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Abstract

Jets containing a prompt J/ψ meson are studied in lead-lead collisions at a nucleon-
nucleon center-of-mass energy of 5.02 TeV, using the CMS detector at the LHC. Jets
are selected to be in the transverse momentum range of 30 < pT < 40 GeV. The J/ψ
yield in these jets is evaluated as a function of the jet fragmentation variable z, the
ratio of the J/ψ pT to the jet pT. The nuclear modification factor, RAA, is then derived
by comparing the yield in lead-lead collisions to the corresponding expectation based
on proton-proton data, at the same nucleon-nucleon center-of-mass energy. The sup-
pression of the J/ψ yield shows a dependence on z, indicating that the interaction of
the J/ψ with the quark-gluon plasma formed in heavy ion collisions depends on the
fragmentation that gives rise to the J/ψ meson.

Submitted to Physics Letters B

© 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

*See Appendix A for the list of collaboration members

ar
X

iv
:s

ub
m

it/
38

07
36

1 
 [

he
p-

ex
] 

 2
3 

Ju
n 

20
21

http://creativecommons.org/licenses/by/4.0




1

1 Introduction
Dissociation of quarkonium states in nucleus-nucleus collisions is one of the best studied sig-
natures of the formation of the quark-gluon plasma (QGP), a deconfined state of quarks and
gluons. Although other nuclear effects have been identified, it is widely accepted that at least
part of the suppression of the various quarkonium states in central lead-lead (PbPb) collisions
at the collision energies probed at the CERN LHC is indeed coming from Debye-like screening
of heavy-quark pairs in the QGP, as anticipated in the seminal paper by Matsui and Satz [1].
This picture may be probed with quarkonia produced at rest. With the emergence of compet-
ing mechanisms, however, it becomes interesting to study the momentum dependence of the
nuclear suppression. In particular, this is true for regeneration [2], wherein quarkonia may be
created from heavy quarks produced independently. This effect is expected to become more rel-
evant with increased collision energy, as more heavy-quark pairs are produced. This explains
the relatively low nuclear suppression at low transverse momentum (pT) that is observed at the
LHC [3], as compared to data at lower collision energies [4, 5]. Independent of these nuclear
modifications, the interpretation of quarkonium results, and heavy-flavor results in general, is
typically based on the assumption that quarkonia are formed at early times compared to the
formation time of the QGP (on the order of 1 fm/c).

However, the formation time estimate of quarkonia is based on general arguments rather than
on a detailed calculation. Despite decades of theoretical developments, models generally are
not able to describe the entirety of the quarkonium data. In particular, they are not able to
simultaneously describe the polarization and the pT-differential cross section. A recent mea-
surement by the LHCb Collaboration that looked at hadrons produced at small angles with
respect to prompt J/ψ mesons (those not produced in b-hadron decays) in proton-proton (pp)
collisions [6] gives some new insight into this puzzle. The observable is the J/ψ-jet fragmenta-
tion function, which corresponds to the distribution of z, the ratio of the J/ψ pT to the pT of the
jet into which it is clustered. For jets in pseudorapidity 2.5 < η < 4.0 and pT > 20 GeV, LHCb
observes that prompt are produced with far more in-jet associated hadroproduction than pre-
dicted by models, i.e., J/ψ mesons tend towards lower values of z. Models of J/ψ production
typically couple fixed-order perturbative quantum chromodynamics calculations with nonper-
turbative matrix elements that describe hadronization of the charm quark pair into a color-
neutral state. A solution to this discrepancy was proposed in Ref. [7], where the evolution of
the parton shower prior to the formation of the J/ψ is accounted for. By including this parton
shower contribution, which is not described in hadronization generators such as PYTHIA [8],
the authors were able to successfully describe the data. Although the LHCb measurement only
concerns the subset of J/ψ found inside a relatively high-pT jet, a recent measurement by CMS
indicates that, for J/ψ with energy larger than 15 GeV, nearly all J/ψ are produced in association
with a significant degree of small-angle jet activity [9].

