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Abstract

A search for Wg resonances in the mass range between 0.7 and 6.0 TeV is presented.
The W boson is reconstructed via its hadronic decays, with the final-state products
forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The
search is based on proton-proton collision data at

p
s = 13 TeV, corresponding to an

integrated luminosity of 137 fb�1, collected with the CMS detector at the LHC in 2016–
2018. The Wg mass spectrum is parameterized with a smoothly falling background
function and examined for the presence of resonance-like signals. No significant ex-
cess above the predicted background is observed. Model-specific upper limits at 95%
confidence level on the product of the cross section and branching fraction to the Wg
channel are set. Limits for narrow resonances and for resonances with an intrinsic
width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between
0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date
on the existence of such resonances. In specific narrow-resonance benchmark mod-
els, heavy scalar (vector) triplet resonances with masses between 0.75 (1.15) and 1.40
(1.36) TeV are excluded for a range of model parameters. Model-independent limits
on the product of the cross section, signal acceptance, and branching fraction to the
Wg channel are set for minimum Wg mass thresholds between 1.5 and 8.0 TeV.
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1 Introduction
Searches for new resonances predicted in theories beyond the standard model (SM) are among
the key components of the physics program at the CERN LHC. Many of these searches have
been carried out in the past decade, since the start of the LHC operation, and have helped
to reshape the landscape of allowed beyond-the-SM physics. Experimental searches for the
production of new resonances decaying into a pair of SM particles are a notable aspect of this
program. In the case of a new resonance with significant couplings to quarks and gluons, it
would be produced in quark-antiquark, quark-gluon, or gluon-gluon interactions in proton-
proton (pp) collisions at the LHC and subsequently decay into a pair of jets. On the other
hand, if the couplings to quarks and gluons were suppressed, other decay channels, including
decays into pairs of vector bosons (diboson decays), would become dominant.

Diboson decays involving photons, i.e., Wg, Zg, Hg, and gg channels, are important parts
of this search program, owing to the excellent detection efficiency and photon energy resolu-
tion of the ATLAS and CMS detectors. For example, searches in the gg channel contributed
significantly to the discovery of the Higgs boson by the ATLAS and CMS Collaborations in
2012 [1–3]. Nevertheless, the above-mentioned decay modes involving photons, in particular
the Wg decay mode, are generally less studied over a large range of masses than other diboson
signatures. There are multiple beyond-the-SM theories that predict Wg resonances, including
new particles in models with an extended Higgs sector [4], such as charged Higgs bosons in
generic two Higgs doublet models [5, 6], as well as particles predicted in technicolor [7–10],
heavy vector triplet [11], and electroweak singlet [12] models, or scalar “quirks” in folded su-
persymmetry [13]. A number of nonresonant Wg analyses that mainly probe anomalous WWg
couplings have been conducted at the CERN SppS, LEP, and LHC, as well as at the Fermilab
Tevatron. However, searches for Wg resonances at high mass have been conducted only by
the ATLAS experiment, in the leptonic decay channel of the W boson at the center-of-mass en-
ergies of 7 TeV [14] and 8 TeV [15], and in the hadronic decay channel at 13 TeV [16]. The best
95% confidence level (CL) upper limits on the product of the cross section and branching frac-
tion to Wg for narrow spin-1 resonances in the leptonic channel are 0.5–6.0 fb in the 0.2–1.6 TeV
mass range [15], while the analogous limits in the hadronic channel [16] are 0.14–10 fb in the
1.0–6.8 TeV mass range.

In this Letter, we describe a search for Wg resonances in the hadronic decay channel of the
W boson using pp collision data at

p
s = 13 TeV delivered by the LHC in 2016–2018. The

results of the search are interpreted in terms of limits on narrow and broad, spin-0 and spin-
1 resonances in a mass range between 0.7 and 6.0 TeV. Narrow resonances are taken to be
those with widths GX that are negligible compared to the experimental resolution, while for
broad resonances we consider the representative case for which GX/mX = 5%, where mX is
the resonance mass. Given the large mass of the resonances probed in this analysis, the W
boson is produced with a high Lorentz boost and is reconstructed as a single large-radius jet.
The two-prong structure and mass of this jet are established using jet substructure techniques,
allowing for the reduction of the dominant background from direct photon production, where
a jet recoiling against a photon originates from quantum chromodynamics (QCD) radiation.

Digitized versions of tables and plots from this paper can be found in the HEPData database [17].

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
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tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (h) coverage provided by the barrel and endcap detec-
tors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke
outside the solenoid.

