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L. INTRODUCTION

One way to determine the incompressibility KX of nuclear matter from the giant
monopole resonance (GMR) data is using the leptodermous expansion[1] of nucleus in-
compressibility K(A, Z) as follows.

K(AZ)=K+KgA P+ K, P+ K.Z'A™ P 4. I=1-22/4, (1)

where ‘the coefficients K,f, Ky, and K, are surface term coefficient, volume-symmetry
coefficient and Coulomb coefficient respectively. We have omitted higher terms in eq.
(1). Though there is uncertainty in the determination of these coefficients by using the
present data, Pearson (2] pointed out that there is a strong correlation among K, K,
and the skewness coefficient, i.e., the third-order derivative of nuclear saturation curve.
Similar observations are done by Shlomo and Youngblood [3].

According to this context, Rudaz et al. [4] studied the relation between X and the
skewness coefficient using the generalized version of the relativistic Hartree approxima-
tion [5]. Recently, both of compressional and surface properties are studied by Von-Eiff
et al. [6](7)(8] in the framework of the mean field approximation of the o-w-p model with
the nonlinear o terms. They found that low incompressibility (K = 200MeV) and a large
effective nucleon mass M7 at the normal density (0.70 < Mg /M < 0.75) are favorable
for the nuclear surface properties {8]. On the other hand, using the same model, Bodmer
and Price [9] found that the experimental spin-orbit splitting in light nuclei supported
Mg =~ 0.60M. The result of the generator coordinate calculations for breathing-mode
GMR by Stoitsov, Ring and Sharma [10] suggests that K =~ 300MeV.

In previous paper[11], we have studied the relation between K and the third-order
derivative K' of nuclear saturation curve in detail, using the mean field theory with the
nonlinear ¢ terms [12]. We found that K = 300MeV is favorable to account for K, K.,
ag and K,,, simultaneously. However, the effective nucleon mass Mg of the equations of
state (EOS) which we found is 0.83M. That is larger than the value of the analysis by
Bodmer and Price [9], which is referred above.

In this paper, we study the effective nucleon mass, incompressibility K and X',
using the mean field theory which has the vector self-interaction as well as the scalar
self-interactions (13}, and compare the results with the GMR data empirically, under
the assumption of scaling model[1]. It is known that the EOS of the relativistic mean
field theory with vector self-coupling is very close to the result of the Dirac-Bruecner-
Hartree-Fock (DBHF) calculations [14] [15] even at the higher densities [16){17]. This
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paper is organized as follows. In section 2, we review the general formalism of the vector
self-coupling model, briefly. In section 3, the saturation condition is investigated, and
the expressions for K and K' are shown. In section 4, the relation among MJ, K and
K' is studied. In sect. 5, the parameters of the model are determined so as to account
for both the empirical K-K_ relation and the empirical spin-orbit potential [13]. Section
6 is devoted to the summary of this paper.

II. FORMALISM

We use the nonlinear relativistic mean field theory based on the ¢-w model with non-
linear ¢ and w terms [13]. ( For a while, we restrict our discussions to the symmetric
nuclear matter and do not consider the p meson effects. ) The lagrangian density consists

of three fields, the nucleon ¥, the scalar o-meson ¢ and the vector w-meson Vj, i.e.,
Ils B 1 B 1 ny 1 2 B 9121 YZV VH
L = ¢(iy,0* — M)y + 56,,4)8 é— 4—F,,,,F + §muV,,V (1+ Y A%

+ga'z)¢¢ - gv'J)'ﬁl"/]V” - U(¢) ) F;w = 6uVu - aVV[l) (2)

where m,, g, and g, are w-meson mass, o-nucleon coupling and w-nucleon coupling
respectively. The potential U (@) includes a nonlinear cubic-quartic terms of the scalar
field ¢; i.e.,