Assuming this explanation of the LHCb data is correct, this paradigm shift in our understand-
ing of J/ψ production has important implications for the interpretation of J/ψ data in nucleus-
nucleus collisions. It implies that J/ψ are not exclusively produced at short times, but may also
be produced in the course of the interaction of a hard-scattered parton with the QGP. Hence,
the suppression of the yield, as quantified by the nuclear modification factor (RAA), may be
sensitive to parton energy loss, the same phenomenon that gives rise to jet quenching. There
are already some hints in this direction. First, as observed in Ref. [10], the J/ψ RAA in PbPb
collisions [11, 12] appears to exhibit the same rise with pT as light hadrons show [13], which
for the case of light hadrons is well described by parton energy loss models [14–19]. Second,
in mid-central collisions the J/ψ show a significant magnitude of elliptic anisotropy in their
azimuthal angle (v2) [20] at large pT, a region where the hydrodynamical effects that produce
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such an anisotropy are expected to die out. We know of no explanation for this high-pT v2
feature other than path-length-dependent parton energy loss.

The goal of the current measurement is to investigate the z dependence of the nuclear modifi-
cation factor of jets containing a J/ψ meson, i.e.,

RAA(z) =
dNAA/dz

TAAdσpp/dz
. (1)

This ratio compares the per-event yield in PbPb collisions (NAA) to the expectation based on
pp collisions, by scaling the cross section of the latter (σpp) by TAA. The factor TAA is the
average effective nucleon-nucleon luminosity delivered by a single heavy ion collision for a
given centrality selection (a quantity related to the collision impact parameter) [21]. In the
absence of nuclear effects, RAA = 1.

This Letter constitutes the first direct study of the nuclear modification of J/ψ mesons inside
jets. Jets with a constituent J/ψ are studied in the jet pT range of 30 < pT < 40 GeV. The jets are
required to be in the pseudorapidity range |η| < 2, such that they are completely contained in
the tracker acceptance, with no explicit selection on the rapidity of the J/ψ. The pT of the J/ψ is
measured down to a threshold of 6.5 GeV. This gives a range of z from 0.22 to 1. We investigate
to what extent the RAA varies with z, and indirectly, the formation time of the J/ψ. These data
potentially constrain the roles of the different QGP interaction mechanisms that may be at play,
in particular parton energy loss and Debye screening.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the η coverage provided by the barrel and endcap detectors. Muons are de-
tected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.
Muons are measured in the range |η| < 2.4, with detection planes made using three tech-
nologies: drift tubes, cathode strip chambers, and resistive plate chambers. The efficiency to
reconstruct and identify muons is greater than 96% over the full range of η. Matching muons
to tracks measured in the silicon tracker results in a relative transverse momentum resolution,
for muons with pT up to 100 GeV, of 1% in the barrel and 3% in the endcaps [22]. The forward
hadron (HF) calorimeter uses steel as an absorber and quartz fibers as the sensitive material.
The two halves of the HF are located 11.2 m from the interaction region, one on each end, and
together they provide coverage in the range 3.0 < |η| < 5.2.

Events of interest are selected using a two-tiered trigger system [23]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz for high luminosity pp collisions and 30 kHz
for PbPb collisions. The second level, known as the high-level trigger (HLT), consists of a farm
of processors running a version of the full event reconstruction software optimized for fast pro-
cessing, and reduces the event rate to around 1 kHz before data storage, for both pp and PbPb
collisions.

The particle-flow algorithm [24] aims to reconstruct and identify each individual particle in an
event, with an optimized combination of information from the various elements of the CMS
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detector. The energy of photons is obtained from the ECAL measurement. The energy of elec-
trons is determined from a combination of the electron momentum at the primary interaction
vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the
energy sum of all bremsstrahlung photons spatially compatible with originating from the elec-
tron track. The energy of muons is obtained from the curvature of the corresponding track. The
energy of charged hadrons is determined from a combination of their momentum measured in
the tracker and the matching ECAL and HCAL energy deposits, corrected for the response
function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is
obtained from the corresponding corrected ECAL and HCAL energies.

