ < z̃e does not contribute to the integral for C̃k(t, f).
The power in mode k of the oscillating segment is quasi-constant [47],

k Pk ' 4 , (2.42)
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up to a very large maximum value determined by the Lorentz factor of the oscillating monopole,
kmax ∼ γ2

0 , beyond which Pk decreases like 1/k2. The total power is given by

Γ̃ =
kmax∑
k=1

Pk ∼ 4 ln γ2
0 , (2.43)

and Γ̃ ∼ 50 would imply kmax ∼ 105. To obtain the GW spectrum, one has to sum over all
modes and integrate over z′. For ñ(s)

> , this sum extends to kmax, whereas for ñ(l)
> introduced

above, it extends to kΘ (f) given in eq. (2.34). Because of the quasi-constant behaviour of
k Pk, it is convenient to perform the summation over k first, approximated as an integral.
From eqs. (2.13) and (2.17) one finds for the GW spectrum,

Ωgw (f) ' 32π (Gµ)2

3H2
0f

{ kΘ(f)∑
k=1

8BσH3
r ζmzm[

4kHr
f (1 + zm) + ΓGµ

]5/2 (2.44)

+
kmax∑
k=1

kPk
Γ2
d

Hrξ2

∫ zs

z̃e

dz′ (1 + zs)
(1 + z′)9 e

− kΓd
fHr

(1+z′)−3
}

' 128π (Gµ)2

9

{
Bσζm[

4Hr
f (1 + zm) + ΓGµ

]3/2 − Bσζm[
4kΘ(f)Hr

f (1 + zm) + ΓGµ
]3/2

+ 3Γd
4ξ2H2

r

∫ zs

z̃m

dz′ (1 + zs)
(1 + z′)6

[
e
− Γd
fHr

(1+z′)−3
− e−

Γdkmax
fHr

(1+z′)−3
]}

,

where ζm = 1 for zm = ze and ζm = 4/3 for zm = zf , and z̃m = max (z̃e, zf ).
From eq. (2.44), the qualitative features of the GW spectrum from segments are easily

understood. For small frequencies, f < flow, the first term in the bracket behaves exactly as
the contribution from decaying loops in eq. (2.35), i.e., the spectrum increases as Ωgw ∝ f2,
and above flow it approaches a plateau. However, contrary to decaying loops, the spectrum
from loop segments is cut off as kΘ (f) approaches kmax around f̃high = kmax flow. Above
f̃high, the constant parts of the first and second terms cancel, and the spectrum falls off as
Ωgw ∝ 1/f . A similar cancellation takes place around f̃high between the third and fourth
terms arising from long-string segments, where we have again assumed Γ̃ = Γ, i.e. z̃e = ze.
For f < flow, one has zm = zf . The z′ integral in eq. (2.44) yields a factor (1 + zs) / (1 + zf )5,
which implies Ωgw ∝ f5/3. Finally, one finds for the height of the plateau,

Ωgw (f) ' 128π
9

Ωr (Gµ)1/2

Γ3/2

[
Bσ + 21/4 12

5 ξ2 (ΓGµ)1/4
]
. (2.45)

Comparing the result with eq. (2.36), one observes that, for Γ ' 50 and σ ' 5, the GW
spectrum from loop segments is suppressed by about one order of magnitude compared to the
GW spectrum from decaying loops. The contributions from loop segments and long-string
segments are about equal at Gµ = 10−8. Hence, the total contribution from segments to
the GW spectrum is always subdominant with respect to the one from decaying loops. A
detailed comparison of the GW spectrum from decaying loops, segments from loop decays,
and segments from long-string segments is given in figure 5 in the appendix. The final GW
spectrum sourced by segments decaying during radiation domination is shown in the right
panel of figure 1 for Gµ = 10−11 . . . 10−7 with

√
κ = 8 (solid) and

√
κ = 7 (dashed). Again

we find very good agreement with our analytical expression for the GW spectrum.
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The extension of the plateau from the segment contribution depends on the number
of contributing modes kmax, which is determined by the Lorentz factor γ2

0 ∼ µ2`2/m2 =
M2

PlGµ/κ. The calculation in ref. [47] obtained γ2
0 ∼ 300, corresponding to Γ̃ ∼ 25. In

ref. [26], Γ̃ ∼ 50 has been used, corresponding to kmax ∼ γ2
0 ∼ 105. For the parameters given

above, extending the plateau up to the LVK band around 100Hz would require kmax ∼ 1010

with Γ̃ ∼ 100. The calculation of the radiated power has thus far been restricted to a straight
string. The extension to realistic configurations, where the two monopoles can pass each other
without forming a black hole, remains a problem for future research.5 It is expected that,
above some critical mode number kc, the radiated power Pk falls off exponentially [47].

3 Detection prospects

Our final results for the GW spectrum produced by metastable cosmic strings are shown in
figures 2 to 4. Starting from the analytical expressions for the loop number density in eqs. (2.6)
and (A.16) as well as (for figure 4) the segment number density in eqs. (2.11), (A.28), (A.39),
and (A.40), we numerically compute the coefficient functions Ck (see eq. (2.18)) and the
resulting GW spectrum (see eqs. (2.13) and (2.17)). Here, we include the changes in the
number of degrees of freedom in the SM thermal plasma, leading to deviations from the
analytical prediction of a perfectly flat spectrum, particularly visible in the left panel of figure 2.
The summation over higher harmonics k is performed up to the maximum relevant mode, as
discussed in the previous section. We vary the string tension fromGµ = 10−11 to 10−7, covering
the entire range of interest for the existing pulsar timing and ground-based interferometer
experiments. We consider values of

√
κ all the way from quasi-stable cosmic strings, which have

a life time comparable to the age of the Universe,
√
κ ' 9, to metastable cosmic strings with a

strongly suppressed spectrum in the pulsar timing array band,
√
κ ' 7.5. For this entire range

of κ, the cosmic strings are stable enough to give a large signal in the LVK band. We contrast
these predictions with existing bounds, the expected sensitivity of upcoming experiments,
as well as with the tentative GW signal reported by the NANOGrav collaboration [34].

