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Gravitational waveforms from coalescences of binary black hole and binary neutron star systems with low
tidal effects can hardly be distinguished if the two systems have similar masses. In the absence of
discriminating power based on the gravitational waveforms, the classification of sources into binary neutron
stars, binary black holes and mixed systems can only be unambiguous when assuming the standard model of
stellar evolution and using the fact that there exists a mass gap between neutron stars and black holes. This
approach is however limited by its own assumptions: for instance the 2.6 solar mass object detected in the
GW190814 event remains unclassified, and models of new physics can introduce new compact objects, like
primordial black holes, which may have masses in the same range as neutron stars. In what follows, we
investigate the possibility of discriminating between gravitational-wave signals emitted by different systems.
First, we study the match between two waveforms, assuming several sensitivities of the detectors. In a second
step, the ability of distinguishing one signal from the other is evaluated on simulations: a gravitational-wave
signal is added to realistic noise from the LIGO-Virgo detectors, and the model best describing the simulated
data is chosen based on the Bayes factor. The results depend strongly on the considered parameters, as the
masses of the objects and tidal deformabilities of the neutrons stars. The task of distinguishing the nature of a
compact object based on the gravitational-wave signal appears challenging for the current interferometers
network. For instance, for a BNS system with tidal deformabilities Λ ¼ 600 and chirp mass 1.44 M⊙ and
under optimistic assumptions, the nature of compact objects is correctly determined only for distances smaller
that 150 Mpc, while it is unambiguously determined even for a distance of 300 Mpc in the case of third-
generation detectors.

DOI: 10.1103/PhysRevD.105.064063

I. INTRODUCTION

Gravitational wave astronomy has entered a new era,
characterized by the detection of a plethora of coalescing
compact binary objects from the recent Advanced LIGO [1]
and Advanced Virgo [2] runs [3–5], with a large range of
masses for the individual compact objects. More detections
are expected during the next observation period, called O4,
with improved sensitivities and the inclusion of KAGRA
[6]. In particular, the GW190814 event [7] corresponds to a
merger involving a compact object with a 2.6 solar mass.
Such a mass falls typically in the intermediate range
between the known black hole masses and neutron star

masses [8–10], therefore this object can be either the most
massive neutron star or the lightest black hole ever
detected. In terms of gravitational wave emission, the main
difference to be expected is the finite size effects in neutron
stars. Unfortunately, the detector sensitivities are currently
too low to constrain matter effects and the formation
mechanism for a black hole or a neutron star of 2.6 solar
masses remains unclear. An interesting idea is to consider
that this object is a primordial black hole (PBHs) [11]. The
GW190814 event is not the only event to contain a compact
object of unknown nature because of a too low resolution of
detectors; the question about the nature of compact objects
can also be raised for the GW190425 event [12].
Contrary to stellar black holes which are produced by

supernovae, PBHs may have been produced in the early
Universe, during, e.g., a phase transition. Their size is
limited by the Hubble scale, which is related to the
cosmological time, providing a link between the maxi-
mum PBH mass and the epoch of formation [13]. In
practice, PBHs can theoretically have a mass between the
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Planck mass and millions of solar masses. Because of
Hawking evaporation, light PBHs lose mass under the
form of radiation, and it has been shown that PBHs with
masses below 1015 grams would have already evaporated
since their formation [13]. On the contrary, heavier PBHs
have a sufficiently low evaporation rate to still be present
in our universe. Because of this, PBHs are usually
considered as good candidates for dark matter [13], and
can constitute the whole or a large fraction of it.
In the absence of an electromagnetic counterpart for a

gravitational-wave signal, the nature of compact objects
involved in a coalescence must be determined based solely
on the gravitational waveforms. The data are compared to
different models with Bayesian inference processes, and the
preferred model is established based on the odds factor [14]
which is equal to the Bayes factor without any a priori on
the models. The effect of the structure of a neutron star on
gravitational waveforms for the inspiral phase of a coa-
lescence is described by a tidal deformability parameter
[15–17] noted as Λ. This characterizes the quadrupole
deformation of the star in response to the gravitational field
of the companion.
The issue of compact objects identification based only on

gravitational waveforms has been already studied in the
literature. In [18], the Bayes factor is used on simulated data
to differentiate between the hypothesis of a binary neutron
star (BNS) and binary black hole (BBH) mergers. For data
injected in Advanced LIGO, Virgo, and KAGRA (LVK)
detectors in an O4-like configuration and with compact
objects in the mass gap, the authors find that the distinction is
possible only for binary systems within few tens of Mpc.
This result is obtained assuming the APR [19] equation of
state for neutron stars. More generally [20], the possibility to
establish the nature of the compact object depends on the
considered equation of state. Another study [21] investigates
the possibility of distinguishing the nature of compact
objects by analysing gravitational-wave signals from coa-
lescences and assuming different equations of state. For
high-mass injected binary neutron stars described by the
ALF2 [22] and H4 [23,24] equations of state most BNS
systems can be distinguished from BBH at 40 Mpc at a
≥ 95% confidence level (CL) during the O4 LVK observa-
tion period. The study also suggests encouraging perfor-
mance for third-generation detectors.
In this article, we study the difference between gravita-