In the region jhj < 1.74, the HCAL cells have widths of 0.087 in h and 0.087 in azimuth (f).
In the h-f plane, and for jhj < 1.48, the HCAL cells map on to 5�5 arrays of ECAL crystals
to form calorimeter towers projecting radially outwards from close to the nominal interaction
point. For jhj > 1.74, the coverage of the towers increases progressively to a maximum of 0.174
in Dh and Df. Within each tower, the energy deposits in ECAL and HCAL cells are summed
to define the calorimeter tower energies, and subsequently used to provide the energies and
directions of hadronic jets.

Events of interest are selected using a two-tiered trigger system [18]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz within a fixed latency of about 4 ms [19]. The
second level, known as the high-level trigger, consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing, and reduces the event
rate to around 1 kHz before data storage [18].

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [20].

3 Data sets and event selection
The data used in this search correspond to an total integrated luminosity of 137 fb�1 and were
recorded by the CMS experiment at

p
s = 13 TeV in 2016–2018 (36, 41, and 60 fb�1 in 2016,

2017, and 2018, respectively) [21–23]. The high instantaneous luminosity delivered by the LHC
results in additional interactions in the same or neighboring bunch crossings as the hard scat-
tering interactions (pileup). The average number of pileup interactions in the 2016 (2017 and
2018) data set is around 23 (32).

The data are selected via single-photon triggers that require the photon candidate to be within
jhj < 2.5, and to have transverse momentum pT > 165 or 175 GeV in 2016 and pT > 200 GeV
in 2017–2018. We determine the selection efficiencies for these triggers using unbiased data
samples collected with single-muon triggers. The single-photon triggers are found to be 98–
100% efficient with respect to the offline selection described below, for the entire mass range
used in the analysis. The small residual inefficiency is taken into account when calculating the
signal acceptance.

Simulated Monte Carlo (MC) signal samples are produced at leading order (LO) in perturbative
QCD. They are used to optimize the analysis selection and to calculate the signal efficiency.
Simulated signal events of spin-0 resonances decaying to Wg are generated using electroweak
triplet pseudo-Goldstone bosons p3 [24] and a heavy (pseudo-)scalar SU(2)L triplet [25], while
for spin-1 resonances, a heavy vector SU(2)L triplet [25] is used. Several signal samples are
generated with masses ranging from 0.7 to 6.0 TeV. Two resonance width assumptions are
used in the simulation: one, termed “narrow”, has a width which is significantly smaller than
the detector resolution, and the second, referred to as “broad”, has GX/mX = 5%. The latter
choice is representative of broad resonances, for which the impact of the off-shell production
on the signal efficiency becomes sizable.
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Simulated background events do not enter the analyses directly, as the background is obtained
from a fit to data. They are only used to assess the accuracy of the background model and
to optimize the event selection. The dominant background from g+jet production as well as
the QCD multijet background from SM events composed uniquely of jets produced through
the strong interaction which have a jet misidentified as a photon are generated at LO using
MADGRAPH5 aMC@NLO. Smaller backgrounds from W+jets and W+g production, as well
as top quark backgrounds, are not simulated, as their contribution is far less than that of the
dominant backgrounds and does not affect the search optimization procedure.

Both the signal and background samples are generated using MADGRAPH5 aMC@NLO 2.2.2
(2.4.2) [26] with NNPDF3.0 NLO [27] (NNPDF3.1 NNLO [28]) parton distribution functions
(PDFs) for 2016 (2017 and 2018) conditions. Fragmentation and hadronization are simulated
with PYTHIA 8.205 (8.230) [29] with the CUETP8M1 [30, 31] (CP5 [32]) underlying event tune for
2016 (2017 and 2018) samples. All simulated samples are processed with the full CMS detector
model based on GEANT4 [33] and reconstructed with the same suite of programs as used for
collision data. Pileup effects are taken into account by superimposing simulated minimum
bias events on the hard scattering interaction, with the multiplicity distribution matching that
observed in data.

A particle-flow (PF) event algorithm [34] is used, which aims to reconstruct and identify each
individual particle in an event, with an optimized combination of information from the vari-
ous elements of the CMS detector. The energy of photons is obtained from the ECAL measure-
ment. The energy of electrons is determined from a combination of the electron momentum
at the primary interaction vertex as determined by the tracker, the energy of the correspond-
ing ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is obtained from the curvature of
the corresponding track. The energy of charged hadrons is determined from a combination of
their momentum measured in the tracker and the matching ECAL and HCAL energy deposits,
corrected for the response function of the calorimeters to hadronic showers. Finally, the energy
of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

The events must contain at least one reconstructed primary vertex with at least four associated
tracks, with transverse (longitudinal) coordinates required to be within 2 (24) cm of the nominal
collision point. The candidate vertex with the largest value of summed physics-object p2

T is
taken to be the primary pp interaction vertex. The physics objects are the jets, clustered using
the jet finding algorithm [35, 36] with the tracks assigned to candidate vertices as inputs, and
the associated missing transverse momentum, taken as the negative vector sum of the pT of
those jets.