3.1 Monopoles with unconfined fluxes
If the monopoles feature unconfined fluxes, any cosmic string segments formed from long
strings or loops will rapidly decay radiating massless gauge bosons as the monopoles and
antimonopoles oscillate and finally annihilate. In this case, the resulting GW spectrum is
dominated by the GW emission from cosmic string loops. The left panel of figure 2 shows
the resulting GW spectrum for different values of the model parameters Gµ and κ. This
extends the result shown in the left panel of figure 1 by including the change of degrees of
freedom in the SM thermal bath as well as the GW emission during the matter domination
era.6 The latter is relevant only for te > teq and leads to an enhancement at low frequencies

5The GW spectrum in eq. (2.44) can be expressed as an integral over the redshift z′ and the segment length
` instead of the mode number k [26]. The integral over ` has the lower bound `min ∼ 1/((1 + z′)f) and the
upper bound `max ∼ ts, i.e., the horizon at the beginning of the “short-string period”. Moreover, the frequency
satisfies the upper bound (1 + z′)f` < kmax ∼ γ2

0 ∼ µ2`2/m2 = M2
Pl Gµ/κ. The integral over z′ is dominated

by the contribution close to the lower limit z′ ∼ z̃e. From these inequalities, one obtains lower and upper
bounds on f , which for large κ read: log10(flow) ∼ βκ, β = − log10(e)π/4 ' −0.34 and log10(fhigh) ∼ γκ,
γ = 3 log10(e)π/4 ' 1.02. These straight lines represent the boundaries of the plateau in figure 7 of ref. [26].
At κ ∼ 60, the trans-Planckian upper bound is fhigh ∼ 1070 Hz, corresponding to kmax ∼ 1078 and Γ̃ ∼ 800.

6Both of these affect the cosmological expansion history, which is encoded in the Hubble parameter
H(z) = H0(ΩΛ + Ωm(1 + z)3 + ΩradG(z)(1 + z)4)1/2 with G(z) = g∗(z)g4/3

s (0)/(g∗(0)g4/3
s (z)), Ωm = 0.308,

ΩΛ = 0.702, and g∗(z) (gs(z)) denoting the effective number of degrees of freedom relevant for the energy
(entropy) density of the SM thermal bath.

– 13 –



J
C
A
P
1
2
(
2
0
2
1
)
0
0
6

PTA LISA LIGO

ET

Gμ = 10-7

10-8

10-9

10-10

10-11loops

κ = 8 κ = 7

10-10 10-8 10-6 10-4 0.01 1 100
10-14

10-12

10-10

10-8

f [Hz]

h
2
Ω
g
w

loops

κ = 8.3

8.2

8.1

9.2
PTA bound (2015)

NANOGrav

PPTA

Gμ = 10-7

10-8

10-9

10-10

10-11

0.0 0.5 1.0 1.5 2.0
10-12

10-11

10-10

10-9

10-8

10-7

nt(3 nHz)

h
2
Ω
g
w
(3
n
H
z
)

Figure 2. GW spectrum from metastable cosmic strings for monopoles with unconfined fluxes. The
experimental constraints depicted in the left panel are as in figure 1. The black dotted curves indicated
the spectra obtained for topologically stable cosmic strings for the corresponding value of Gµ. In
the right panel, we show predictions for the frequency range of pulsar timing arrays, together with
the bound from the Parkes Pulsar Timing Array (PPTA) [21] published in 2015 (gray) and the more
recently reported preferred regions of NANOGrav [34] (orange) and PPTA [54] (black). These include
contributions from the loops decaying during the matter era. In contrast to figure 1, where g∗ is kept
constant, the results shown in this figure account for the full temperature dependence of g∗ = g∗ (T ).

for quasi-stable strings (indicated by the dotted black curves). We recall that the origin of
this enhancement can be traced back to the scaling behaviour. During radiation domination,
the loop production and subsequent GW emission have to be efficient enough to compensate
the T 4 decrease of the energy in the SM thermal bath. During matter domination, scaling
dictates a reduced GW emission. In this sense, loops generated during the radiation era but
surviving until the matter era radiate a disproportionate amount of energy, leading to an
enhancement of the GW spectrum.