tional waveforms produced by the coalescence of BNS,
BBH, and mixed systems containing a neutron star and a
black hole (NSBH). The main goal is to understand under
which circumstances and conditions it is possible to dis-
criminate between BNS and BBHwaveforms by making use
of injected signals with realistic noise profiles. Section II
introduces the tools used for comparing waveforms and to
quantify how well different models describe the data.
In Sec. III, we study the possibility of misinterpreting the
results, when injecting either a BBH, or a BNS, or a NSBH

waveform into realistic detector noise, before concluding
in Sec. IV.

II. MODEL SELECTION

A. Degeneracy between BNS, NSBH
and BBH waveforms

The description of gravitational waveforms is achieved
via the IMRPhenom family (phenomenological inspiral-
merger-ringdown waveforms), which is based on fre-
quency domain waveform models. In the following, the
IMRPhenomPv2 [25–27] waveform approximant will be
used for BBH, IMRPhenomPv2_NRTidal [28–30] for BNS
and IMRPhenomNSBH [31] for NSBH.
It is important to notice that, in the specific case of BNS,

for a given equation of state with an asymmetric system, the
tidal deformabilities of the two neutron stars, Λ1 and Λ2,
are not the same. However, the parameter that is con-
strained at leading order by the gravitational-wave signal
[32] is a combination of the tidal deformabilities of the two
neutron stars, defined in [33] and noted Λ̃. For this reason,
in the following BNS studies, we make the simplifying
assumption Λ1 ¼ Λ2.

1. Convolution product: A toy approach

A first approach to quantify the difference between two
waveforms is to make their convolution product. This is
defined by the time integral of the product of the two
waveforms where one is time-shifted with respect to the
other. By maximizing over the time shift, it is possible to
have a measure of the similarity of two waveforms. The
discriminating parameter to vary between the BNS, NSBH
and BBHwaveforms is the tidal deformability characterizing
the matter effect [15–17]. Without mass gap hypothesis, it is
this parameter that will play a central role in characterizing
the nature of compact objects. The convolution product
between a BBH and a BNS with a chirp mass of 1.44 M⊙
and a mass ratio of 0.9, normalized with the convolution
product of the BBH with itself, is consistent with 1 for
Λ1 ¼ Λ2 ¼ 0. This indicates that a neutron star with zero
deformability mimics a black hole very well. By construc-
tion in this work, it is Λ that defines a neutron star and to get
an idea of the order of magnitude of its effect, we have
computed the value of the convolution product which
gives a value of 0.959 for Λ1 ¼ Λ2 ¼ 300, and of 0.934
for Λ1 ¼ Λ2 ¼ 600.

2. Match between two waveforms

The comparison of gravitational waveforms using the
convolution product does not take into account the ability
to experimentally measure a difference with an interfer-
ometer. Following Ref. [34], the approach to compare two
waveforms taking into account the sensitivity of the
detectors is based on the noise-weighted inner product
between two waveforms h1 and h2 defined by:
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hh1jh2i ¼ 4Re
Z

fmax

fmin

h1ðfÞh�2ðfÞ
SnðfÞ

; ð1Þ

where SnðfÞ is the power spectral density (PSD),
that encodes the frequency-dependent sensitivity of a
detector [35]. To calculate such a scalar product, we
take the advanced LIGO design sensitivity given by
aLIGOZeroDetHighPower [36], shown in Fig. 1. The
figure also shows the PSD of LIGO Livingston at the time
of the GW170817 detection, illustrating that the sensi-
tivity used in our study is roughly one order of magnitude
better than the best performance of the detectors during
the O2 run [3]. The separation between two waveforms h1
and h2 can be related to their match, which is defined by
the overlap maximized on the coalescence time and the
coalescence phase:

Mðh1; h2Þ ¼ max
Δt;Δϕ

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh2jh2i

p : ð2Þ

To detect gravitational-wave signals from compact binary
coalescences (CBC), the LIGO-Virgo Collaboration
(LVC) constructs template banks so that the match is at
least 0.97 between the two closest waveforms [37]. Matter
effects on gravitational waveforms, needed to determine
the nature of compact objects, can be very small. As an
example, considering a BBH and a BNS both with a chirp
mass of 1.44 M⊙ and a mass ratio of 0.9, the tidal
deformabilities of the neutron stars must be at least of
the order of Λ1 ¼ Λ2 ¼ 800 to have a match lower
than 0.97.