Since the dominant background in the analysis is from direct photon production (g+jets),
rather than from sources with a misidentified photon, we chose a “loose” photon identifica-
tion working point of a standard CMS sequential-selection algorithm, which maximizes the
photon efficiency at the cost of a slightly higher misidentification rate compared to other avail-
able working points [37]. The identification is based on photon shower shape and isolation
variables. The latter are computed from various types of PF candidates in a cone of radius
DR =

p
(Dh)2 + (Df)2 = 0.3 around the photon candidate, corrected for the pileup effects.

In addition, a conversion-safe electron veto [37] is applied. The loose working point gives an
efficiency of approximately 90% that does not depend on the photon pT up to the highest val-
ues explored in the analysis, while reducing the background from misidentified photons by
approximately a factor of 7. The photon candidates are required to have pT > 225 GeV and
to be within the barrel fiducial region of the ECAL (jhj < 1.44). Since events with a photon
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reconstructed in the endcap region suffer from high background from g+jets, which peaks in
the forward direction, they do not add to the sensitivity of the analysis and therefore are not
included.

Large-radius jets (J) are used to reconstruct hadronically decaying, highly Lorentz-boosted W
boson candidates. These jets are reconstructed from PF candidates clustered using the anti-kT
algorithm [35, 36] with a distance parameter of 0.8. Charged hadrons not originating from the
primary vertex are not considered in the jet clustering. The pileup per particle identification
algorithm (PUPPI) [38, 39] is used to mitigate the effect of pileup at the reconstructed particle
level, making use of local shape information, event pileup properties, and tracking informa-
tion. Charged particles identified to be originating from pileup vertices are discarded. The
momenta of the neutral particles are rescaled according to their probability to originate from
the primary interaction vertex deduced from the local shape variable, superseding the need
for jet-based pileup corrections [38]. Jet energy corrections are derived from simulation stud-
ies so that the average measured energy of jets becomes identical to that of particle-level jets.
In situ measurements of the momentum balance in dijet, g+jet, Z+jet, and multijet events are
used to determine any residual differences between the jet energy scale in data and in simula-
tion, and appropriate corrections are applied [40]. Additional quality criteria [41] are used to
remove jets due to rare spurious noise patterns in the calorimeters, and also to suppress lep-
tons misidentified as jets. The jet energy resolution typically amounts to 15% at 10 GeV, 8% at
100 GeV, and 4% at 1 TeV. In each event, the jet selected to be the hadronic W candidate must
have pT > 225 GeV, to balance the pT of the selected photon, and is required to be separated
from the photon by a distance of DR > 1.1 to reduces the contamination of the photon isolation
cone with the jet constituents.

Since the signal jets are merged products of the W boson decay, we require the jet mass to be
within a certain range of the W boson mass to reduce the very large background from QCD
jets, which have steeply falling jet mass distribution. To improve the signal and background
separation, a jet grooming algorithm known as “soft drop” (SD) [42], with parameters b = 0
and zcut = 0.1, is applied to recursively remove soft, wide-angle radiation from anti-kT jets. The
groomed jet mass (mSD

J ) is then computed from the four-momentum sum of the remaining jet
constituents, whose energies are corrected with the same factor that has already been used in
the generic jet reconstruction described above. The typical mass resolution for a W boson jet is
10% [43]. Finally, in order to avoid the region of rapidly varying efficiency near threshold, we
require the invariant mass of the selected jet and photon (mJg ) to exceed 0.6 TeV.

4 Analysis optimization
The analysis is optimized using a sequential selection on a number of kinematic variables.
These variables fall into two classes: those related to the resonance decay kinematics and those
related to the properties of a large-radius jet. The former are: pseudorapidities of the photon hg

and the jet hJ, the cosine of the polar decay angle in the center-of-mass frame of the Jg system
with respect to the beam axis cos q�g , and the ratio of the photon transverse momentum pg

T to
mJg . The last two variables mentioned are highly correlated and are both used to separate the
mostly central s-channel signal events from the mostly forward t-channel direct photon back-
ground. For the purpose of tagging jets originating from the W boson decay (W jet tagging),
selections are also applied on two variables related to the properties of a large-radius jet, which
are the jet mass mSD

J and the jet substructure variable t21. mSD
J peaks at the W mass for the

signal and falls rapidly for the QCD background. The variable t21 is defined as the ratio of t2 to
t1, where tN is a set of N-subjettiness [44] variables. Such variables are measures of how likely
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it is that a large-radius jet has a substructure of N subjets. For a jet with exactly N subjets, tN
tends to small values, while tM values for M 6= N are shifted to larger values. Thus, t21 is ex-
pected to be generally smaller for a signal, which contains a jet produced by an overlap of the
quark jets from a two-prong W boson decay, than for the background, which mostly consists
of structureless QCD jets.