In the right panel of figure 2, we perform a more detailed comparison with the existing
pulsar timing results for the case of monopoles with unconfined fluxes. Parameterizing the
GW power spectrum as Ωgw = Ωgw(fPTA) · (f/fPTA)nt , we determine the amplitude and tilt
of this power law in the range of [2 . . . 4] nHz around the peak sensitivity (10 yr)−1 ' 3 nHz
of current PTA experiments. Note that, once depicted at this frequency instead of the more
conventional reference frequency of 32 nHz = 1/year, it becomes more transparent that the
NANOGrav measurement is essentially a measurement of the amplitude with the tilt still
subject to a large uncertainty and largely uncorrelated with the amplitude. We show the
predictions for metastable cosmic strings for the entire range of model parameters considered,
with the solid lines denoting contours of constant Gµ and the dotted lines indicating contours
of constant κ (with the maximal value,

√
κ = 9.2, indicated by a white dot). The orange

region indicates the region suggested by interpreting the recent NANOGrav result as a GW
signal [34], with the solid (dashed) contours showing the 68 % and 95 % regions reported by
NANOGrav when performing a fit to the first five frequency bins (when performing a fit with
a broken power law). The black solid lines show the preferred region reported by PPTA when
performing a similar analysis based on the first five frequency bins [54]. This region is in
tension with previous results from the PPTA [21] and NANOGrav [19] collaborations, see
refs. [34, 54, 55] for a discussion.

The analysis presented here updates and largely justifies the simpler analyses performed
in refs. [23, 29]. The main difference is the inclusion of the decay of the cosmic string network,
now encoded in the exponential function in eq. (2.6). Contrary to the previous analysis, this
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Figure 3. Parameter space and GW detection prospects for monopoles with unconfined fluxes. The
orange region and the contour lines in dark gray show the tentative signal reported by NANOGrav [34]
and PPTA [54], which lies within the exclusion region of the previous PTA bounds (grey region in
left panel). The blue shaded regions indicate bounds and prospects reported by the LIGO/VIRGO
collaboration [50]. The entire parameter space shown in the left panel can be probed by LISA. The
right panel focuses on two likely future GW observables: the tilt nt of the SGWB at PTA frequencies
and the amplitude at LIGO frequencies. Metastable cosmic strings can explain a signal anywhere in
this plane outside the grey shaded region.

allows for loops of different length to decay at different times, as expected from the different
probability of forming a monopole pair along the loop. The main consequence of this is
that the fall-off of the GW spectrum at small frequencies is described by an f2 power law
instead of f3/2 as found in ref. [23]. The resulting overall shift to larger values of nt for small
κ mildly reduces the overlap with the preferred NANOGrav region, implying in particular
that there is now barely any overlap with the 1σ NANOGrav region, while within 2σ there
is good agreement. We note, however, that the very recent results reported by the PPTA
collaboration prefer a larger spectral tilt, yielding significantly better agreement with our
predictions. In ref. [29], the range of string tensions Gµ = 10−10 . . . 10−6 was considered.
Given our calculation of the GW spectrum, the LIGO O3 upper bound on Ωgw [50] restricts
Gµ to values below 2× 10−7 (see left panel of figure 3). In this paper, we therefore focus on
the range of string tensions Gµ = 10−11 . . . 10−7.

We stress that the current significant uncertainties both in the interpretation of the
PTA data as a GW signal and in the modelling of the cosmic-string network force us to
take any model-to-data comparison with some grain of salt. It is nevertheless instructive to
contrast the tentative NANOGrav signal with other existing and upcoming GW observations,
in particular by LIGO, see figure 3. The left panel shows the NANOGrav signal (95 %C.L.
region of the broken power law fit) in the model parameter plane, together with the PPTA
exclusion limit [21], the LIGO O3 bound on stochastic backgrounds [50],7 and the design

7In ref. [56], upper bounds on the string tension were derived for different NG models. In a model (A) for
the loop number density [12], the obtained GW spectrum essentially shows a plateau between the nHz and the
LVK band, similar to ref. [13]. This is not the case for the loop number density of model (B) [7], which leads
to a GW spectrum [11] that differs from model (A) by up to four orders of magnitude. Correspondingly, the
derived bounds on the string tension are very different. For model (A), the upper bound varies in the range
Gµ . 10−8 . . . 10−6, whereas for model (B), the upper bound is Gµ . (4.0 . . . 6.3) × 10−15 [56]. A range of
two orders of magnitude for model (A) appears reasonable in view of current theoretical uncertainties. The
difference by seven orders of magnitude between models (A) and (B) is largely due to the fact that the evidence
for large-loop dominance from large numerical simulations [8] is not taken into account in model (B).
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Figure 4. GW spectrum from metastable cosmic strings for monopoles with no unconfined fluxes,
i.e., including the additional contribution from cosmic-string segments. Color coding and treatment of
g∗ = g∗ (T ) as in figure 2.

sensitivities of LISA and LIGO. Note that ref. [50] quotes both a more conservative bound,
ΩGW < 1.7 × 10−8 at 95 %C.L. (labeled “O3” in figure 3), and a more aggressive bound,
ΩGW < 5.8× 10−9 (labeled “O3 log prior”), depending on the choice of priors. We conclude
that, within the framework of metastable cosmic strings decaying through the production
of monopoles with unconfined fluxes, the current NANOGrav data are compatible with
2× 10−11 . Gµ . 2× 10−7, with current (and possibly upcoming) LIGO data pushing this
to lower values, towards the regime of quasi-stable cosmic strings. We note, however, that
large values of Gµ are more sensitive to the formation time of the cosmic-string network
and / or the reheating temperature of the Universe, which in our analysis we have taken to be
at very high redshift. Lowering this can suppress the GW spectrum at LIGO scales while
leaving the predictions in the pulsar timing array band untouched. The entire parameter
space compatible with the NANOGrav signal will be finally probed by LISA.

In the right panel of figure 3, we focus on the most likely observables of the near future:
the tilt measured in pulsar timing arrays (horizontal axis) and the amplitude measured in
ground-based interferometers (vertical axis). The entire white region can be reached by
varying the model parameters Gµ and κ, with the orange region indicating the preferred
NANOGrav region. On the contrary, a GW signal in the gray region could not be explained
within this setup.