3. Results with confidence regions

When a signal is detected, given a model MA, the
marginalized posterior probability density function of all
unknown parameters θ is typically computed by using a

Bayesian analysis. The mean of the parameters θ is noted
hθi. Following Eq. (18) of [39], the confidence region at a
given probability p is the set of points verifying the
following condition:

2ρ2½1 −MðhðθÞ; hðhθiÞÞ� ≤ χ2kð1 − pÞ; ð3Þ

where ρ is the signal to noise ratio (SNR) and χ2kð1 − pÞ is
the value of the quantile function for the normal chi-squared
distribution corresponding to p, in the case of k degrees of
freedom. We can use this relation to determine the regions in
the parameter space in which two different waveforms can
be distinguished. For a given SNR, if spins are neglected,
BNS templates have only 4 parameters: the chirp mass M,
the mass ratio q and the two tidal deformabilities Λ1, Λ2

because the match is maximized over phase, time, and
distance.
We consider only the tidal deformabilities as free param-

eters and fix the others. This assumption neglects the
degeneracies between the parameters of a waveform (see
for example [39]) leading to possibly optimistic results. In
addition, as explained, we make the simplifying assumption
thatΛ1 ¼ Λ2. Wewrite Eq. (3) for the case where hðhθiÞ is a
BBH waveform and for the case where hðθÞ is a BNS one
with Λ1 ¼ Λ2. It follows that BBH and BNS can be
distinguished (and the nature of the compact object can
be determined) if:

2ρ2½1 −MðhBNS; hBBHÞ� ≥ χ2kð1 − pÞ: ð4Þ

Since the tidal deformability is the only degree of freedom
(Λ1 ¼ Λ2), the value of the quantile function for the normal
chi-squared distribution χ2k¼1ð1 − pÞ is equal to 2.71 for
p ¼ 0.1, which corresponds to a 90% CL and 6.64 for
p ¼ 0.01, which corresponds to a 99% CL.
The left-hand side of Eq. (4) depends on the fixed

parameters but also on the luminosity distance d through
the SNR: ρ ≃ hhBBHjhBBHi1=2 ≃ hhBNSjhBNSi1=2 which is
proportional to 1=d. Figure 2 shows 2ρ2½1 −MðhBNS;
hBBHÞ� as a function of the deformability of neutron stars.
The horizontal lines correspond to the 90% and 99% CL
limits: a point above one of these lines means that BBH
and BNS mergers can be distinguished at more than 90%
of 99% CL. As expected, the ability of distinguishing
BBH and BNS (all other parameters being fixed) increases
with the tidal deformabilities and the chirp mass, and
decreases with the distances. For example, for a distance
of d ¼ 200 Mpc, with M ¼ 1.44 M⊙ and q ¼ 0.9, the
nature of the compact objects can be determined if the
tidal deformabilities are higher than 200, while for a
distance of 400 Mpc even tidal deformabilities of 1000 are
not enough to make the BBH and BNS waveforms
distinguishable at 99% CL. It has to be kept in mind
that, for most equations of state, a higher mass typically
implies a lower deformability. For example, considering

FIG. 1. Noise power spectral densities considered in this study.
In brown the PSD of LIGO Livingston at the time of GW170817
and in blue the PSD design sensitivity of Advanced LIGO
available in the psd package within PyCBC [36]. The other
curves correspond to a PSD design sensitivity for different
scenarios of Advanced LIGO and Advanced Virgo available in
the detector package within Bilby [38].
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the APR equation of state, a 1.655 M⊙ neutron star has a
tidal deformability of 135 which is in the region between
90% CL and 99% CL (see blue dashed curve of Fig. 2).
However, a neutron star of 2.07 M⊙ has a tidal deform-
ability lower than 46 which is below 90% CL (see blue
solid curve of Fig. 2).
We performed a similar study for the comparison of BBH

and NSBH waveforms, to determine the conditions under
which it is possible to distinguish the nature of the compact
object coalescing with the BH. The results are presented in
Fig. 3 for a system with a chirp mass of 3 M⊙ and assuming
different mass asymmetries. The case of extreme mass ratio
(q ¼ 0.6) is at the edge of the standard parameter space, with
a NS of 2.7 M⊙ and a BH of 4.5 M⊙. At fixed tidal
deformability, the distinction between BBH and NSBH is

more difficult at low mass ratios. For a chirp mass of 3 M⊙, a
mass ratio of 0.2, a tidal deformability of 650, the system
must be at a distance of less than 200 Mpc to know the nature
of the second compact object at 90% CL. By construction,
when the deformability is zero, the waveforms used do not
make it possible to distinguish between a BH and a NS.
Indeed, in this case, the overlap is above 0.99 and consistent
with 1 within the model precision, as described in [31].
However the y axis of Fig. 3 combines the overlap with the
SNR (ρ), leading to nonexactly zero values of the curves at
null tidal deformabilities for the loudest coalescences, for
which the modeling error would dominate the comparison of
the waveforms.
The results shown in Figs. 2 and 3 depend strongly on

the detector sensitivity. Indeed, any change in the PSD
SnðfÞ directly affects the noise-weighted inner product
between two waveforms [Eq. (1)]. Some examples of
PSD are drawn in Fig. 1. Their impact on the ability
to distinguish between BBH and BNS templates and
to determine the nature of compact objects is shown in
Fig. 4 for the system defined by M ¼ 1.44 M⊙, q ¼ 0.9
and d ¼ 200 Mpc.