1 1 1
U(¢) = smig? + 2bg® + et (3)
2 3 4
where m, is o-meson mass, and b and c are the constant parameters which are determined

phenomenologically. The constant parameter ¥ represents the strength of the vector

self-interaction. In the mean field approximation, the effective nucleon mass M* is given
by

M=M-9% : =g, <¢>, (4)

where < ¢ > is the ground-state expectation value of the field ¢. The baryon density p
and scalar density p, are given by

A
p= 5‘3’0%, (5)

and

kp+ 1 /kL + M*?
A L+ M2 - M (— LTy

*
ps = ‘Z?M (kr T , (6)
where kf is the Fermi momentum and A = 2 in nuclear matter. The total energy of the
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system is also given by

e=¢en+e, +U(D). (M
The nucleon energy term ey in eq. (7) is given by

3

A
en(kp, M*) = —=[3k}Ep + 3

+2 *
T2a2 M*kpEp

where E}. = (/k% + M*2. The vector meson part ¢, is given by

1 MW? Yiw?
w=We-gmgr U+t

)i W=g,<V'>, (9)
where < VO > is the ground-state expectation value of V° and C, = g, M/m,. In the
latter part of this paper, we write U(®) as

1

U@) = 207

Mot 4+ %BM(I)“ + %caﬁ, (10)
where C, = g,M/m,, B =b/(g3M) and C = ¢/g}.
The equation for the scalar field is expressed as
dU@) 1

Ule) =2 =

5 CEM2<I>+BM<I>2+C<I>3 = p,. (11)

Using egs. (4), (6) and (11), we can determined M* and @ in a self-consistent way.
The W can be determined by the equation of motion for the vector field,

ey
= 2
W 0. (12)
The equation (12) gives [13]
w(l +w?) —y' =0, (13)

where w = WY and 3 = C2pY/M? are dimensionless quantities. When y'(> 0) is
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given, the equation (13) has a non-negative real solution as

wz\a/\/ﬁ;y’_{/\/ﬁ?—y” (1)

where D = y'? + 4/27. Because d(w(l + w?) — y')/dw = 1+ 3w? > 0, eq. (14) is the
unique real solution of eq. (13). In the case of y? >> 4/27, w = y'M3. When M*, ®
and W are determined, we can calculate energy density of the system given by eq. (7).

1II. SATURATION CONDITION, INCOMPRESSIBILITY
AND THIRD-ORDER DERIVATIVE
OF NUCLEAR SATURATION CURVE

At the saturation density pg, the pressure P of the system vanishes, i.e.,

d
P=pF=p(W+Ep—e)=0 ; e=-. (15)

:p——
dp p

The saturation condition (15) gives the following relation {13]

w C?2 powr .
W0=W(P=po)=70:-'Migy—g=eo—EF=—a1+M—\/k}o+M52, (16)

where y = C2pY/M? and the values with the subscript "0” are the ones at the normal
density pg. We remark y = y'(p = po). The equation (16} is written as

* 02 woy 2
M; =\ﬂ-a1+M— Xj‘z’y") -k, (17)
or [13]
Cl = (—a1 + M — \[kby + M*)yM? [ (wopo). (18)

Putting C, = 0 and pg = 0.15fm™3 in eq. (17), we get M* = 0.94M which is the upper
bound for M} in this model. Using eq. (18}, in fig. 1, we show the relation between y
and C? with several values of M. When y becomes larger, C, becomes larger when Mj
is fixed. From the discussion in the end of the previous section, wp = y1/* for the large
y(y* >> 4/27). Then, C? is proportional to y2/% in the large y limit.
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Fig. 1

The incompressibility K at the normal density is defined as

. apP Ou
K= 9P33—Pz|p=po = 95;|a =% lp =pos

where the baryonic chemical potential u is given by

p=FEp+W.
In this model, K is written as [13]
C? K M
K=9 *
”°(M2(1+3w2) * 58 T -

where

oM M 1

dp E} U"(®) + 8ps /JOM*’

with

2
0@y = L)

From eq. (6), 0ps/OM™* is given by

9ps kr+ By kpM?