3.2 Monopoles with no unconfined fluxes

If on the contrary the monopoles do not feature any unconfined fluxes, the channel of energy
loss for the cosmic-string segments is gravitational radiation. In this case, the total GW
spectrum receives an additional contribution from decaying segments, which can originate
both from long strings or from loops. The corresponding number densities are derived in the
appendix and given by eqs. (2.11), (A.28), (A.39), and (A.40).

Figure 4 shows the resulting GW spectrum as well as the predictions for pulsar timing
arrays. Comparing with figure 2, we note that the GW contribution from cosmic-string
segments gives at most a minor correction to the GW contribution from cosmic-string loops
only. The two contributions become comparable only for large values of Gµ and f < flow.
This in particular entails a flatter slope at frequencies below the onset of the plateau in
radiation domination, noticeable in the right panel of figure 4 by the marginally more limited
range of the tilt nt in the pulsar timing regime. Once κ becomes sufficiently large for the
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string network to survive into the matter era, the additional boost in the number density of
the cosmic-string loops makes them completely dominate over the segment contribution. For
a more detailed comparison of the different contributions, see figure 5 in the appendix. In
summary, we conclude that the inclusion of the GW emission from cosmic-string segments
is at most a minor correction, in particular given the overall uncertainties in modelling GW
emission by a cosmic-string network. We note, however, that this conclusion is based on some
model assumptions, in particular on the GW emission rate of loops and segments (Γ̃ ' Γ = 50)
and on the loop size (α = 0.1), which may need to be revisited as our understanding of the
dynamics of cosmic-string networks improves.

3.3 Other observables

The GW spectrum has to satisfy constraints imposed by big-bang nucleosynthesis (BBN)
and the cosmic microwave background. During BBN, the expansion rate of the universe
is tightly constrained, which limits the contribution of GWs to the energy density to the
contribution of about one relativistic neutrino [57, 58]. With TBBN ∼ 0.05MeV, one has
zBBN ∼ 5 × 108 and H(zBBN) ∼ 10−3 Hz. The contribution of one relativistic neutrino to
Ω today is ∆Ω1ν ' 7/43 Ωr/(1 + zeq) ' 5× 10−5. The GW spectrum produced until tBBN
has to be integrated over all subhorizon GWs present at the time of BBN. From eq. (2.22),
one obtains for the frequency fBBN = fp(zBBN) ' 20Hz (10−7/(Gµ))� H(zBBN). Hence, all
frequencies of GWs produced before tBBN fit into the BBN Hubble horizon. This conclusion
also immediately follows from the fact that string loops and segments represent causal GW
sources on subhorizon scales in a decelerating expansion background. If the network decays
after BBN, i.e. te > tBBN, one obtains the contribution of GWs to Ω during BBN by integrating
the plateau in eq. (2.25) from fBBN to fhigh. If the network decays before tBBN, this integral
yields an upper bound on the contribution of GWs. In this way, one obtains

∆ΩBBN
gw .

∫ fhigh

fBBN

df

f
Ωplateau

gw ∼ 10−8
(
Gµ

10−7

)1/2
ln
(
fhigh
fBBN

)
(3.1)

∼ 10−8
(
Gµ

10−7

)1/2 [
32 + ln

(
Trh

1010GeV

)]
.

For the considered parameter values, ∆ΩBBN
gw is smaller than ∆Ω1ν by at least three orders

of magnitude.
Precision measurements of the CMB constrain cosmic-string networks in several ways.

Temperature anisotropies yield an upper bound on the tension of quasi-stable strings,
Gµ < 10−7 [59], which is the largest string tension that we consider. Other interesting
observables are spectral distortions. Current bounds are not yet very stringent, but future
experiments may indeed be able to probe metastable strings [60]. In principle, also monopole
annihilation from string segments could lead to interesting signatures [61, 62], which requires
further investigations.

4 Conclusions

The formation of cosmic strings that are not topologically stable is a rather common feature in
GUT models [24, 28, 43]. If the symmetry breaking step responsible for monopole production
is separated from the symmetry breaking step generating cosmic strings by a phase of cosmic
inflation, we generically obtain a network of metastable cosmic strings. Their decay is
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triggered by pair production of monopoles along the cores of the cosmic strings. This process
is exponentially suppressed by the ratio of the monopole mass to the cosmic string tension,
κ = m2/µ, leading to a cosmological life time. For mass ratios in the range of

√
κ ∼ 7 . . . 8,

this leads to a strong suppression of the GW at low frequencies compared to the signal
expected from topologically stable cosmic strings, while allowing for a large signal in the Hz
regime. Consequently, a large scale-invariant SGWB at LIGO frequencies would be perfectly
compatible with a null detection at pulsar timing arrays. This in particular demonstrates the
significant discovery space for GWs from cosmic strings that ground-based interferometers
are currently probing and which will be further significantly enlarged by the space-based
interferometer LISA. For GUT-scale string tensions, Gµ ∼ 10−8 . . . 10−7, metastable strings
predict a SGWB in the LVK band that could be discovered in the very near future.