B. The odds number

The Bayes’ theorem links the posterior distribution to the
likelihood, the prior and the evidence [14]:

pðθjd;MAÞ ¼
πðθjMAÞLðdjθ;MAÞ

ZðdjMAÞ
; ð5Þ

pðθjd;MAÞ is the posterior distribution which gives
the probability of all unknown parameters θ, given the
experimental data d within the modelMA. Lðdjθ;MAÞ is
the likelihood function. πðθjMAÞ is the prior assuming
MA. ZðdjMAÞ is the evidence which is the integral over
the full set of parameters θ of the product of the likelihood
and the prior:

FIG. 2. Comparison between BBH and BNS waveforms. The
curves show the left-hand side of Eq. (4) as a function of the tidal
deformabilities of the neutron stars. The horizontal lines show the
value of χ2k for different confidence level thresholds: if a point is
below the horizontal lines, the two mergers are too similar to be
distinguished at the given confidence level. Different types of
curves (solid, dashed, and dotted) of the same color indicate
different chirp masses and different types of colors indicate different
distances. In particular, (M ¼ 1.2 M⊙, q ¼ 0.9) corresponds to
(m1 ¼ 1.45 M⊙, m2 ¼ 1.31 M⊙), (M ¼ 1.44 M⊙, q ¼ 0.9)
to (m1 ¼ 1.74 M⊙, m2 ¼ 1.57 M⊙) and (M ¼ 1.8 M⊙,
q ¼ 0.9) to (m1 ¼ 2.18 M⊙, m2 ¼ 1.96 M⊙).

FIG. 3. Same as Fig. 2 for BBH and NSBH templates.
(M¼3M⊙, q¼0.2) corresponds to (m1 ¼ 8.2 M⊙, m2 ¼
1.6 M⊙), (M¼3M⊙, q¼0.4) to (m1¼5.6M⊙, m2 ¼ 2.2M⊙)
and (M ¼ 3 M⊙, q ¼ 0.6) to (m1 ¼ 4.5 M⊙, m2 ¼ 2.7 M⊙).

FIG. 4. Comparison between BBH and BNS mergers, assuming
the different power spectral densities shown in Fig. 1. The chirp
mass is fixed at 1.44 M⊙, the mass ratio at 0.9 and the distance at
200 Mpc.
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ZðdjMAÞ ¼
Z

dθLðdjθ;MAÞπðθjMAÞ: ð6Þ

Our goal is to study when BNS, NSBH and BBH
mergers can be distinguished via the waveforms of the
emitted gravitational waves. Bayesian analysis estimates
the posterior probability density function for a given model
MA. In order to compare two competing models, the odds
number can be used [14]:

BAB ¼ pðMAjdÞ
pðMBjdÞ

¼ pðMAÞ
pðMBÞ

ZA

ZB
; ð7Þ

whereZA=B is the evidence and pðMA=BÞ is the prior belief
in model A=B. Thereafter, gravitational-wave data are
analyzed without assumption on the nature of the compact
objects whichever their mass, and pðMAÞ=pðMBÞ is fixed
to one. BAB ¼ ZA=ZB is the Bayes factor between the two
competing models MA and MB. Jeffrey’s scale [40] gives
an empirical calibration of the strength of evidence and if
lnBAB is higher than the arbitrary value of 5, MA is
strongly preferred. Limits for strong evidence, moderate
evidence and inconclusive are given in Table I.
It is important to notice that a Bayes factor penalizes

more complicated models with a large prior volume or a
fine tuning. In other words, a particularly simple model
giving a worse fit to the data can be preferred over a
complicated model giving a better fit. This can be intui-
tively understood invoking the Occam’s razor principle as
explained in Ref. [41].