A
= 55lkrEf - 3M*In (

oM* ) E}

We also defined the third-order derivative K' of nuclear binding energy Ey(=

K= 3p3d3E‘b &P 4 2

In this model, K’ is written as

6wy c? + dzE;.)
poM? (14 3w2)3 ° dp? ‘r=m

K'=3p¢(- - K,

-6~

od—p;;‘lpzpn =3po5~ dp? lp=po = EK = 3100:_17{‘0:9:» -

(19)

(20)

(22)

(23)

(24)

- M)

(25)

where

2B My ke REMT L 2K
_ M, M F Mt el 7
A R R A
The M*" = T—;—M is given by
dp 1. KLM* M7, , d, 8p
U@ SAVM™ = ——M* F M* +(M* 270G (p)— — 3 *
( ( )+8Mt) E; +3pE'3 E;S ( ) ( ) dp(aM') )
(28)
where
d , dp, M kp EpM*? kL M,
Z(s) =5 A (kp—2Ep +22 Fo ), 4k = 3BE — 2 )G+ e M)
dp OM*’  2m? Ey’3 Fo2Ed 7\3Erp T Ep
kpM* k
(onr + 452 a2 B (29)
Ef
and
SU(d)
(3
U 153 (30)

1V. THE RELATION AMONG THE EFFECTIVE
NUCLEON MASS, INCOMPRESSIBILITY
AND THE THIRD-ORDER DERIVATIVE
OF NUCLEAR SATURATION CURVE

In our calculations, we put M = 939MeV, po = 0.15fm™3 and a; = 15.75MeV. The
other independent parameters y, Cs, Cy, B and C are determined phenomenologically.
Besides the two conditions for saturation, i.e., g = M —a; and P = 0, when Mg, K and
K' are given, we can determine the five parameters of the model. The M{ depends on
only y and Cy, as is seen in eq. (17). Therefore, we give one (two) quantity (quantities)
among y, C, and M and give two {one) quantities (quantity) among Cy, B, C, K and
K'. The other quantities are automatically determined.

First, we check the sign of the quartic coefficient C of the scalar potential U(®),
because the negative value of C' may cause undesirable behaviors such as bifurcation of

the solution [13]. As is pointed out in ref. [13], the vector self-coupling makes C less

7=



negative. In fig. 2. we show the regions for C > 0 in the K-M{ plane with several values
of y. The region is widened as y becomes larger. The C becomes larger (more repulsive
) to cancel the attractive effect of vector self-coupling in €, (See eq. (9)). In the case of
y > 2, C is positive for My > 0.5M and K = 150 ~ 400MeV.

Fig. 2

Fig. 3(a),(b)

Fig. 4(a),(b)

In fig. 3, we show the MJ — K’ relations with fixed values of K both in the cases
of y =0 and y = 1.0. When y = 1.0, K’ monotonically decreases as M increases.
The cross points of curves at M§ ~ 0.8M, which appear in the case of no vector self-
coupling, disappear when y = 1.0. In the cases with y = 1.0 and Mj 2 0.6M, K'is
negative. When K > 200MeV, K' with y = 1.0 is smaller than that with y = 0. It seems
that the vector self-coupling makes EOS of nuclear matter softer at higher densities. To
confirm this observations, in fig. 4, we show the y-dependence of K — K’ relation when
M} = 0.6M or 0.8M. When K R 200MeV and MJ = 0.6M, the vector self-coupling
makes K' smaller. In the case of M§ = 0.8M, K' decreases as y increases for any K. The
vector self-coupling makes equations of state of nuclear matter softer at higher densities.

However, the K — K' relations hardly change in the larger y limit (y > 2).