A significant theoretical distinction in the computation of the GW spectrum is the
existence of unconfined fluxes in pair-produced GUT monopoles. Monopoles featuring
unconfined fluxes are produced as monopole-antimonopole pairs, and the resulting cosmic-
string segments decay rapidly under the emission of massless gauge bosons. On the other
hand, if the monopoles do not feature any unconfined fluxes, the cosmic-string segments
decay only due to GW emission, leading to an additional contribution to the GW spectrum.
In the present paper, we computed for the first time all contributions in a systematic way,
allowing us to compare the different contributions in both scenarios. In conclusion, we
find that the GW contribution from cosmic-string loops is the dominant contribution in
essentially the entire parameter space of interest, though if present, the contribution from
cosmic-string segments has the potential to mildly influence the slope of the spectrum at
PTA frequencies.

At the technical level, we improve the estimation of the GW spectrum from metastable
cosmic-string loops first given in ref. [23] to allow for cosmic-string loops of different size
decaying at different times, which changes the estimate of the low-frequency slope from 3/2
to 2. For the contribution from metastable cosmic-string segments, our main finding with
respect to ref. [26] is that the frequency range of the plateau in the GW signal is limited
in the ultraviolet by the number of modes contributing. We, moreover, provide analytical
formulas for the loop and segment number densities in all relevant epochs of cosmic history
that take into account recent progress in the modelling of topologically stable cosmic-string
networks [12].

Metastable cosmic strings provide a possible explanation for the tentative SGWB signal
reported by the NANOGrav [34] and PPTA [54] collaborations. For 2×10−11 < Gµ < 2×10−7

and
√
κ > 8, the metastable cosmic-string signal is compatible with the NANOGrav 2σ region

and the PPTA 1σ region, respectively. Upcoming, more precise determinations of the
spectral tilt of this signal will be decisive in distinguishing between this explanation and
other astrophysical or cosmological sources. This, moreover, demonstrates the great potential
of future multi-band GW observations involving PTAs, space-based, and ground-based
interferometers.

Note added. Shortly after submitting this work to the arXiv, the PPTA collaboration [54]
presented an analysis of their latest data set [20], reporting results in agreement with
NANOGrav [34] when performing a similar analysis. For further tests and a discussion of
possible interpretations of these results, see ref. [54]. We included these new results in figures 2
to 4 in the current version, demonstrating that they fit our predictions very well.

– 18 –



J
C
A
P
1
2
(
2
0
2
1
)
0
0
6

Acknowledgments

We thank Jose Juan Blanco-Pillado, Ryusuke Jinno, and Hitoshi Murayama for valuable
discussions. This project has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement number 796961, “AxiBAU” (K.S.).

A Kinetic equations for number densities

The number densities of string loops and segments satisfy kinetic equations, which take various
effects into account that influence the time evolution of the decaying cosmic string network.
They have the general form

∂t n (`, t) = S (`, t)− ∂` [u (`, t) n (`, t)]− [3H (t) + Γd `]n (`, t) , (A.1)

where S is a source term, u describes the change of the string length due to Hubble stretching
and energy loss of the network, H is the Hubble parameter and Γd is the decay rate. Eq. (A.1)
can be derived by considering the changes in n (`, t) ∆`, i.e., the number density of loops
whose lengths lie in the interval [`, `+ ∆`], after some infinitesimally small time step from t
to t+ ∆t,

n (`+ u∆t, t+ ∆t) ∆`′ = S (`, t) ∆t∆`+
(

a (t)
a (t+ ∆t)

)3
n (`, t) ∆`− Γd ` n (`, t) ∆t∆` ,

(A.2)
where ∆`′ = ∆` + ∂`u∆t∆` accounts for the change in the interval length ∆` during
∆t. Expanding all terms in eq. (A.2) up to first order in ∆t and collecting all terms of
order ∆t∆` on both sides reproduces eq. (A.1). In standard form, the partial differential
equation (A.1) reads

[u (`, t) ∂` + w (`, t) ∂t]n (`, t) = F (`, t, n (`, t)) , w = 1 , F = S − (3H + Γd `+ ∂`u)n ,
(A.3)

which can be solved by integrating the ordinary differential equations for the three characteristic
curves l̄(t′), t̄(t′) and n̄(t′) as functions of an auxiliary parameter t′ ∈ [ti, t],

d¯̀
dt′

= u
(

¯̀, t̄
)
,

dt̄

dt′
= 1 , dn̄

dt′
= F

(
¯̀, t̄, n̄

(
¯̀, t̄
))

. (A.4)

Imposing the boundary conditions ¯̀(t) = `, t̄ (t) = t, and n̄
(

¯̀(ti) , ti
)

= ni
(

¯̀(ti)
)
, one

obtains

n (`, t) = n̄
(

¯̀(t) , t̄ (t)
)

= exp
[
−
∫ t

ti

dt′
(
3H

(
t̄
)

+ Γd ¯̀+ ∂¯̀u
(

¯̀, t̄
))]
×
{
ni
(

¯̀(ti)
)

+
∫ t

ti

dt′S
(

¯̀, t̄
)

exp
[∫ t′

ti

dt′′
(
3H

(
t̄
)

+ Γd ¯̀+ ∂¯̀u
(

¯̀, t̄
))]}

= exp
[
−
∫ t

ti

dt′
(
Γd ¯̀(t′)+ ∂¯̀u

(
¯̀(t′) , t̄ (t′)))]× {(a (ti)

a (t)

)3
ni
(

¯̀(ti)
)

+
∫ t

ti

dt′
(
a (t′)
a (t)

)3
S
(

¯̀(t′) , t′) exp
[∫ t′

ti

dt′′
(
Γd ¯̀(t′′)+ ∂¯̀u

(
¯̀(t′′) , t̄ (t′′)))]} .