III. MODEL COMPARISON WITH BAYES
FACTOR IN SIMULATED DATA

In this section the templates (generated with
IMRPhenomPv2, IMRPhenomPv2_NRTidal and IMRPhenomNSBH

to describe BBH, BNS and NSBH waveforms, respec-
tively) are used to analyze LVC simulated data. We
perform a Bayesian analysis for each template and study
the output in terms of the posterior distribution of the
parameters and the signal-to-noise ratio. To determine
which template better describes the data, we use the odds
number introduced in the previous section. The power
spectral density of the detector noise is taken to be the one
of the advanced configurations for the O4 simulations
[42]. The analysis is performed in the case where the

simulated signal corresponds to a BBH, BNS, or NSBH
system. Each time, the Bayes factor between the three
corresponding models is computed in order to find which
one describes best the simulated data, with a decisive
choice whenever the Bayes factor is higher than 5. The
results are obtained using pBilby [38,43,44] with
nested sampling, as introduced by Skilling [45].

A. Injected waveform

The first step in this study consists in generating a
gravitational waveform given by a template and adding it
to the design Gaussian noise of advanced detector configu-
rations as reported in [46]. The gravitational waveform
depends on 15 parameters: chirp mass M, mass ratio q,
two angular momenta S⃗1;2 (for aligned spin systems, only

χi ¼ S⃗i:
ˆL⃗=m2

i are needed, where
ˆL⃗ is the normalized orbital

momentum), 2-dimensional sky localization (right ascension
ra and declination dec), luminosity distance d, two angles
for the orbital plane (inclination angle ι and the polarization
angle ψ), coalescence time t and phase of coalescence ϕ. For
a BNS merger, 17 parameters must be used because the two
tidal deformabilities Λ1 and Λ2 must be added to the list.
The location of the source in the sky is arbitrarily

chosen to maximize the signal for the second most
sensitive detector. The PSD for the Virgo detector, which
determines the sensitivity of the detector, is chosen for the
advanced configuration, shown in purple in Fig. 1. For the
Hanford and Livingston detectors, the PSD has been
represented in orange and is the same for both. The
source location is taken to maximize the signal for the
Hanford detector. For a coalescence at a GPS time of
1.2 × 109 s, this gives 5.49 rad for right ascension and
0.81 rad for declination. The inclination and polarization
are chosen at 0 rad. For a physical luminosity distance
of 400 Mpc, the effective distance for these parameters
gives 400 Mpc for Hanford, 449 Mpc for Livingston, and
1867 Mpc for Virgo.
The spin of neutron stars in a binary system is generally

extremely weak. Well before the inspiral phase detected by
gravitational-wave detectors, the spin of neutron stars is
suppressed by electromagnetic interactions. On the con-
trary, standard and primordial black holes, which do not
have this suppression mechanism, can have larger spins
during the merger, and a primordial black hole can even
have a spin very close to that of an extreme Kerr black hole.
If a compact object is detected with a large spin, there is a
strong chance that it is a black hole and if the spin is almost
equal to 1, a primordial black hole. A priori though, it is
always possible to assume a spinning NS, and the presence
of a spinning black hole in the coalescence will not
necessarily increase the odds number to distinguish two
models. As for the mass criterion, we propose here to study
the distinction between black hole and neutron star only
with the Bayes factor without adding assumptions in the

TABLE I. Jeffrey’s scale standard values used to compare two
competing models using the Bayes factor.

j lnBABj Probability

< 1 <0.731 Inconclusive
2.5 0.924 Moderate evidence
5 0.993 Strong evidence
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prior and we will restrict ourselves to compact objects
injected without spin.
In the following, we will consider an injected signal with

the optimal configuration for Hanford as described in above.
Compact objects are chosen without spin and with masses
equal to m1 ¼ 1.74 M⊙ and m2 ¼ 1.57 M⊙ i.e., a chirp
mass of M ¼ 1.44 M⊙ with q ¼ 0.9 and χi ¼ 0. For an
injected BBH data created by IMRPhenomPv2 routine, only the
luminosity distance varies between the different injections.
For BNS data created by the IMRPhenomPv2_NRTidal routine,
the luminosity distance and the tidal deformabilities will be
varied.

B. Black hole mergers interpreted as neutron
star mergers

The Bayes factor is calculated between BBH/NSBH
models and BBH/BNS models for an injected BBH signal
of 128 seconds as described in the previous section. The
sampling parameters used for the Bayesian analysis,
performed using parallel bilby are given in Table II.
The full set of parameters is investigated: there are 11
parameters for BBH, 12 parameters for NSBH, and 13
parameters for BNS. The Bayes factor depends on the
template but also on the prior. To reduce the dependence
on the prior, the same is used for a BBH and for a BNS,
namely we use a uniform prior between 0.87 M⊙ and
5 M⊙ for the chirp mass and between 0.125 and 1 for the
mass ratio with constraints 1 M⊙ < m1 < 5 M⊙ and
1 M⊙ < m2 < 3 M⊙ for all the models. We also use
aligned spins in the low spin limit corresponding to
jχij < 0.05 for each model. Only the tidal deformability,
modeling the matter effects for a NS, has no correspond-
ent for a BH. In this case, a uniform prior between 0 and
5000 for Λ is added for a NS.
Figure 5 shows the variation of the Bayes factor as a