The optimization aims at maximizing the expected signal significance for a large range of tested
masses, where the background yield (B) is typically much larger than that of the signal we
probe (S), and is large enough to use the Gaussian approximation, i.e., maximizing S/

p
B. This

figure of merit (FOM) has the advantage that its maximum is independent of the signal cross
section. The optimization is based on the events in the control region (CR) in data, defined
as the lower sideband of the W boson jet mass 40 < mSD

J < 65 GeV, which has negligible
signal contamination for the range of the signal cross sections probed in this analysis, as well
as events in the signal region (SR) in signal simulation samples, which is defined as 68 < mSD

J <
94 GeV, as determined via the optimization using the FOM described above. The CR and SR
are illustrated in Fig. 1, which also shows the expected distributions in mSD

J for the benchmark
narrow spin-0 signals. It was demonstrated that the differences in this distribution between
different signal spin and width hypotheses are negligible.
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Figure 1: Definitions of the signal and control regions in data, based on the jet mass mSD
J . The

stacked filled histograms represent dominant backgrounds from simulation, normalized to the
pg

T spectrum in the signal region. The red circles (black squares) correspond to data in the signal
(control) region. Benchmark narrow spin-0 signal distributions, normalized to a cross section
of 2 pb for two masses, 1.0 and 3.5 TeV, are shown by the solid orange and dashed magenta
lines, respectively. The lower panel shows the data-to-simulation ratio in the control and signal
regions. The gray hatched band shows the statistical uncertainty in the background estimation.

The optimization of the FOM uses simulated signal events and two different estimates of the
background in the signal region. The first background estimate uses data events in the CR
that have been scaled by a factor of approximately 0.86 to match the yield of events in the
SR. This procedure was justified by comparing the kinematic distributions of simulated back-
ground events in the SR and CR and finding that they are quite similar. The second background
sample uses simulated background events that have been rescaled to account for the missing
higher-order effects, as well as for an imperfect description of the misidentification of jets as
photons in the QCD multijet simulation. This is done by fitting the pg

T spectrum in data with
the sum of these two backgrounds, with the normalizations allowed to float in the fit. Figure 2
shows that before the optimization an adequate description of the SR data is achieved in the
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main kinematic variables used for the analysis optimization by using either MC simulation or
CR data, with the exception of the t21 variable, which has a different shape in the data CR
due to a strong correlation of the t21 variable with mSD

J . Consequently, the optimization of the
t21 selection is performed only using simulated backgrounds. The residual discrepancies seen
in other distributions are due to missing minor backgrounds and the limitations of the MC
simulation modeling of the data. They are typically present near the kinematic limits of the
corresponding variables, far from the region of optimal selections, and consequently do not
bias the optimization procedure. Since neither the simulated backgrounds nor data CR events
are used in the final analysis, beyond the optimization step, we find that the level of agree-
ment between the data and simulated backgrounds is adequate. Figure 2 also shows several
benchmark signal points and, given the similarity of signal shapes for various spin and width
combinations, the spin-0, narrow-width hypothesis is used, unless indicated otherwise in the
legend.

For most of the variables, and the signal masses, widths, and spins probed, the maxima of the
FOM distributions are fairly broad, which justifies using a single set of selections for all signal
masses and spin/width hypotheses, without compromising the search performance. We have
tested whether combining the input variables into a multivariate discriminant using a boosted
decision tree with adaptive boosting, instead of selecting on individual variables, results in a
gain in performance. However, the best gain we were able to achieve was only a 5% increase
in the FOM value, which required separate discriminants constructed for each signal mass
point. Consequently, a single set of selections on the individual variables was chosen, which
simplifies the analysis without introducing a noticeable performance loss. The best selections
chosen as a result of the above procedure are: jhg j < 1.44 (i.e., the photon in the ECAL barrel),
jhJj < 2.0, t21 < 0.35, 68 < mSD

J < 94 GeV, pg
T /mJg > 0.37, and cos q�g < 0.6. The use of these

optimal selections combined improves the FOM by up to 90% for signals with masses ranging
from 0.7 TeV to 3.5 TeV. The requirement on the t21 variable alone improves the FOM by 40%,
making it the most discriminating variable.