Collision centrality is determined from the total transverse energy deposited in both of the
HF calorimeters. The centrality is expressed as a percentage of the total inelastic hadronic
cross section, with 0% representing the most head-on (central) collisions and 100% the most
peripheral collisions. Hadronic events are selected by requiring at least three towers in each
half of the HF calorimeter with an energy larger than 4 GeV. In this analysis, we restrict to the
90% most central events, where the hadronic event selection is fully efficient.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [25].

3 Data analysis
3.1 Simulation

Monte Carlo simulations are used as a baseline for the J/ψ efficiency and acceptance, as well as
the detector response to jets. Correction factors to account for data-to-simulation discrepancies
are discussed in the following section. Events are generated with PYTHIA 8 (version 8.230) [8],
using the CP5 underlying event tune [26]. Prompt J/ψ are produced using all color-singlet
and color-octet modes with the default matrix elements [27]. Simulation of PbPb collisions is
done by embedding PYTHIA 8 events into PbPb collisions events produced with the HYDJET

generator (version 1.9) [28]. The event activity at mid-rapidity is matched to that of minimum
bias collision data via an analysis of the energy deposited in randomly distributed cones. The
response of the CMS detector is simulated using the GEANT4 package [29].

3.2 Prompt J/ψ meson signal extraction

J/ψ mesons are measured via their decays into oppositely charged muon pairs. Events are
selected with a trigger that requires that at least two muon candidates are reconstructed in the
muon subsystem, first at L1, and then using refined information at HLT. In PbPb collisions, the
rate is reduced at HLT by requiring one of the two muons to match a track from the silicon
tracking subsystem. The invariant mass of the pair (mµ+µ− ) is required to be within the range
of 1 to 5 GeV.

A set of offline muon selection criteria that is optimized for low pT muons is applied [11].
The J/ψ yield is obtained from a fit to the mµ+µ− distribution in bins of jet pT and z. An
example of a mµ+µ− fit is shown in the left panel of Fig. 1. The signal is modeled as the sum of
two Crystal Ball functions [30] with different widths, but common mean and tail parameters.
The tail parameters are obtained from simulation. The dimuon background is modeled by a
Chebyshev polynomial.

Nonprompt J/ψ mesons, i.e., those that are produced in b hadron decays, are separated from
the prompt component by exploiting the long lifetime of these decays. A fit is performed to the
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Figure 1: Projections of a two-dimensional fit used to extract the prompt J/ψ yield in PbPb
collisions. Left: The dimuon invariant mass distribution. Right: The pseudo-proper decay
length (lJ/ψ ) distribution. The fit functions are described in the text. The lower panels display
the pull distributions, defined as the difference between the fit and the data, divided by the
combined statistical uncertainty in the fit and in the data.

distribution of the pseudo-proper decay length, lJ/ψ = Lm/|p|, where L is the distance along
the beam axis between the J/ψ vertex and the nearest primary collision vertex, and m and p are
the world-average J/ψ mass (3.097 GeV) [31] and the J/ψ candidate momentum, respectively.
An example of a lJ/ψ fit is shown in the right panel of Fig. 1. In order to parameterize the lJ/ψ

distribution, the sPlot technique [32] is used to decompose it into the J/ψ signal and non-J/ψ
background components, using mµ+µ− as the discriminating variable. Prompt J/ψ mesons can
have nonzero values of lJ/ψ , both positive and negative, because of the finite detector resolu-
tion. The resolution is modeled as a sum of two Gaussian functions, which are constrained by
fitting the negative part of the lJ/ψ distribution. The nonprompt component is modeled as an
exponential function, with the lifetime treated as a free parameter, convolved with the same
double-Gaussian resolution function. The combinatorial background is itself well described
by a prompt and nonprompt component, again using the same resolution function. The non-
prompt component of the background is described by an empirical sum of exponential func-
tions. To extract the yield of prompt J/ψ mesons a two-dimensional fit to the joint mµ+µ− and
lJ/ψ distribution is performed. All parameters are fixed by the one-dimensional fits, aside from
the prompt and nonprompt J/ψ signal normalizations, and the background normalizations, as
well as the nonprompt signal lifetime parameter. A more detailed description of the fitting
procedure can be found in Ref. [11].