To compare these results with experiments of GMR, we calculate the Coulomb co-

efficient K, of the leptodermous expansion (1), using the scaling model, i.e., using the

3¢} (9K
Kc——sro 7+8 N (31)

following equation [1),

where g.; is the electric charge of proton and ro = (3/(47pg))!/%. In fig. 5, we show the
K — K, relations with several values of MJ in the cases of y = 0 and y = 1.0. When
K R 200M, the vector self-coupling makes K less negative because of the decrease of
the ratio K'/K. In these cases, we can account for the empirical values using the vector
coupling and the smaller M. On the contrary, when X S 200MeV, the vector self-
coupling does not make K'/K much smaller or makes K’'/K larger. Therefore, it does
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not make K, much larger or makes K, smaller. So we can not account for the empirical

values for K < 200MeV even we make y larger.

Fig. 5(a),(b)

V. Determinations of parameters and symmetry properties

In this section, we determined the parameters of our model, using the empirical data
by Pearson [2]. In table I, we show the set of the empirical values of K and K, in table
3 of ref. {2]. According to the conclusion of ref. 2], i.e., K = 120 ~ 351MeV, we only
show the sets with K = 150 ~ 350MeV. In fig. 6, we show the y — M relations which
account for the sets. We could not find the parameters for sets with K = 150MeV and
for the set with K = 200MeV and K. = 2.577,2.577 + 2.06MeV as in the cases of y = 0
[11], because of the reason which is mentioned in the end of the previous section. The

M} decreases as y increases in any case of K.

Table 1

Fig. 6

The smaller M{ and the larger y has the opposite effects to the larger y in the EOS.
The smaller M makes the EOS stiffer, while the smaller y makes the EOS softer. In
fig. 7, we show the EOS with several y, which account for the set of K = 250MeV and
K. = —0.7065MeV. The EOS becomes softer when y = 0.5, because the effect of larger
y is larger than the effect of smaller Mj. The EOS becomes stiffer again when y = 1.0,
because, as is shown in fig. 6, the Mg decreases rapidly enough to overcome the larger y
effect. Though we do not show a figure, two effects almost cancel each other in the case
of K = 300MeV and K, = —3.990MeV, when y is not so large (y S 5).

Fig. 7

Table I1



In this vector self-coupling theory, there is one more input to fix the EOS. According
to ref. [13], M§ = 0.6M is favorable to account for the spin-orbit potential and the
optical potential. We search for the parameters sets which account for the data sets in
table [ and Mg = 0.6 M. The results are summarized in table II. It is impossible to find
the parameters for the sets of (K, K.) = (350, —7.274)MeV,(350, ~7.274 — 2.06)MeV,
because, as shown in fig. 6, in these cases Mg is always smaller than 0.6M at any y. (
For comparison, in table I we also show the EOS with the parameters set which satisfies
K = 350MeV, K = —7.274MeV and y = 0, whose MJ(= 0.597M) is very close to
0.6M. We call this parameters set EOS 6.) Also we could not find the parameter sets
for K > 250MeV, except EOS 1, in the region y < 10. It seem to be difficult to find
these parameters even if we make y larger. It is probably because, as is seen in fig. 6,
Mg hardly decreases in the larger y region. We remark that C' > 0 except for the cases
of the EOS 4 and 6.

If we fix Mg, there is still uncertainty of K. To determine K, we calculate the
volume-symmetry coefficient Ky, in the expansion (1). Because the p-meson effects is
important in the symmetry properties [18][19], we add the following standard p-meson-
term to the lagrangian (2)[18]{19][17].