function of the distance. In all cases the values of lnBAB
represented by the dots are positive, meaning that the MA
model is always preferred. If a point is above the dashed
horizontal line, theMA model is strongly better (cf. Table I).
The MA model corresponds to a BBH merger, i.e., the

model which corresponds to the BBH injected signal, and
the MB model corresponds either to a BNS merger or to a
NSBH merger. For a distance smaller than 200 Mpc, the
purple dots in Fig. 5 are in the orange region and the BBH
model is preferred over the BNS model which is not really
the case for the NSBH model (green dots). We can therefore
conclude that there is at least one black hole in the source
that emitted the gravitational waves. The BNS waveform
with almost zero tidal deformability fits very well with the
BBH waveform, so the Bayes factor will prefer the model
with the smallest number of parameters and as expected, the
purple dots are above the green dots and above zero. Each
dot plotted in Fig. 5 is the result of one or two independent
Bayesian analyses and is accompanied by a vertical bar
corresponding to the possible variation of the result: this bar
represents the uncertainty of the Bayes factor and its
variation due to different realizations of the noise. This
uncertainty has been estimated with eight simulations in
the zone where a model is strongly favored (d ¼ 150 Mpc)
and in the inclusive zone (d ¼ 300 Mpc). Later in the

TABLE II. Sampling parameters used for the different Bayesian analyses. The parameters not mentioned in sampling parameters are
set to the value used in the injected data.

Name of models Number Sampling parameters

Restricted space BBH W/O spin 2 M, q
BNS W/O spin 4 M, q, Λ1, Λ2

BBH 1D spin 4 M, q, χ1, χ2 (aligned spin)
BBH 3D spin 8 M, q, a1, a2, θ1, θ2, ϕJL, ϕ12 (full spin description)

BNS W/O spin with Λi fixed 2 M, q (Λ1 and Λ2 are fixed at 0)

Full space BBH 11 M, q, χ1, χ2, ra, dec, d, θJN , ψ , t, ϕ
NSBH 12 M, q, χ1, χ2, Λ2, ra, dec, d, θJN , ψ , t, ϕ
BNS 13 M, q, χ1, χ2, Λ1, Λ2, ra, dec, d, θJN , ψ , t, ϕ

BNS with Λi fixed 11 M, q, χ1, χ2, ra, dec, d, θJN , ψ , t, ϕ (Λ1 ¼ Λ2 ¼ const)

FIG. 5. Bayes factor for different models as a function of the
luminosity distance for the optimal configuration. The chirp mass
of BBH injected data is chosen to be 1.44 M⊙ with a mass ratio of
0.9 and the sampling parameters for BBH, NSBH and BNS are
given in Table II. A point above the dashed black lines means that
the BBH hypothesis is strongly favored. In the blue region
labeled “Inclusive” it is not possible to strongly prefer one model
over the other.
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manuscript (Fig. 7), we show those simulation points. When
the odds number is close to the limit of 5 it is not always
possible to discriminate between the BBH and BNS models
even with a source at a distance of 100 Mpc.
In this section and in the following we have assumed the

source as oriented favorably for detection and the results
are therefore rather optimistic. Moreover, we have consid-
ered a Gaussian noise for the detectors without considering
terrestrial noise due for instance to meteorological con-
ditions or human activity which is an ideal case. On the
other hand, the limit can slightly improve with the increase
of the chirp mass.

C. Neutron star mergers interpreted as black
hole mergers

In this section, we consider the case where the injected
data are generated by mergers of BNS and we try to
determine whether it is possible to confuse a BNS merger
with nonzero tidal deformability with a BBH merger. We
inject the gravitational waveforms generated by mergers of
BNS with different tidal deformabilities and zero spin at
different distances and study the Bayes factor between BNS
and BBH.

1. Study on spin in restricted parameter space

First, we focus on the impact of the black hole spins on
the Bayes factor. In order to reduce the computational
cost, only the physical parameters of the objects are
searched for, using a Bayesian analysis. The sampling
parameters for the different models considered are given
in Table II and the results are shown in Fig. 6. In the top
panel, the Bayes factor is calculated between the BNS
without spin model and a BBH model with different spin
descriptions defined in Table II. For data injected with
Λ1 ¼ Λ2 ¼ 600 or with Λ1 ¼ Λ2 ¼ 300, the BNS without
spin model is always preferred regardless of the BBH
models. For data injected with Λ1 ¼ Λ2 ¼ 100, the most
favored case is the BBH without spin model. Not taking
spin into account in the BBH analysis, a BBH is unable to
mimic a BNS and the posterior distribution of the mass
ratio is not compatible with the injected value of 0.9. The
spin description allows for an improved signal fit with the
BBH model due to the flexibility provided by a larger
parameter space. On the other hand, the Bayes factor will
not automatically be better because it penalizes models
with a larger number of parameters, as shown by the blue
and red dots, and using a 3D spin description is worse
than a 1D description within the BBH model. For data
injected with Λ1 ¼ Λ2 ¼ 100, some values of lnBAB
slightly prefer the BBH model in spite of the fact that
the signal was created with a BNS model. The bottom
panel of Fig. 6 shows a new Bayesian analysis with the
model BNS without spin with Λi fixed represented with
black dots. In this case, the BBH model is no longer
preferred compared to the BNS model.