(A.5)
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A.1 Loops
This subsection is dedicated to the derivation of the loop number density of metastable cosmic
strings throughout different cosmological epochs. We begin with a detailed derivation of the
loop number density during radiation domination, which underlies the analytical estimates
presented in the main body of the text. We then proceed to include the matter era, which we
include in our numerical computations of the GW spectra. We follow a similar procedure
for the segment number density in sections A.2 and A.3. For a comparison of the various
contributions both in radiation and matter domination, see figures 5 and 6. The left panel of
figure 6, moreover, illustrates the relevant time scales.

Radiation era. The source term for loops is provided by the loop production function
f (`, t), and the time derivative of the loop length is controlled by the energy loss due to GW
emission,

u (`, t) = −ΓGµ , (A.6)

which yields the time-dependent length

¯̀(t′) = `+ ΓGµ
(
t− t′

)
. (A.7)

For vanishing initial loop density ◦ni, one obtains in the scaling regime, t < ts,

◦
n< (`, t) =

∫ t

ti

dt′
(
a (t′)
a (t)

)3
f
(

¯̀, t′
)
e−Γd[`(t−t′)+1/2 ΓGµ(t−t′)2] . (A.8)

For the BOS model, the loop production function is approximately given by

f (`, t) = B

α3/2 t4
δ(`− αt) , (A.9)

with ΓGµ� α = 0.1. Hence, the density ◦n< (`, t) of loops with length ` at time t is determined
by the number of loops that are produced at time t′ = (`+ ΓGµ t) /α with size α t′ = `+ΓGµ t.
Inserting eqs. (A.9) and (A.7) into eq. (A.5) and setting ti = 0, one obtains the loop number
density in the radiation era,

◦
n< (`, t) = B

t3/2 (`+ ΓGµt)5/2 e
−Γd[`(t−`/α)+1/2 ΓGµ(t−`/α)2] Θ(αt− l) . (A.10)

Since t < ts = 1/Γ1/2
d and ` ≤ α t, the two exponential damping terms are not effective. The

case of stable loops is obtained for Γd → 0, i.e., ts →∞. In this limit, one obtains the loop
number density (2.5) of the BOS model,

◦
n< (`, t) −→

ts→∞
◦
n (`, t) = B

t3/2 (`+ ΓGµt)5/2 Θ (αt− `) . (A.11)

After the initial scaling regime, for t > ts = 1/Γ1/2
d , one has to use eq. (A.5) with

vanishing loop production function and an initial number density determined by the matching
condition

◦
n>
(

¯̀(ts) , ts
)

= ◦
n<
(

¯̀(ts) , ts
)
' B

t
3/2
s

(
¯̀(ts) + ΓGµts

)5/2 Θ
(
αts − ¯̀(ts)

)
. (A.12)
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Using ¯̀(ts) + ΓGµ ts = `+ ΓGµ t and eqs. (A.5) and (A.12), one obtains

◦
n> (`, t) = B

t3/2 (`+ ΓGµt)5/2 e
−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ

(
αts − ¯̀(ts)

)
Θ (teq − t) . (A.13)

The result differs from the number density of stable loops in eq. (2.5) by two damping terms,
which become relevant for `t & 1/Γd and t2 & 2/ (ΓdΓGµ) = t2e, respectively. A further
important difference is the argument of the Heaviside theta functions. Since ts < t and
¯̀(ts) = `+ ΓGµ (t− ts) > `, the constraint for ◦n> is more stringent, which reflects the fact
that only loops produced before ts contribute to the number density.

Matter era. After matter-radiation equality, t > teq, we distinguish between loops produced
in the radiation era (but surviving until the matter era) and loops formed in the matter era.
For t < ts, the loop number densities are given by the corresponding expressions found for
topologically stable cosmic strings in the BOS model [12],

◦
n

rm
< (`, t) = B

(`+ ΓGµt)5/2
t
1/2
eq
t2

Θ (αt− `) , (A.14)

◦
n

m
< (`, t) = A1 −A2 (`/t)β

t2 (`+ ΓGµt)2 Θ (γt− `) Θ (ts − teq) , (A.15)

with A1 = 0.27, A2 = 0.45, β = 0.31, and γ = 0.18. Here, the second theta function in the
expression for ◦n

m
< reflects the fact that loop production only occurs at t < ts. To obtain the

number density at t > ts, we use eq. (A.5) with a vanishing loop production function and
initial conditions determined by the matching condition at t = ts. Analogously to eq. (A.13),
this yields for the loop number densities at t > ts, teq,

◦
n

rm
> (`, t) = B

(`+ ΓGµt)5/2
t
1/2
eq
t2

e−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ
(
αts − ¯̀(ts)

)
,

◦
n

m
> (`, t) = A1 −A2 (`/t)β

t2 (`+ ΓGµt)2 e
−Γd[`(t−ts)+1/2 ΓGµ(t−ts)2] Θ (ts − teq) Θ

(
γts − ¯̀(ts)

)
, (A.16)

where ts can be either before or after teq. Eqs. (A.14) to (A.16), together with eqs. (2.5)
and (A.13), describe the loop number density of metastable cosmic strings throughout
cosmic history.