5 Signal and background modeling
We describe the shape of the mJg distributions for the signals probed by fitting simulated signal
samples with analytic functions. For narrow resonances, we use a sum of Crystal Ball (CB) [45]
and Gaussian functions with different means. For broad resonances, we use a sum of CB and
two Gaussian functions, where the two Gaussian functions have a common mean that may be
different from that of the CB function. In order to obtain the signal shapes for the mass points
where no simulated samples were generated, we use linear morphing between the adjacent
simulated signal points [46]. The simulated signal samples for each of the three years of data
taking reflect changes in MC tunes, pileup and trigger conditions, selection criteria, and detec-
tor performance along with time. We verify that the signal shape in simulation is consistent for
the three years and use samples produced with the 2017 conditions as the signal model for all
three data-taking years Consequently, we also combine the mJg spectra for the three data-taking
periods and search for the presence of signal in this combined data set.

The overall signal acceptance A, and the product of the acceptance and signal efficiency A# for
the optimal selection for spin-0 and spin-1 resonances, are shown as functions of the resonance
mass in Fig. 3 (upper row). The latter ranges between 6.1 (10.0)% and 12.3 (16.4)% for spin-
0 (spin-1) signals over the mass range probed. It was verified that for both A and A# the
differences between three years of data taking are small; thus the values for the 2017 data
taking are used as the nominal ones. The efficiencies for narrow resonances are generally 1–2%
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m Jγ (l eft), τ 2 1 ( ri g ht); mi d dl e r o w: η γ (l eft), η J ( ri g ht); l o w e r r o w: p

γ
T / m Jγ (l eft), c o s θ ∗

γ ( ri g ht),
e x c e pt t h at t h e yi el d i n t h e c o nt r ol r e gi o n i s n o r m ali z e d t o t h at i n t h e si g n al r e gi o n. S e v e r al
b e n c h m a r k si g n al s a r e al s o s h o w n, a s i n di c at e d b y t h e l e g e n d. B y d ef a ult, t h e s pi n- 0, n a r r o w
wi dt h h y p ot h e si s i s u s e d u nl e s s i n di c at e d ot h e r wi s e. Si g n al s a r e n o r m ali z e d t o a c r o s s s e cti o n
of 5 f b, e x c e pt f o r t h e τ 2 1 di st ri b uti o n, f o r w hi c h t h e n o r m ali z ati o n i s 2 p b. O pti mi z e d s el e cti o n s
a r e i n di c at e d wit h t h e bl a c k a r r o w s. T h e t w o l o w e r p a n el s s h o w t h e d at a-t o- si m ul ati o n r ati o
i n t h e c o nt r ol a n d si g n al r e gi o n s, r e s p e cti v el y. T h e g r a y h at c h e d b a n d s h o w s t h e st ati sti c al
u n c e rt ai nt y i n t h e b a c k g r o u n d e sti m ati o n.
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Figure 3: Signal acceptanceA (upper left), the product of the signal acceptance and selection ef-
ficiencyA# (upper right), and the W tagging efficiency (lower) for spin-0 (solid lines) and spin-1
(dashed lines) resonances, for the narrow (pink) and broad (blue) hypotheses. The curves are
obtained by fitting fourth-order polynomials to the set of discrete mass points, for which simu-
lated signal samples are available. For the W tagging efficiency, the average value obtained for
the different spin and width hypotheses and the spread of the individual efficiencies about the
average are shown with the solid line and the shaded band, respectively.

higher than for the broad ones, mainly because of the long low-mass tail in the mJg distribution
for broad resonances, caused by the quickly falling PDFs convoluted with the Breit–Wigner
resonant shape. In order to be less sensitive to the exact description of this tail, which depends
on both the PDF choice and the parameterization of the signal resonance line-shape, we use
a window of �25% of the resonance mass, centered on the mass. The size of the window
corresponds to roughly �5 effective widths of a broad resonance. The window requirement is
included in the definition of the signal acceptance. The W jet tagging efficiency (eW-tag, which is
a part of the overall efficiency) is shown in Fig. 3 (lower), which illustrate that a slight decrease
in the overall product of the acceptance and efficiency at high masses is due to a less effective
W tagging for very energetic jets.

After the final selection, the background shape of the mJg spectrum in the SR is modeled by
a background-only fit with a smooth, monotonically falling function. A variety of functional
forms are considered for the background fit, and for each function, a goodness-of-fit (GOF) test
based on the Kolmogorov–Smirnov statistic is performed in the SR. The nominal background
fit function is chosen as the one with the best GOF achieved with the minimal number of pa-
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rameters:
dN
dm

= p0(m/
p

s)p1+p2 log(m/
p

s)+p3 log2(m/
p

s) (1)

where pi (with i = 0–3) are the free parameters of the fit. The best fit to data with the background-
only hypothesis is shown in Fig. 4. This smooth background function provides an adequate
description of the data in the entire mass range probed.
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Figure 4: Background-only fit to data (black points) with the chosen background function. The
green (inner) and yellow (outer) bands show, respectively, the 68 and 95% confidence level sta-
tistical uncertainties in the fit. The lower panel contains the pull distribution, defined as the
difference between the data yield and the background prediction, divided by their combined
uncertainty. Expected signal shapes are also shown in the lower panel for three different reso-
nance mass hypotheses, 1.0 TeV (red), 2.6 TeV (magenta), and 4.0 TeV (green), and for both the
narrow (solid) and broad (dashed) cases. Signal normalizations are set to 15, 1.0, and 0.30 fb,
respectively, for illustrative purposes.