1 1 - T
L= —ZBW‘BW-*_Emzbl"b“ ‘yp'/"‘”‘fbl"/’; B, = 0yby—0ubu—g,buxby, (32)

where b is the p meson field. Using the new lagrangian and the mean field approximation,
we can calculate Ky, with aid of the scaling model [1]

K'
Ky = K,ym—L(9—+6), (33)
K
where
_ dag 1 %
L= 3907;"17:;»; ay = *z’ﬂa-glpgzo} P3 = Pp — Pn (34)
and
2d2a4
K:ym = 9Pod—p2“|ﬁ=pn- (35)

The results are also summarized in table II. In these calculations, we determine the p
meson coupling g, so as to realize ay = 30.0MeV at p = pg. However, the results do

not depend much on the choise of g,, because K, is more sensitive to the ratio K'/K

~10 -

than to g,. In fact, if we put C? = (9oM/m,)? = 50 ~ 100 in the EOS 3, we get
K,y = —258 ~ —340MeV. The difference is not larger than the length of empirical error
bar (202MeV) in ref. [2]. In fig. 8, we compare these results with the empirical data in
refs. [2] and [3]. From the figure, it is seen that EOS 1 and 3 are {avorable to account
for the empirical values of K,,, though the EOS 5 could not be excluded. The EOS
3(K = 300MeV) is most favorable as in the case of y = 0 {11], because it corresponds to
the mean value of the empirical K.

In fig. 9, we show the kp-dependence of nuclear binding energy using the EOS 1,3
and 5. The result of the EOS 3 is much closer to the EOS of the DBHF calculations
[14] than the EOS of the mean field theories with the NL1 parameters [20] and with the
NL-SH parameters [21], which do not have the vector self-coupling. This is consistent
with the observations by Gmuca [16] and by Sugahara and Tokif17].

Fig. 8

Fig. 9

VI. SUMMARY

We studied the relations among the effective nucleon mass M, incompressibility K,
the third-order derivative K’ of nuclear saturation curve, using the mean field theory
with the vector self-coupling. The results are summarized as follows.

(1) When we fix Mg and K(R 200MeV), the vector self-coupling makes K' smaller, i.e.,
makes the EOS softer at higher densities.

(2) Using the vector self-coupling, we can account for the empirical relation between
K(R 250MeV) and K. with the smaller M{.

(3) We could not find the parameters for the empirical sets (K, K.} = (150,5.861 &
2.06)MeV, (200,2.577)MeV and (200, 2.577 + 2.06)MeV, when y < 10. It is due to the
fact that the vector seli-coupling does not make K’ much smaller when K 5 200MeV.
(4) It seems that (K, K.) = (300, —3.990)MeV is favorable to account for the symmetry
properties besides the empirical K- K, relations.

(5) The EOS which is given by parameter set in (4) has very close to the RBHI’s EOS
at the higher densities.
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In this paper, we restrict our discussions to the Mg, K, K', K. and K,,, because they
can be calculated in the framework of the nuclear matter and do not depend parameter
m,. Von-Eiff et al. studied the surface properties [6][7][8] in the framework of the mean
field approximation of the nonlinear ¢-w-p model with no vector self-coupling (i.e, in
the case of y = 0). They found that low incompressibility (Knm =~ 200MeV) and a
large effective nucleon mass (0.70 < M*/M < 0.75) are favorable for the nuclear surface
properties [8]. It is interesting to study these problem using the vector self-coupling
model.
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Set 1 Set 2 Set 3 Set 4 Set 5
K 150 200 250 300 350
K. 5.861+£206 25774206 —0.7065+2.06 —3.9904206 —7.274+2.06
Table I
EOS 1 2 3 4 5 6
K 250 300 300 300 350 350
K.  -0.7065-2.06 -3.990+2.06 -3.990 -3.990-2.06  -7.27442.06 -7.274
K -118.2 -179.6 -86.68 6.237 -36.72 71.69
MM 0.600 0.600 0.600 0.600 0.600 0.597
K, -165.2 -75.23 -299.7 -524.0 -437.5 -667.0
L 82.96 81.82 87.29 93.03 90.48 95.42
Kym -20.51 -25.18 -2.977 51.61 19.94 81.40
y 1.974 2.459 0.7096 0.2493 0.3849 0.000
C? 516.45 477.19 387.91 352.63 350.30 338.39
C? 464.44 519.65 303.52 246.76 261.41 235.83
B -1.378x10™% -3.697x107% -5.820x10"%* 1.207x107% -5.019x107% 1.260x1073
C 1177x 1072 1.657x1072  5.767x107% -3.167x10~* 2.708x10™* -1.372xi07?

