

Recent LHCb Results on heavy hadron spectroscopy

Bo Fang

School of Physics and Technology, Wuhan University On behalf of the LHCb collaboration

24th High-Energy Physics international conference in Quantum Chromodynamics 5-9 July 2021, Montpellier - FR

6 July 2021

Outline

- The LHCb detector and overview of recent LHCb results about heavy hadron spectroscopy
- Highlights
 - Observation of a new D_s^+ meson in $B^0 \rightarrow D^- D^+ K^+ \pi^-$ decays[PRL 126 (2021) 122002]
 - Evidence of a new pentaquark candidate with strangeness [arXiv:2012.10380]
 - Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$ [arXiv:2103.01803]
- Summary and prospects

The LHCb detector

Int. J. Mod. Phys. A 30, 1530022 (2015) JINST 3 (2008) S08005

A single-arm forward spectrometer, designed for the study of heavy flavor physics

- Excellent vertex, IP and decay-time resolution σ(IP) ≈ 20µm for high-p_T tracks σ(τ) ≈ 45fs for B⁰_s → J/ψφ and B⁰_s → D⁻_sπ⁺ decays
 Very good momentum resolution
- Very good momentum resolution $\delta p/p \approx 0.5\%$ -1% for $p \in (0,200)$ GeV $\sigma(m_B) \approx 24$ MeV for two-body decays
- Hadron and muon identification $\varepsilon_{K\to K} \approx 95\%$ for $\varepsilon_{\pi\to K} \approx 5\%$ up to 100 GeV $\varepsilon_{\mu\to\mu} \approx 97\%$ for $\varepsilon_{\pi\to\mu} \approx 1\%$ -3%

6 July 2021 in LHCb acceptance

QCD21

Overview of recent LHCb results about heavy hadron spectroscopy

Some searches:

- Ω_{cc}^+ via $\Xi_c^+ K^- \pi^+$ [arXiv:2105.06841]
- Ω_{bc}^+ and Ξ_{bc}^0 via $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$ [arXiv:2104.04759]
- Ξ_{bc}^{0} via $D^{0}pK^{-}$ [JHEP 2011 (2020) 095]

Observation of some new states:

- A new Ξ_{b}^{0} state decaying to $\Xi_{b}^{-}\pi^{+}$ [PRD 103 (2021) 012004]
- Two new excited B_s^0 states decaying to B^+K^- [arXiv:2010.15931]
- New spin-0 and spin-1 D^+K^- resonances and $\chi_{c0}(3930), \chi_{c2}(3930)$ states
- X(4740) state in $B_s^0 \to J/\psi \pi^- \pi^+ K^- K^+$ decay[JHEP 2102 (2021) 024]
- X(6900) in di-*J/ψ* system[Sci. Bull. 65 (2020) 1983]

[LHCb-FIGURE-2021-001]

Observation of a new D_s^+ meson in $B^0 \rightarrow D^- D^+ K^+ \pi^-$ decays

PRL 126 (2021) 122002

Overview of D_s^+ spectroscopy and motivation

D_s spectroscopy overview

- 10 states experimentally established
- Below 3.1 GeV, still 6 states missing
 - 2^1S_0 state expected to be the lightest one

Why $B^0 \rightarrow D^- D^+ K^+ \pi^-$?

- DK pair \rightarrow states with natural $J^P(0^+, 1^-, 2^+, \text{etc})$
- $D^{*0}K^+$ or $D^{*+}K^0 \rightarrow \text{low efficiency at LHCb}$
- $D^+K^+\pi^- \rightarrow$ ideal final state for new D_s state

Especially, require $M(K^+\pi^-) < M(K(890)^*)$, sensitive to states with unnatural $J^P(0^-, 1^+, 2^-, etc)$ and mass>2.5 GeV

- Theoretical predictions[PRD 93 (2016) 034035]
- Experimental values from PDG

6 July 2021

Data sample and amplitude analysis of B^0 $\rightarrow D^{-}D^{+}K^{+}\pi^{-}$ PRL 126 (2021) 122002

LHCb

- Data

Fit

 $\cdots B^0 \rightarrow D^- D^+ K^+ \pi^-$

100

80

2016-2018 data collected by the LHCb detector, $\sim 5.4 \text{fb}^{-1}$

- Require m($K^+\pi^-$)<0.75 GeV

Evidence of a $J/\psi \Lambda$ structure and observation of two excited Ξ^- states in $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ decay

Full 6D amplitude analysis performed:

11

Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$

Larger data sample leads to further exploration in $B^+ \rightarrow J/\psi \phi K^+$

6 July 2021

12

Updated $B^+ \rightarrow J/\psi \phi K^+$ samples

larger dataset(Run I+Run II) and improved selection(15% higher signal efficiency) \rightarrow

~6x signal yield(~24k) much smaller comb. BKG fraction(~4%)

arXiv:2103.01803

Full 6D amplitude model

Due to increased sample size, Run I model can't fit data well

 $\rightarrow K^*$ improved model + new exotic states

1⁺ Z_{cs} and 1⁺ X produce largest improvement, each~15 σ (stat.)