6 Systematic uncertainties
In order to prove that no systematic bias arises from the choice of the background fit function,
an alternative fit function that performed relatively well in the GOF test is used to generate a
large number of mJg spectra, with or without signal injection. The spectra are then fit to the
sum of the chosen background function and a signal template with the mass and normaliza-
tion allowed to float. The signal significance is extracted from each fit and the distributions
of the pull of the signal yield are constructed, where the pull is defined as the difference be-
tween the injected and extracted signal normalizations, divided by the statistical uncertainty
in the extracted signal normalization from the fit. We observe that the distributions of the pulls
are consistent with a Gaussian function with a zero mean and a standard deviation of unity,
and thus conclude that any systematic bias from the background fitting procedure is negligi-
ble compared to the statistical uncertainties in the fit. We therefore use the latter as the only
uncertainties associated with the background estimate.

The systematic uncertainty associated with the background shape is evaluated via likelihood
profiling. This procedure refits for the optimal values of the background parameters for each
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signal mass hypothesis with the parameters of the background function allowed to vary freely
in the fit, thus accounting for the uncertainty in the background prediction.

There are several sources of uncertainties in the description of the signal. Most of the uncer-
tainties only affect the signal yield and do not affect the shape of the signal mass distribution.
These include the integrated luminosity, trigger plateau efficiency, photon identification effi-
ciency, pileup description, choice of PDFs, and the efficiency of tagging the W boson jet, in-
cluding the efficiencies of the SR selection on the mSD

J and of the t21 requirement. Uncertainties
affect both the yield and the shape of the signal distributions include the jet and photon energy
scales and resolutions.

The uncertainties in the integrated luminosity are 2.5% [21], 2.3% [22], and 2.5% [23] in 2016,
2017, and 2018, respectively. The efficiency of the trigger is obtained using an independent
suite of triggers. A systematic uncertainty of 1.0 (2.3)% is assigned to the trigger efficiency in
2016 and 2018 (2017) data taking, based on the difference between the observed plateau value
and unity. The uncertainty due to the photon identification efficiency is obtained by comparing
the efficiency in simulation with that in Z ! ee events, where electrons are reconstructed as
photons. It amounts to a 3–6% uncertainty in the signal yield.

The uncertainty due to the description of pileup in the simulated samples is estimated by
changing the value of the total inelastic cross section by�4.6% [47] and recalculating the signal
efficiency after the corresponding change in the pileup distribution. The resulting uncertainty
is 1.0–1.5 (1.0–2.0)% for narrow (broad) resonances. The PDF uncertainty is determined using
the PDF4LHC prescription [48]. Only the effect on the signal acceptance is included as a source
of the experimental uncertainty, and amounts to 2%. The uncertainty in the W jet tagging
efficiency mainly originates from the t21 selection efficiency. It amounts to an uncertainty of
3.2–11% in the signal yield.

The uncertainty in the jet energy scale is obtained by varying the energy scale of the jet corre-
sponding to the W candidate by a pT- and h-dependent correction [40]. The uncertainty due to
the jet energy resolution is obtained by smearing the momentum of the W jet in simulation to
match that in data. The combined effect on the signal yield is 1.3%, which is the major source of
the uncertainty in the signal shapes. The effects of the photon energy scale and resolution are
accounted for in a similar fashion; they are significantly less important than those stemming
from the jets, because of a much higher precision of the photon energy reconstruction [37].

Given that the signal is extracted from the mJg spectrum combined over the three data-taking
periods, we take into account correlations between the uncertainties across the three years, and
use the luminosity-weighted linear (quadratic) average for correlated (uncorrelated) uncertain-
ties. The integrated luminosity uncertainty has both correlated and uncorrelated components,
resulting in the overall uncertainty of 1.8% when applied to the full data set. The trigger and
W tagging efficiencies, as well as the jet energy scale and resolution uncertainties, are treated
as uncorrelated across the three years, while the rest are treated as fully correlated. A summary
of the systematic uncertainties, as well as the effect of the year-to-year correlations, is given in
Table 1.