2. Full space parameters

In this section, the complete parameter space is probed
via a Bayesian analysis (see Table II) for the same injected
data as in Fig. 6. The Bayes factor between BNS and BBH
is shown in Fig. 7. As expected, the larger the tidal
deformability, the clearer the distinction and the less a
BBH merger can mimic a BNS merger. We can also notice
the strong impact of the distance from the source on the
results. When d ¼ 100 Mpc, the tidal deformability is
clearly reconstructed if Λ1 ¼ Λ2 ≥ 300. For a distance
around 200 Mpc, the Bayes factor is not systematically in
the orange region even for a strong tidal deformability and
for a distance of 300 Mpc, it is no longer possible to
discriminate the nature of the compact objects.
When the injected signal is a BBH (see Fig. 5), the

Bayesian analysis never prefers the BNS model even if it
is not possible to conclude that it is a BBH because the
Bayes factor does not reach the strong evidence limit. The
purple dots in Fig. 7, which correspond to a BNS signal

FIG. 6. Top panel: Bayes factor in restricted space between the
model called BNS without spin and different models of BBH as a
function of the luminosity distance. The sampling parameters
corresponding to the different models are given in Table II and the
injected data correspond to BNS mergers in optimal configuration
and with zero spins. Each point represents the mean value and the
vertical bar the standard deviation for 4 to 6 simulations with
different noise realizations. A dot located in the orange regions
means that one of the two analyses is strongly preferred by the
data. Bottom panel: zoom on the results for an injection with
Λ1 ¼ Λ2 ¼ 100. The black points are added and correspond to the
Bayesian analysis performed with BNS without Spin withΛi fixed
and with BBH without Spin (see Table II).
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with Λ1 ¼ Λ2 ¼ 100, seem to suggest that the BBH
merger is preferred over the BNS one. This preference
is a manifestation of the fact that the BNS model is more
complex than the BBH model, having two additional
parameters. This is demonstrated by the bottom panel in
Fig. 7, which analyzes the same data with different priors.
When the analysis is performed with a BNS waveform
having the tidal deformabilities fixed to zero (BNS with
Λi fixed at zero), the Bayes factor is fully consistent
with zero (red dots). This result is not surprising as the
BBH waveform and the BNS waveform with zero tidal
deformability are almost identical. However, there is no
improvement in the Bayes factor if the tidal deformability is
set to 100, i.e., to the value that was used to create the
injected data. The preference for a BBH hypothesis increases
fromΛ constant toΛ in [0,1000] and [0,5000] because of the

increasing volume of the prior. Considering the PSD of the
advanced detector configurations, the Bayes factor does not
distinguish between the BNS model and the BBH model
when the source is at 300 Mpc even in the case where the
tidal deformabilities are large (Λ1 ¼ Λ2 ¼ 600).
A significant improvement is expected with third gener-

ation detectors, for instance Einstein Telescope [47]. To have
an idea of this improvement, BNS signals with Λ1 ¼ Λ2 ¼
100 and Λ1 ¼ Λ2 ¼ 600 are injected at a distance of
300 Mpc in the Hanford detector with the PSD [48] of
Einstein Telescope and in the Livingston detector with
the PSD of the advanced detector configuration. For
Λ1 ¼ Λ2 ¼ 100, the Bayes factor is now consistent with
zero, improving the situation of the advanced detectors
configuration only, when the BBH model was slightly
preferred. On the other hand, for a BNS signal with
Λ1 ¼ Λ2 ¼ 600, the Bayes factor becomes now 90, meaning
that the BNSmodel is strongly favored compared to the BBH
model. In the advanced detectors configuration the factor was
consistent with zero, implying an inconclusive determination
of the nature of the compact object.