The J/ψ acceptance and detection efficiency are determined in simulation in finely binned his-
tograms of the pT and η of the J/ψ. For PbPb collisions, the efficiency is also determined in bins
of collision centrality. The correction for acceptance and efficiency is applied as a weight factor
to each J/ψ candidate prior to the signal extraction. Differences between data and simulation
are evaluated in-situ, from events collected with a single-muon trigger, using the tag-and-probe
technique [33]. These additional corrections are applied to the simulation in relatively coarse
bins. Tag-and-probe corrections are derived separately for trigger, identification, and recon-
struction efficiency.
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3.3 Jet pT determination

Jets are clustered using the anti-kT algorithm [34, 35] with a distance parameter of R = 0.3. The
constituents of the jets are the output of the particle-flow algorithm, described in Section 2, with
the exception of the J/ψ candidate. Muon pairs with an invariant mass consistent with a J/ψ
decay are replaced by the reconstructed J/ψ candidate. Jet energy corrections are derived from
simulation as a function of pT and η using the framework described in Ref. [36], in which data-
to-simulation scale factors are obtained from Z+jet, γ+jet and dijet pT balancing studies. In the
case of PbPb collisions, these corrections are derived from peripheral events to avoid additional
pT imbalance from jet quenching. The jet energy correction procedure is only applied to the
non-J/ψ component of the jet, as the momentum of the J/ψ is determined with high precision
from its dimuon decay. In PbPb collisions, the constituent subtraction method [37] is employed
to subtract the contribution to the jet momentum from the underlying event. The underlying
event contribution is subtracted from only the non-J/ψ constituents of the jet. The J/ψ meson
itself is considered to come from the primary hard scattering.

In addition to the energy scale, the energy resolution of jets is somewhat degraded in data com-
pared to simulation. The corresponding scale factors are derived from dijet balancing studies
performed in pp collisions at

√
s = 13 TeV in 2017 and 2018 [36]. The resolution is found to

be between 10 and 20% worse than the simulation, depending on η. In order to incorporate
this effect, a Gaussian smearing is applied to the measured jet pT values in simulation to match
the resolution in data. This smeared mapping is then applied in the unfolding procedure, as
described below.

The finite pT resolution of jets causes migration of jets across z bins. It also causes migration
of jets into and out of the nominal pT selection of 30–40 GeV. In order to capture the full jet
response, we also perform the measurement in underflow and overflow bins of 10–20 GeV
and 40–50 GeV, respectively. With the current data, a reliable yield cannot be extracted for pT
intervals larger than the selected overflow bin, which motivates the choice of the nominal pT
interval. To correct for these bin migration effects, we unfold the data simultaneously in these
two dimensions (jet pT and z) using the iterative D’Agostini method [38], as implemented in
the ROOUNFOLD package [39]. The detector response matrix, which defines the relationship
between the true and measured values, is taken from the PYTHIA 8 simulation, aside from the
aforementioned data-to-simulation scale factors for the jet energy scale and resolution. The
response matrices for pp and PbPb collisions are shown in Fig. 2. The coarse bins show the
jet pT dependence, whereas the finer inset bins show the dependence on z. Each column of
measured bins is normalized to unity, such that each bin represents the fractional contribution
of the given true pT and z values to the measured values for that column. The PbPb data
exhibit substantially larger off-diagonal contributions than for pp, as expected from the larger
underlying event, which drives the bin migration in PbPb.