Table I
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Table and Figure Captions

Table I
The empirical K- K. relation in the table of the ref. [2]. (Shown in MeV.)

Table II

Parameter sets fitted for the empirical value of K and K, in the table I. The K, K. K',
Kys, L and Ky, are shown in MeV. Except in EOS 6, C': =g,M/m, =75.17. In EOS
6, C2 = 74.69.

Fig. 1 The y-C? relations with several values of Mg: The solid line, the dotted line, the
dashed line, the dashed-dotted line and the bold solid line are results with Mg /M =05,
0.6, 0.7, 0.8 and 0.9 respectively.

Fig. 2 The region for C > 0 in the K — Mg plane: The solid line, the dotted line,
the dashed line, the dashed-dotted line, the bold solid line, the bold dotted line and the
bold dashed line are results with y = 0, 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 respectively. In all
cases, C > 0 above the line and C < 0 below the line.

Fig. 3 The Mg — K' relation. (a)The y = 0 case. (b)The y = 1.0 case:  The
dashed-dotted line, the solid line, the dotted line, the dashed line and the solid triangles
are the results with K =150, 200, 250, 300 and 350MeV respectively.

Fig. 4 The K — K’ relation. (a)The M = 0.6M case. (b)The Mg = 0.8M case: The
solid line, the dotted line, the dashed line, the dashed-dotted line, bold solid line and
bold dotted line are the results with y =0, 0.1, 0.5, 1.0, 2.0 and 3.0 respectively.

Fig. 5 The K — K. relation. (a)The y = 0 case. (b)The y = 1.0 case:  The solid
triangles, the dotted line, the dashed line, the dashed-dotted line and the solid line are
the results with Mg /M =0.5, 0.6, 0.7, 0.8 and 0.9 respectively. The crosses with error
bars are the data from the table 3 in ref. {2]. The solid small squares are the data from
the table IV in ref. [3]. (For simplicity of the figure, we omit the error bars in the latter
data. )

Fig. 6 The y— Mjy relation for the empirical K — K, relation:  The solid small circles
are the results for K = 200MeV and K, = 2.577 — 2.06 MeV. The solid lines, the dotted
lines and the dashed-dotted lines are the results for K =250, 300, 350 respectively. In
each case, the upper line is the result with the upper bound for K, the lower line is the
result with the lower bound for K. and the bold line is the result with the average value
of K.

Fig. 7 The p— Ej relations: The solid line, dotted line and dashed-dotted line are
the results with the parameters with y =0, 0.5 and 1.0 respectively, when K = 250MeV
and K, = —0.7065MeV are satisfied.

Fig. 8 The K — K, relation: The open triangles with K = 250 and 300MeV are
the results of EOS 1 and 4 respectively. The open inverse-triangles with X = 300 and
350MeV are the results of EOS 2 and 5 respectively. The open circles with K = 300
and 350MeV are the results of EOS 3 and 6 respectively. The solid line, the dotted line,
the dashed line, the dashed-dotted line and the bold solid line are the results with y =0,
0.5, 1.0, 2.0 and 5.0 respectively, when Mg = 0.6M. The crosses with error bars are the
data from the table 3 in ref. [2]. The solid small squares are the data from the table v
in ref. [3]. (For simplicity of the figure, we omit the error bars in the latter data. )

Fig. 9  The kp — E) relations for several EOS: The solid line, the bold solid line,
the dashed line, the dashed-dotted line and dotted line are the results of EOS 1, EOS
3, EOS 5, the EOS with the NL parameters [20] and the EOS with NL-SH parameters
(21], respectively. The small solid circles are the DBHF results from the ref. [14].