7 Results
We set model-specific upper limits on the product of the cross section and branching fraction
for both narrow and broad, spin-0 and spin-1 resonances using the modified frequentist CLs
criterion [49–51], with a likelihood ratio in the asymptotic approximation [52] used as a test



11

Table 1: Systematic uncertainties affecting the signal description. Uncertainties marked with
“†” affect both the yield and the shape of the signal distribution, while the rest only affect
the signal yield. In cases where the uncertainty is different for various data-taking periods,
the three numbers given in the second column correspond to the 2016/2017/2018 data taking,
while the third column shows the combined uncertainties across the three years, taking into
account the year-to-year correlations. The effect on the signal yield is the same for all the signal
hypotheses studied.

Source Effect on the signal yield (%) Combined (%)

Integrated luminosity 2.5/2.3/2.5 1.8
Trigger efficiency 1.0/2.3/1.0 0.9
Photon ident. efficiency 4.7/6.0/3.0 4.4
Pileup 1.0/2.0/1.0 1.3
PDF 2.0 2.0
W tagging efficiency 11/7.4/3.2 3.9
Jet energy scale and resolution† 1.3 0.8
Photon energy scale and resolution† 0.5/1.0/1.0 0.9

Total 12.6/10.6/5.8 6.7

statistic. The yield (shape) uncertainties are incorporated as nuisance parameters with log-
normal (Gaussian) priors. These limits, at 95% CL, are shown in Fig. 5, separately for the spin-0
and spin-1 hypotheses, as well as for narrow and broad resonances, and are the most restrictive
limits to date on the existence of Wg resonances over the majority of the masses probed. The
p-values for the background-only fit are shown in Fig. 6 for the narrow (left) and broad (right)
resonances for both spin hypotheses. The largest excess seen in the limit plots has a mass
around 1.58 TeV, with a local significance of 2.8 (3.1) standard deviations for narrow (broad)
signals for both spin hypotheses. After taking into account the look-elsewhere effect [53], the
global significance of the excess is estimated to be 1.1 (1.7) standard deviations, favoring its
interpretation as a statistical fluctuation in data.

In the case of narrow resonances, we compare these limits with the predictions of two of the
models described in Ref. [25], which we use as benchmarks. In the spin-0 case, a scalar or
pseudoscalar SU(2)L triplet fa that couples to the SM vector boson fields via anomaly-induced
interactions faWa

mn
eBmn/L and to the SM fermionic fields with an effective coupling ym/L, is

considered. Here, L is the ultraviolet cutoff of the model, chosen to be 2, 4, or 5 times the res-
onance mass, while ym is set to 0.10 or 0.15 to suppress fermionic decays. In the spin-1 case,
a vector SU(2)L triplet Va

m that couples to the SM vector boson fields via a higher-dimensional
operator cWVan

m Waa
n Bm

a /L2 and to the SM fermionic fields directly with the coupling gm is con-
sidered. Similar to the scalar triplet case, we set L to 4 or 5 times the resonance mass, cW to
1, and gm to 0.10 or 0.15. Additionally, we set the coupling of the vector triplet to the Higgs
boson ch to zero. These choices of parameters assure narrow resonances in the mass range of
interest, with sizable branching fractions to Wg. As a result of this search, benchmark heavy
scalar (vector) triplet bosons with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded
at 95% CL, as shown in Fig. 5. Spin-0 p3 states of Ref. [24] are beyond the sensitivity of this
search, as they decay predominantly into hadronic final states and the branching fraction into
the Wg channel is suppressed.

Model-independent upper limits on the product of the cross section, branching fraction, and
signal acceptance are set in the context of a simple counting experiment that considers the num-
ber of events observed and expected above a variable Jg invariant mass threshold. These limits
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Fi g u r e 7: E x p e ct e d a n d o b s e r v e d 9 5 % c o n fi d e n c e l e v el m o d el-i n d e p e n d e nt li mit s o n σ B ( X →
W γ ) A (l eft) a n d σ B ( X → Jγ ) A W -t a g ( ri g ht), a s a f u n cti o n of t h e mi ni m u m i n v a ri a nt m a s s
r e q ui r e m e nt o n t h e J γ s y st e m.

c o nti n u e d u p t o t h e m a s s t h r e s h ol d of 8. 0 Te V, t h u s e xt e n di n g t h e m a s s r a n g e of p h e n o m e n a
t h at c a n b e i n v e sti g at e d. T o m a k e t hi s i nt e r p r et ati o n p o s si bl e f o r a b r o a d s et of m o d el s, w e
t r e at t h e W t a g gi n g ef fi ci e n c y a s a p a rt of eit h e r t h e e x p e ri m e nt al ef fi ci e n c y o r t h e si g n al a c-
c e pt a n c e. T h e f o r m e r c a s e, s h o w n i n Fi g. 7 (l eft), w o ul d a p pl y t o m o d el s yi el di n g si g n at u r e s
wit h a h a d r o ni c all y d e c a yi n g L o r e nt z- b o o st e d W b o s o n, a s t h e W t a g gi n g ef fi ci e n c y i n t hi s c a s e
s h o ul d b e v e r y si mil a r t o t h at i n t h e m o d el- s p e ci fi c a n al y si s. T h e l att e r c a s e, s h o w n i n Fi g. 7
( ri g ht), w o ul d a p pl y t o a n e v e n b r o a d e r s et of m o d el s, e. g., t h e o n e s p r e di cti n g Z γ si g n at u r e s,
b y a c c o u nti n g f o r t h e ef fi ci e n c y of t a g gi n g a Z b o s o n u si n g o u r W t a g gi n g r e q ui r e m e nt s a s a
p a rt of t h e si g n al a c c e pt a n c e.