In this method, the unfolding is initialized with a “prior” distribution in the two variables,
which is taken from simulation. To avoid bias from the presumed shape of the z distribution in
simulation, which is known to be inaccurate [6], the prior distribution is flattened in z. After a
tunable number of iterations, which correspond to the degree of regularization, the procedure
is truncated. To improve the performance of the unfolding, we run the full set of iterations
multiple times. The prior of each such “super-iteration” is obtained using the z distribution
that is output from the previous super-iteration. The number of iterations and super-iterations
are optimized using simulated prompt J/ψ events, by applying a random Gaussian smearing
to the yields according to the relative statistical uncertainties in data, in order to emulate the
effect of statistical fluctuations. The use of three iterations is found to give the best performance
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Figure 2: Detector response matrices for jets containing a prompt J/ψ meson, showing the bin
migration probability as a function of jet pT and z. The response for pp collisions (left) is
evaluated using PYTHIA 8. The response for PbPb collisions (right) is evaluated using PYTHIA

8 embedded into HYDJET.

in both pp and PbPb simulated samples. Since the optimal settings depend not only on the
statistical uncertainties of the measured z distribution, but also on its shape, we also evaluated
them in nonprompt J/ψ simulation, where the measured distribution is very different than in
the prompt J/ψ simulation.

4 Systematic uncertainties
The systematic uncertainties may be divided into three categories: J/ψ signal extraction, jet
energy scale and resolution, and normalization uncertainties.

J/ψ signal extraction: Uncertainties in the extraction of the J/ψ yields arise from the signal and
background shape modeling, as well as from the acceptance and efficiency of muon recon-
struction and identification. The signal shape of the mµ+µ− distribution is varied from the
two Crystal Ball parameterization to a single Crystal Ball function convoluted with a Gaussian
function. The radiative tail of the signal model is also varied by treating the tail parameters
of the Crystal Ball function as free parameters, rather than taking their values from simula-
tion. The relative uncertainty in the J/ψ yield coming from the signal modeling is less than
1% in pp and less than 2% in PbPb collisions. The dependence of the signal shape on lJ/ψ is
evaluated by switching from a parameterization of the lifetime distribution of nonprompt J/ψ
signal to a template built from simulation. The relative uncertainty from this variation is less
than 1.5% in both pp and PbPb collisions, except at low J/ψ pT (<10 GeV) in pp collisions,
where it reaches 4.5%, and where it dominates the uncertainties in the J/ψ signal extraction.
The Gaussian function describing the lifetime resolution is varied to use the value obtained
from simulation, rather than obtaining it from the data. This variation affects both the signal
and background modeling, and results in a relative uncertainty of less than 2% in pp and PbPb
collisions.

The uncertainty in the description of the background is obtained as follows. Instead of a Cheby-
shev polynomial, an exponential of a Chebyshev polynomial is used to describe the mµ+µ−
distribution. The range of mµ+µ− used in the fit is varied as well. This results in an uncertainty
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of less than 1% in pp and PbPb collisions, except at low J/ψ pT (< 10 GeV) in PbPb collisions,
where it reaches 6% and dominates the uncertainties in the J/ψ signal extraction. As was done
for the signal, a template is used to describe the lJ/ψ distribution, rather than a parameteriza-
tion. In this case, the template is obtained from a background-like event sample using sPlot.
The source results in a relative uncertainty of < 2% in the J/ψ yields in both pp and PbPb
collisions.

The acceptance and efficiency corrections lead to an associated relative uncertainty in the J/ψ
yields in pp collisions of 1.5–2.5%, and 3–4% in PbPb collisions, depending on the value of
J/ψ pT, and comprise the dominant source of uncertainty in the J/ψ signal extraction for J/ψ
pT > 10 GeV. The largest component of the uncertainty is statistical in nature, coming from the
finite size of the single-muon trigger samples used in the tag-and-probe method. The statistical
uncertainty of the simulation samples is also taken into account, but is generally subdominant.
A systematic component is evaluated by variations of the signal and background modeling in
the extraction of the J/ψ yield from fits to the mµ+µ− distribution, similar to the procedure for
the J/ψ yield extraction in the main analysis, described above. The relative uncertainty from
this source is around 1% in both pp and PbPb collisions, with no strong dependence on pT.
Further details on the procedure used to evaluate systematic uncertainties for muons from the
tag-and-probe method are reported in Refs. [22, 33].