 $1^{+/-} Z_{cs}$, $1^- X$, $2^- X$ improve fit quality significantly, are also included, each> 5σ (stat.)

Amplitude fit results

mplitude fit results		Breit-Wigner mass, width				arXiv:2103.01803
-	Contribution	Significance $[\times \sigma]$	M_0 [MeV]	$\Gamma_0 [{ m MeV}]$	FF [%]	- Fit Fraction
	X(2 ⁻)					
	$\frac{X(4150)}{X(1^{-})}$	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28 {}^{+ 59}_{- 30}$	$2.0 \pm 0.5 ^{+0.8}_{-1.0}$	
	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+ 18}_{- 110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$	
	All $X(0^+)$				$20 \pm 5^{+14}_{-7}$	
	X(4500)	20(20)	$4474\pm3\pm3$	$77 \pm 6^{+10}_{-8}$	$5.6 \pm 0.7 ^{+2.4}_{-0.6}$	
	X(4700)	17(18)	$4694 \pm 4 {}^{+16}_{-3}$	$87 \pm 8^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+4.9}_{-1.4}$	
	$\mathrm{NR}_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8^{+19}_{-11}$	
	All $X(1^+)$				$26 \pm 3^{+8}_{-10}$	
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3^{+19}_{-6}$	
	X(4274)	18 (18)	$4294 \pm 4^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5 ^{+0.8}_{-0.4}$	
$I^P - 1^{+/-}$ preferred	X(4685)	15(15)	$4684 \pm 7 {}^{+13}_{-16}$	$126 \pm 15 {}^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$	
j = 1 · prefereu,	All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$	
need more data	$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+}_{-}{}^{4}_{14}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$	7
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$	

- Four *X* states observed in Run I are confirmed.
- Observation of two Z_{cs} states, both significance >5 σ . •
- Observation of two new *X* states, both significance $>5\sigma$. •

6 July 2021

OCD21

Summary and prospects

The LHCb detector produces many nice results, fruitful on heavy hadron spectroscopy!

Some highlights:

• New $D_{s0}(2590)^+$ state is first observed with high significance(>20 σ) in $B^0 \rightarrow D^- D^+ K^+ \pi^-$

 $J^P = 0^-$ preferred with significance > 15 σ Strong candidate to be the missing $D_s(2^1S_0)^+$ state

• Evidence of $P_{cs}(4459)^0$ in $\Xi_b^- \to J/\psi \Lambda K^-$

 P_{cs} mass 19MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold More data is needed to explore J^P and possible two-peak structure

• Observation of two $c\overline{c}u\overline{s}$ tetraquarks and two $c\overline{c}s\overline{s}$ tetraquarks in $B^+ \rightarrow J/\psi\phi K^+$

 $1^{+} Z_{cs}(4000)^{+}$ with significance > 15 σ , $1^{+/-} Z_{cs}(4220)^{+}$ with larger width

Two new X states observed, four X states observed in Run I analysis confirmed

The upgrade of the LHCb detector is going on wheels : arXiv:1808.08865

7x data by 2029 than current(14x for hadronic decays), half of these by 2024
 6 July 2021
 QCD21

Thank you for your attention! Any question or comment?

Backup

Amplitude analysis of $B^0 \rightarrow D^- D^+ K^+ \pi^-$

PRL 126 (2021) 122002

	Fit fraction $(\times 10^{-2})$
$D_{s0}(2590)^+$	$63 \pm 9 \text{ (stat)} \pm 9 \text{ (syst)}$
$D_{s1}(2536)^+$	$3.9 \pm 1.4 (\text{stat}) \pm 0.8 (\text{syst})$
NR	51 \pm 11 (stat) \pm 19 (syst)
D_{s0}^+ –NR	$-18 \pm 18 \text{ (stat)} \pm 24 \text{ (syst)}$
D_{s1}^+/D_{s0}^+	$6.1 \pm 2.4 (\text{stat}) \pm 1.4 (\text{syst})$

Spin-parity test: $J^P = 0^-$ is the most consistent with data.

Could be from the $D_s^*(2460)^+$ contribution, handled in syst. study

D2

6 July 2021

\varLambda reconstruction at LHCb

Int. J. Mod. Phys. A 30, 1530022 (2015) JINST 3 (2008) S08005

Due to large mean life time of Λ baryon, most Λ particles decay after Velo.

- For *A* decays in Velo, reconstructed by two Long tracks;
- For *A* decays outside Velo, reconstructed by two Downstream tracks;

Two-peak structures in P_c and P_{cs} spectra

PRL 122 (2019) 222001 Sci.Bull. 66 (2021) 1278

6 July 2021

QCD21

Test of the 1⁺ $Z_{cs}(4000)^+$ state

arXiv:2103.01803

Argand diagram shows the magnitude and phase obtained from data fit is consistent with expected BW hehaviour.

Fit projections onto $m_{J/\psi K^+}$ in two slices of $m_{J/\psi \varphi}$ for the default model with and without the 1⁺ $Z_{cs}(4000)^+$ state.

6 July 2021