8 S u m m ar y

A s e a r c h f o r W γ r e s o n a n c e s i n t h e m a s s r a n g e b et w e e n 0. 7 a n d 6. 0 Te V h a s b e e n p r e s e nt e d.
T h e W b o s o n i s r e c o n st r u ct e d f r o m it s h a d r o ni c d e c a y, i n w hi c h t h e fi n al- st at e p r o d u ct s f o r m
a si n gl e l a r g e- r a di u s j et o wi n g t o t h e l a r g e L o r e nt z b o o st of t h e W b o s o n. T h e s e a r c h i s b a s e d
o n p r ot o n- p r ot o n c olli si o n d at a c oll e ct e d at

√
s = 1 3 Te V wit h t h e C M S d et e ct o r at t h e L H C i n

2 0 1 6 – 2 0 1 8, c o r r e s p o n di n g t o a n i nt e g r at e d l u mi n o sit y of 1 3 7 f b − 1 . N o si g ni fi c a nt e x c e s s a b o v e
t h e s m o ot hl y f alli n g b a c k g r o u n d i s o b s e r v e d. Li mit s at 9 5 % c o n fi d e n c e l e v el o n t h e p r o d u ct
of t h e c r o s s s e cti o n a n d b r a n c hi n g f r a cti o n f o r W γ r e s o n a n c e s a r e s et, r a n gi n g f r o m 3 7 ( 5 5) t o
0. 2 1 ( 0. 3 0) f b f o r t h e n a r r o w ( b r o a d) s pi n- 0 h y p ot h e si s, a n d f r o m 2 9 ( 5 1) t o 0. 1 7 ( 0. 1 9) f b f o r t h e
f o r t h e n a r r o w ( b r o a d) s pi n- 1 h y p ot h e si s. T h e r e s ult s r e p o rt e d a r e t h e m o st r e st ri cti v e li mit s
t o d at e o n t h e e xi st e n c e of s u c h r e s o n a n c e s. I n s p e ci fi c n a r r o w- r e s o n a n c e b e n c h m a r k m o d el s,
h e a v y s c al a r ( v e ct o r) t ri pl et r e s o n a n c e s wit h m a s s e s b et w e e n 0. 7 5 ( 1. 1 5) a n d 1. 4 0 ( 1. 3 5) Te V a r e
e x cl u d e d f o r a r a n g e of m o d el p a r a m et e r s p r o b e d. I n a d diti o n, m o d el-i n d e p e n d e nt li mit s a r e
s et o n t h e p r o d u ct of t h e c r o s s s e cti o n, b r a n c hi n g f r a cti o n, a n d si g n al a c c e pt a n c e, a s f u n cti o n s
of t h e mi ni m u m i n v a ri a nt m a s s of t h e j et- p h ot o n s y st e m, m a ki n g p o s si bl e t h e i nt e r p r et ati o n of
t h e s e r e s ult s i n t h e c o nt e xt of a b r o a d e r cl a s s of m o d el s p r e di cti n g si mil a r si g n at u r e s.

A c k n o wl e d g m e nt s

We c o n g r at ul at e o u r c oll e a g u e s i n t h e C E R N a c c el e r at o r d e p a rt m e nt s f o r t h e e x c ell e nt p e rf o r-
m a n c e of t h e L H C a n d t h a n k t h e t e c h ni c al a n d a d mi ni st r ati v e st aff s at C E R N a n d at ot h e r C M S
i n stit ut e s f o r t h ei r c o nt ri b uti o n s t o t h e s u c c e s s of t h e C M S eff o rt. I n a d diti o n, w e g r at ef ull y
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cellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105,
128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India;
the Latvian Council of Science; the Ministry of Science and Higher Education and the National
Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland);
the National Priorities Research Program by Qatar National Research Fund; the Ministry of
Science and Higher Education, project no. 0723-2020-0041 (Russia); the Programa Estatal de
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M. Bozzoa,b, F. Ferroa, R. Mulargiaa,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
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C. Aime‘a,b, A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea,
M. Ressegottia ,b, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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