Jet energy scale and resolution: The uncertainty in the jet energy scale is evaluated from dijet and
γ+jet balancing methods, as described in Ref. [36]. The uncertainty in the jet energy scale in pp
collisions is around 3–4%, increasing as a function of |η|. In PbPb collisions, the uncertainty is
around 4%, except for the barrel-endcap transition region (1.3 < |η| < 1.6), where it can become
as large as 10%. The uncertainty in the jet energy resolution is evaluated from a dijet balancing
method, as also described in Ref. [36]. In pp collisions, the uncertainty in the resolution is
in the range of 2–4% in the barrel region, but is larger in the endcap and transition regions,
where it varies in the range of 10–20%, depending on η. For PbPb collisions, the uncertainty is
evaluated from peripheral data, as well as from pp data recorded in the same yearly running
period, and varies from 3% in the barrel to 7% in the endcap and transition regions. In PbPb,
there is an additional contribution to the uncertainty because of the modeling of the underlying
event in simulation with HYDJET. This uncertainty is evaluated by comparing the energy in
randomly distributed cones in data and simulation. The difference between the random cone
distributions in data and simulation is used to estimate the effect on the jet resolution.

Unfolding: The uncertainty in the regularization applied is estimated by varying the number of
iterations used in the unfolding, from the settings found to be optimal for prompt J/ψ to those
found to be optimal for the nonprompt J/ψ signal, which has a very different signal shape as a
function of z. For nonprompt simulations in pp and PbPb collisions, the use of ten iterations
is found to give the best performance, in contrast to three iterations for the prompt simulation.
In both cases, the statistical precision of the data is emulated in simulation. The assumption
of a prior that is flat in z is also relaxed, by instead initializing the prior to match the shape of
the truth z distributions in simulated nonprompt J/ψ signal samples, which are more similar
in shape to the measured z distributions. Finally, the statistical uncertainty of the simulated
samples used in the unfolding is taken into account, and is generally subdominant. Systematic
uncertainties related to the jet energy scale and resolution are propagated by producing varia-
tions of the detector response matrix and repeating the unfolding procedure for each variation.

Normalization uncertainties: Cross section measurements in pp collisions have an overall uncer-
tainty from the integrated luminosity of 1.9% [40] that is obtained from an analysis of data from
a van der Meer scan [41]. The PbPb data are normalized by the equivalent number of hadronic
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nucleon-nucleon interactions in the data sample, which has an uncertainty of 1.3% coming from
the selection of such events, taking into account possible contamination from electromagnetic
interactions and beam backgrounds. To compare to data from pp collisions, the PbPb data are
normalized by TAA, which is determined from the Monte Carlo implementation of the Glauber
model described in Ref. [42]. For the centrality intervals used in this analysis, the correspond-
ing values of TAA are 6.27± 0.14, 18.79± 0.36, and 2.717± 0.098 mb−1, for the 0–90, 0–20 and
20–90% centrality intervals, respectively.

The various sources of systematic uncertainty are shown in Fig. 3. Sources related to the J/ψ
yield extraction are combined into a single component, for visibility. Some sources of system-
atic uncertainty are largely correlated bin-to-bin, notably the uncertainty in the jet energy scale,
jet energy resolution, and prior. No cancellation of systematic uncertainties is assumed, how-
ever, when comparing pp to PbPb collisions.
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Figure 3: The main sources of systematic uncertainty, as a function of z, for the cross section in
pp (left) and the TAA-scaled yield in PbPb (right) collisions. The normalization uncertainties of
1.9% for pp and 2.6% for PbPb are not shown.

5 Results
Figure 4 shows the distribution in pp data of the fragmentation variable z for prompt J/ψ
mesons. Its shape is compared to generator-level predictions from PYTHIA 8 for prompt and
nonprompt J/ψ signals. In contrast to the PYTHIA 8 simulation, where prompt J/ψ are produced
directly in the matrix element partonic scattering, the data show a relatively large degree of sur-
rounding jet activity, indicative of J/ψ production inside of parton showers. The z distribution
in data more closely resembles that of the nonprompt J/ψ PYTHIA 8 simulation, which con-
tains a larger jet-like component from fragmentation, as well as other products of the b-hadron
decay. The data confirm the trends observed in Ref. [6], but in a different rapidity range and
nucleon-nucleon center-of-mass energy.