A.2 Segments sourced by long strings
For string segments from long strings, whose number density we denote by ñ(s) (`, t), the
source term is the splitting of one segment (or long string) into two segments [26],

S (`, t) = 2 Γd
∫ ∞
`

d`′ ñ(s) (`′, t) . (A.17)

Long superhorizon string segments gain length by Hubble stretching and shrink due to energy
loss by loop production. To compute this effect directly is difficult, but since u (`, t) ∝ `,
this function can be determined by demanding that at early times, t < ts, the long segments
exhibit scaling, i.e., µ

∫
` d` ` ñ (`, t) ∼ µ/t2. One then finds [26],

u (`, t) = 3H (t) `− 2`
t

⇒ ¯̀(t′) =
(
a (t′)
a (t)

)3 ( t
t′

)2
` . (A.18)
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Figure 5. Contributions to the GW spectrum in radiation domination for GWs sourced during the
radiation era (left) and including contributions from the matter era (right). In the right panel, the
GW contribution from segments originating from long strings (for Gµ = 10−11, 10−9, 10−7) as well as
the GW contribution from segments originating from loops (for Gµ = 10−11) lie below the depicted
plot range.

Radiation era. Using (A.17) and (A.18), eq. (A.1) in the radiation era has a simple
solution (t < ts),

ñ
(s)
< (`, t) = C Γ2

d e
−2 Γd ` t . (A.19)

Since the kinetic equation for ñ(s)
< is homogeneous, the normalization is not fixed and C is a

free parameter that can be determined using the matching condition (2.9), yielding C = 4/ξ2.
After the initial scaling regime time, for t > ts, typical segments enter the horizon. They

split into smaller segments and shrink due to gravitational radiation, i.e.,

S (`, t) = 2 Γd
∫ ∞
`

d`′ ñ(s) (`′, t) , u (`, t) = −Γ̃Gµ . (A.20)

The solution of the corresponding kinetic equation (A.1), which matches with ñ(s)
< (`, t) at ts,

ñ
(s)
>

(
¯̀(ts) , ts

)
= ñ

(s)
<

(
¯̀(ts) , ts

)
, (A.21)

is known analytically [26] and given by eq. (2.8),

ñ
(s)
> (`, t) = C

Γ2
d

4
(t+ ts)2
√
t3ts

e−Γd[`(t+ts)+ 1
2 Γ̃Gµ(t−ts)(t+3ts)] Θ (teq − t) . (A.22)

The two damping terms are essentially the same as in eq. (2.6), but there is no restriction
on the segment lengths. The segments have decayed after t̃e =

(
Γ̃Gµ

)−1/2
ts. This can be

immediately generalized to include later times t > teq, as long as the matching time remains
in radiation domination, ts < teq. In this case, we obtain

ñ
rm (s)
> (`, t) = C

Γ2
d

4

(
teq
t

)2 (t+ ts)2√
t3eqts

e−Γd[`(t+ts)+1/2 Γ̃Gµ(t−ts)(t+3ts)] Θ (t− teq) . (A.23)
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Figure 6. GW spectrum from segments for long-lived strings. Left panel: contributions from radiation
and matter era in different parts of the model parameter space. Right panel: for large values of κ, the
GW emission is restricted to the matter era and the amplitude of the spectrum is suppressed. This is
also reflected in the fact that the signal for

√
κ = 8.7 and Gµ = 10−11 falls below the range of h2Ωgw

values shown on the vertical axis.

Matter era. We proceed to consider the remaining case of ts > teq. For teq < t < ts,
solving the kinetic equation with (A.17) and (A.18) (where for matter domination u (`, t) = 0)
yields

ñ
m (s)
< (`, t) = Γ2

d

ξ2
m

e−Γd ` t , (A.24)

where the prefactor has been determined by matching at t = ts to the scaling regime of
topologically stable cosmic strings in matter domination, ρ∞ (t) = µ2/

(
t2ξ2

m

)
with ξm =

0.625 [4].
For t > ts > teq, inserting the ansatz

ñ
m (s)
> (`, t) = Cs (t) e−Γd ` t (A.25)

into the kinetic equation (A.1) yields

Ċs (t) = −Γd Γ̃Gµ tCs (t) , Cs (ts) = Γ2
d

ξ2
m

, (A.26)

which is solved (for Γ̃ = Γ) by

Cs (t) = 1
t4s ξ

2
m

e−
1/2 Γd ΓGµ(t2−t2s) , (A.27)

yielding for the number density

ñ
m (s)
> (`, t) = 1

t4s ξ
2
m

e−Γd[` t+1/2 ΓGµ(t2−t2s)] . (A.28)

A.3 Segments sourced by loops

In addition to decaying long strings, decaying loops also yield string segments, whose number
density we will denote by ñ(l) (`, t). In the absence of simulations and analytical calculations,

– 23 –



J
C
A
P
1
2
(
2
0
2
1
)
0
0
6

we treat them in the same way as segments from long strings. The kinetic equation for
ñ(l) (`, t) at t > ts then becomes a linear partial integro-differential equation,

∂t ñ
(l)
> (`, t) = −

[
3H (t) + Γd `− Γ̃Gµ∂`

]
ñ

(l)
> (`, t) + 2 Γd

∫ ∞
`

d`′ ñ
(l)
>

(
`′, t

)
+ Γd `

◦
n> (`, t) ,

(A.29)
where loop decays now act as an additional source term. For Γ̃ = Γ, this equation can be
formally solved by an infinite series. To see this, we can first write the solution of eq. (A.29)
in exactly the same way as the general solution in eq. (A.5), with the source term inside the
t′ integral given by

S
(

¯̀(t′) , t′) = 2 Γd
∫ ∞

¯̀(t′)
d`′ ñ

(l)
>

(
`′, t′

)
+ Γd ¯̀(t′) ◦n> (¯̀(t′) , t′) . (A.30)