IV. CONCLUSIONS

The nature of the compact 2.6 M⊙ object detected in the
GW190814 event is unknown: is it a neutron star, a black
hole, a new type of compact object? Motivated by this
event, we studied how a gravitational waveform of a BBH
merger can be distinguished from a BNS merger. The
distinction between BNS and BBH is typically made by
considering that there is a mass gap between black holes
and neutron stars: a neutron star has a mass lower than
2.2 M⊙ and a stellar black hole higher than 5 M⊙. The
problem with the observed object at 2.6 M⊙ is that it does
not fit into this classification. On the contrary, if primordial
black holes exist, they may have masses similar to neutron
stars. This is why it is important to study the distinction
between a black hole and a neutron star by considering only
the gravitational waveform without priors on the mass
distributions.
As a first step, we have compared waveforms from BBH,

BNS, and NSBH templates by using the match function
defined in Eq. (2). From this study, even for large neutron
star tidal deformabilities, the observation of gravitational
waves from a merger at 400 Mpc appears not to be enough
to identify a BNS signal. We have also observed that, for an
asymmetric NSBH merger, the identification of the second
compact object via its tidal deformability is more difficult
then in the case of BNS, even considering a chirp mass
of 3 M⊙.
In a second step, we have studied simulated data as it is

done in real gravitational wave analyses, where the param-
eters of a merger are determined with Bayesian inference. A
selection criterion for the nature of the coalescence is given
by the ratio of the Bayes factors between two competing
models. We have studied this ratio for simulated data under

FIG. 7. Bayes factor in the full space between BNS and BBH
models as a function of the luminosity distance for different tidal
deformabilities. The sampling parameters corresponding to the
different models are given in Table II and the injected data are the
same as in Fig. 6. A point in the orange regions means that one of
the two models is preferred, whereas a point in the blue region
corresponds to an inconclusive discrimination of the best model.
The variation of the results using different realizations of the
noise is represented by the black stars, which were used to draw
the vertical bars. Top panel: Results showing the variation
of the Bayes factor for data injected with different deformabil-
ities. The analysis is performed using the so-called BNS model.
Bottom panel: Results showing the variation of the Bayes factor
for an analysis using different choices of priors with the BNS
model and BNS with Λi fixed. The analysis is performed using
the same data injected with neutron stars having tidal deform-
abilities equal to 100.
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realistic noise conditions by considering mergers with a
chirp mass of 1.44 M⊙. For BBH simulated data, the BBH
models are preferred at least up to a distance of 300 Mpc.
For BNS simulated data withΛ1 ¼ Λ2 ¼ 600, BNS models
are largely favored over BBH. On the other hand, when
Λ1 ¼ Λ2 ¼ 100, the BBHmodel is preferred. This is due to
the fact that the Bayes factor depends on the prior volume
and penalizes more complex systems with a larger number
of parameters. We have checked that a tighter cut on the
Bayes factor ratio can avoid this situation.
The detection of a BNS merger at a distance larger than

150 Mpc does not have a signal to noise ratio good enough
to allow the determination of the nature of compact objects,
even if the merger is perfectly oriented for the Hanford
detector, assuming design sensitivities and only stationary

noise. Considering third generation detectors, for instance
Einstein Telescope, and under the same optimistic assump-
tions as before, the ability to distinguish between two
models is dramatically improved.
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for its financial support within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) of the French government
operated by the National Research Agency.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al. (Virgo Collaboration), Classical Quantum
Gravity 32, 024001 (2015).

[3] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 9, 031040 (2019).

[4] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 11, 021053 (2021).

[5] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA Collab-
orations), arXiv:2111.03606 [Phys. Rev. X (to be published)].

[6] T. Akutsu et al. (KAGRA Collaboration), Prog. Theor. Exp.
Phys. 2021, 05A101 (2021).

[7] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 896, L44 (2020).

[8] L. Rezzolla, E. R. Most, and L. R. Weih, Astrophys. J. 852,
L25 (2018).

[9] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Classical Quantum Gravity 37, 045006 (2020).

[10] O. Pejcha and T. A. Thompson, Astrophys. J. 801, 90
(2015).

[11] C. T. Byrnes, M. Hindmarsh, S. Young, and M. R. S.
Hawkins, J. Cosmol. Astropart. Phys. 08 (2018) 041.

[12] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 892, L3 (2020).

[13] B. Carr and F. Kuhnel, Annu. Rev. Nucl. Part. Sci. 70, 355
(2020).

[14] E. Thrane and C. Talbot, Pub. Astron. Soc. Aust. 36, e010
(2019).

[15] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502
(2008).

[16] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[17] T. Hinderer, Astrophys. J. 697, 964 (2009).
[18] S. Datta, K. S. Phukon, and S. Bose, Phys. Rev. D 104,

084006 (2021).
[19] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.

Rev. C 58, 1804 (1998).

[20] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D 81, 123016 (2010).

[21] A. Chen, N. K. Johnson-McDaniel, T. Dietrich, and R.
Dudi, Phys. Rev. D 101, 103008 (2020).

[22] M. Alford, M. Braby, M.W. Paris, and S. Reddy, Astrophys.
J. 629, 969 (2005).

[23] B. D. Lackey, M. Nayyar, and B. J. Owen, Phys. Rev. D 73,
024021 (2006).

[24] N. K. Glendenning, Astrophys. J. 293, 470 (1985).
[25] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X.
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