Figure 5 (left) shows the same z distribution in pp collisions, this time normalized as a differ-
ential cross section. The per-event yield of prompt J/ψ mesons in PbPb collisions is also shown.
In order to compare the two collision systems, the PbPb yields are scaled by the nuclear overlap
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Figure 4: Normalized z distribution in pp collisions, compared to prompt and nonprompt J/ψ
in PYTHIA 8, at the generator level. Bars indicate statistical uncertainties, while systematic
uncertainties are depicted as boxes.

factor TAA. The PbPb data are also peaked at an intermediate value of z, indicating a sizable
amount of small-angle hadroproduction.

The PbPb data show a suppression level that is generally comparable to that observed for
“inclusive” prompt J/ψ, i.e., without an explicit jet requirement [11]. This is quantified by
the ratio of these two distributions, RAA, shown in Fig. 5 (right). The data show a slight rising
trend as a function of z, with a significance of around two standard deviations.

Figure 6 shows the RAA for two centrality selections, 0–20 and 20–90%. A larger degree of
suppression is observed for the more central selection, as expected for final-state effects related
to the QGP. The rising trend with increasing z is more pronounced in central events. In the
largest z bin, where the J/ψ is produced with fewer associated particles, the suppression is
significantly reduced as compared to lower values of z. Such a reduction of suppression at
large z has a natural interpretation in terms of the jet quenching phenomenon. Lower values of
z should be populated with jets with a J/ψ produced late in the parton shower. Such a parton
cascade is expected to have a large degree of interaction with the QGP in the form of subsequent
medium-induced emissions, as compared to a jet with a small partonic multiplicity [43]. In this
picture, the rising trend observed for inclusive prompt J/ψ production would be explained by
the same mechanism, as z tends to increase with increasing pT.

6 Summary
Jets containing a prompt J/ψ meson were studied in proton-proton (pp) and lead-lead (PbPb)
collisions at

√
s

NN
= 5.02 TeV, for jets with transverse momentum 30 < pT < 40 GeV and pseu-

dorapidity |η| < 2. The distribution of the fragmentation variable z, the ratio of the J/ψ pT
to that of the jet, was measured in both systems. In pp collisions, prompt J/ψ mesons were
found to have more surrounding jet activity, i.e., to populate lower values of z than predicted
by PYTHIA 8 simulations, suggesting that J/ψ production late in the parton shower is underesti-
mated. The pp and PbPb distributions were compared by calculating the nuclear modification
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Figure 5: Left: The J/ψ differential cross section in pp and the TAA-scaled yield in PbPb col-
lisions, as a function of z. The normalization uncertainties of 1.9% for pp and 2.6% for PbPb
are not included in the point-by-point uncertainty boxes and not shown in the plot. Right: The
nuclear modification factor RAA, as a function of z. Bars indicate statistical uncertainties, while
systematic uncertainties are depicted as boxes. The box around unity shows the normalization
uncertainty.

factor, RAA, the ratio of PbPb data to the expectation based on pp data. The value of RAA as a
function of z shows a rising trend. The suppression at low z is found to be larger in the 20%
most central events (i.e. “head-on” collisions), as compared to the less central selection. The
results show explicitly that the J/ψ produced with a large degree of surrounding jet activity are
more highly suppressed than those produced in association with fewer particles. This finding
emphasizes the importance of incorporating the jet quenching mechanism in models of J/ψ
suppression.
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C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro,
N. Neumeister, C.C. Peng, S. Piperov, A. Purohit, H. Qiu, J.F. Schulte, M. Stojanovic16,
N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li,
B.P. Padley, R. Redjimi, J. Roberts†, J. Rorie, W. Shi, A.G. Stahl Leiton

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-
Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl,
E. Hughes, S. Kaplan, O. Karacheban24, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson,
S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali91, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon92, H. Kim,
S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov
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