The expression for ñ(l)
> (`, t) thus obtained refers to itself, via the ñ(l)

> (`′, t′) term inside the `′
integral. This dependence can be removed by an iterative procedure. In the next step, we
take the full expression for ñ(l)

> (`, t) that we just derived and insert it back into itself, more
precisely, into the `′ integral in the source term. Repeating this step over and over again
then results in an infinite series for ñ(l)

> (`, t), which no longer refers back to itself and which
can hence be systematically evaluated order by order without any prior knowledge of the
final solution,

ñ
(l)
> (`, t) =

∞∑
i=1

ñ
(l,i)
> (`, t) , ñ

(l,i+1)
> (`, t) = 2 Γd

∫ t

ti

dt′
∫ ∞

¯̀(t′)
d`′A

(
`, t, t′

)
ñ

(l,i)
>

(
`′, t′

)
. (A.31)

Here, the function A accounts for the cosmological redshift, decay into smaller segments, and
GW emission of string segments with length ` at time t in the time interval from t′ to t,

A
(
`, t, t′

)
=
(
a (t′)
a (t)

)3
e−Γd[`(t−t′)+1/2 Γ̃Gµ(t−t′)2] . (A.32)

The interpretation of the infinite series in eq. (A.31) is straightforward. The first term in
the series, ñ(l,1)

> (`, t), describes the first generation of segments from loops, i.e., segments
that form in consequence of monopole pair creation events on string loops; the second term,
ñ

(l,2)
> (`, t), describes the second generation of segments from loops, i.e., segments that form

in consequence of monopole pair creation events on first-generation segments; and so on and
so forth.

In order to evaluate the infinite series term by term, following the iterative procedure
described in eq. (A.31), one needs to know the first term ñ

(l,1)
> (`, t). This term simply follows

the general solution in eq. (A.5) and the source term in eq. (A.30) after dropping the `′
integral contribution in eq. (A.30). In other words, it follows from the kinetic equation in
eq. (A.29) after omitting the source term that describes the decay of string segments into
smaller segments,

∂t ñ
(l,1)
> (`, t) = −

[
3H (t) + Γd `− Γ̃Gµ∂`

]
ñ

(l,1)
> (`, t) + Γd `

◦
n> (`, t) . (A.33)

In contrast to eq. (A.29), this is again a partial differential equation (i.e., no longer a partial
integro-differential equation), which can be solved using the standard methods outlined at
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the beginning of this section. During the radiation era and making use of eq. (A.5), we
thus obtain

ñ
(l,1)
> (`, t) = Γd

[
` (t− ts) + 1

2 ΓGµ (t− ts)2
]
◦
n> (`, t) , (A.34)

where we have used that ñ(l,1)
> (`, t) = 0 at t = ts. Similarly, we obtain during the matter era

ñ
m (l,1)
> (`, t) = ñ

rm (l,1)
> (`, t) + ñ

mm (l,1)
> (`, t) (A.35)

where the segment densities ñrm (l,1)
> and ñ

mm (l,1)
> are induced by loops that are produced

during radiation and matter domination, respectively, and all of which decay during matter
domination. The first term, ñrm (l,1)

> , corresponds to the straightforward continuation of ñ(l,1)
>

in eq. (A.35),
ñ

rm (l,1)
> (`, t) = Γd

[
` (t− ts) + 1

2 ΓGµ (t− ts)2
]
◦
n

rm
> (`, t) (A.36)

while the second term, ñmm (l,1)
> , turns out to be less compact because of the slightly more

complicated form of the loop number density during matter domination, ◦n
m
> , in eq. (A.16),

ñ
mm(l,1)
> (`, t) = Γd

t2 (`+ΓGµt)2 e
−Γd[`(t−ts)+1/2ΓGµ(t−ts)2]

{
A1

[
`(t−ts)+ 1

2 ΓGµ(t−ts)2
]

+A2 (`+ΓGµt)1+β [F2 (t)−F1 (t)−F2 (ts)+F1 (ts)]
}

Θ
(
γ ts− ¯̀(ts)

)
Θ(ts−teq) , (A.37)

where the auxiliary functions F1 and F2 are given in terms of the hypergeometric function 2F1,

Fn (x) = 2F1

(
n− β,−β;n+ 1− β; ΓGµ

`+ ΓGµ t x
)( ΓGµ

`+ ΓGµ t

)n−1 xn−β

n− β
. (A.38)

The above expressions for the first term in the infinite series are the starting point for
numerically evaluating the higher terms in the series. We perform such a numerical analysis,
which reveals that the series rapidly converges after the first few terms. Moreover, we find
that the GW spectrum computed based on the full result for ñ(l) is well approximated by the
GW spectrum computed based on the first term, ñ(l,1), times a numerical fudge factor σ. For
all practical purposes in this paper, this observation allows us to replace to the full result
for ñ(l) by ñ(l,1) times the fudge factor σ, even though the functional dependence of ñ(l) and
ñ(l,1) on ` and t is not identical,

ñ(l) (`, t)→ σ ñ(l,1) (`, t) , σ ' 5 , (A.39)

and
ñ

m (l)
> (`, t)→ σm

[
ñ

rm (l,1)
> (`, t) + ñ

mm (l,1)
> (`, t)

]
(A.40)

with σm ' σ ' 5 for ts < teq and

σm '


1 for Gµ < 10−9.5

5 for Gµ > 10−9.5 and loops formed in RD
15 for Gµ > 10−9.5 and loops formed in MD

(A.41)

for ts > teq.
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