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Gravitational wave-forms from coalescences of binary black hole systems and binary neu-

tron star systems with low tidal effects can hardly be distinguished if the two systems have

similar masses. In the absence of discriminating power based on the gravitational wave-

forms, the classification of sources into binary neutron stars, binary black holes and mixed

systems containing a black hole and a neutron star can only be unambiguous when assum-

ing the standard model of stellar evolution and using the fact that there exists a mass gap

between neutron stars and black holes. This approach is however limited by its own as-

sumptions: for instance the 2.6 solar mass object detected in the GW190814 event remains

unclassified, and models of new physics can introduce new compact objects, like primordial

black holes, which may have masses in the same range as neutron stars. Then, without an

electromagnetic counterpart (kilonova), classifying mergers of compact objects without mass

gap criteria remains a difficult task, unless the source is close enough. In what follows we

investigate a procedure to discriminate a model between binary neutron star merger and

primordial binary black hole merger by using a Bayes factor in simulated wave-forms that

we superimpose to realistic detector noise.
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I. INTRODUCTION

Gravitational wave astronomy has entered a new era, characterized by the detection of a plethora

of coalescing compact binary objects from the recent LIGO and Virgo runs [1, 2], with a large range

of masses for the individual compact objects. In particular, the GW190814 event [3] corresponds

to a merger involving a compact object with a 2.6 solar masses. Such a mass falls typically in the

intermediate range between the known black hole masses and neutron star masses [4–6], therefore

this object can be either the most massive neutron star or the lightest black hole ever detected. In

terms of gravitational wave emission, the main difference to be expected is related to the condensed

matter effect of neutron stars. Unfortunately, the detector sensitivities are currently too low to

observe the impact of matter effect, and in absence of electromagnetic counterpart to determine the

nature of this compact object. The mechanisms of formation of a black hole or a neutron star of 2.6

solar masses remains unclear and an interesting idea is to consider that this object is a primordial

black hole (PBHs) [7].

Contrary to stellar black holes which are produced by supernovae, PBHs may have been produced

in the early Universe, during e.g. a phase transition. Their size is limited by the Hubble scale,

which is related to the cosmological time, providing a link between the maximum PBH mass and

the epoch of formation [8], and in practice PBHs can theoretically have a mass between the Planck

mass and millions of solar masses. Because of Hawking evaporation, light PBHs lose mass under

the form of radiation, and it has been shown that PBHs with masses below 1015 grams would have

already evaporated since their formation [8], but heavier PBHs have sufficiently low evaporation

rates to still remain. Because of this, PBHs can constitute the whole or a large fraction of dark

matter, and they are usually considered as good candidates for dark matter [8]. The GW190814

event is not the only event to contain a compact object of unknown nature because of a too low

resolution of detectors ; the question about the nature of compact objects can also be asked for the

GW190425 event [9].

In this article, we study the differences between gravitational wave-forms (GWs) produced by the

coalescence of binary neutron stars (BNS), binary black holes (BBH) and mixed systems containing

a black hole and a neutron star (BHNS). The shapes of these gravitational wave-forms are rather

similar when the objects involved in the merger have similar masses. The main goal of this paper is

to understand under which circumstances and conditions it is possible to discriminate between BBH

and BNS wave-forms by making use of injected signals with realistic noise profiles. In section II,

BBH, BHNS and BNS templates will be compared using the match which is equivalent to the
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overlap maximized over time and phase, and the odds number will be introduced to compare two

competing models. In section III, we will study the possibility of misinterpreting the results when

injecting a PBH wave-form into advanced detector noise and interpreting the data in the context

of BNS mergers. We will also explore the opposite problem, when BNSs are interpreted as BBHs,

and we will conclude in Section IV.

II. MODEL SELECTION

A. Degeneracy between BNS, BHNS and BBH wave-forms

A first approach to compare two GWs is to use the convolution product of the two GWs in the

time domain which is defined as the integral of the product of two GWs after one of them has been

reversed, shifted and extended by zero values. The discriminating parameter to vary between BNS,

BHNS and BBH wave-forms is the tidal deformability characterizing the matter effect [10–12] which

is only defined for neutron stars. Without mass gap hypothesis, it is this parameter that will play a

central role in characterizing the nature of compact objects. For example, the convolution product

of the wave-forms between a BBH and a BNS normalized with the convolution product of BBH

with itself is 0.937 for tidal deformabilities equal to Λ1 = Λ2 = 600 and 0.997 for Λ1 = Λ2 = 0.

Following the article [13], the approach to compare two wave-forms taking into account the

sensitivity of the detectors, is based on the noise-weighted inner product between two wave-forms

h1 and h2 defined by:

〈h1|h2〉 = 4 Re

∫ fmax

fmin

h1(f)h∗2(f)

Sn(f)
, (1)

where Sn(f) is the power spectral density, that encodes the frequency-dependent sensitivity of a

detector [14]. To calculate such scalar product, we take the advanced LIGO design sensitivity given

by aLIGOZeroDetHighPower [15], plotted in Figure 1. The separation between two wave-forms h1

and h2 can be related to their match, which is defined by the overlap maximized on the coalescence

time and the coalescence phase:

M(h1, h2) = max
∆t,∆φ

〈h1|h2〉√
〈h1|h1〉

√
〈h2|h2〉

. (2)

In gravitational wave searches for Compact Binary Coalescences (CBC), the LIGO/Virgo Col-

laboration constructs template banks so that the match is at least 0.97 between the two closest

wave-forms [16]. To measure a difference between a neutron star and a black hole via their gravita-

tional wave-forms without taking into account the masses of the compact objects, it is necessary to
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Figure 1. Power spectral density of noise for the advanced LIGO and Virgo detector configurations.

detect a significant matter effect affecting the wave-form through the tidal deformability. To give an

example of the difficulty of such a task, the match between a BBH and a BNS with Λ1 = Λ2 = 600

with a chirp mass of 1.44 M� and a mass ratio of 0.9 is higher than 0.97. It requires at least

Λ1 = Λ2 = 800 to have a match lower than 0.97.

When a signal is detected, given a model MA, the marginalized posterior probability density

function of all unknown parameters θ is typically computed by using a Bayesian analysis. The

mean of the parameters θ is noted 〈θ〉. Following the Eq. (18) of [17], the confidence region at a

given probability p is the set of points that verifies the following condition:

2ρ2 [1−M(h(θ), h(〈θ〉))] ≤ χ2
k(1− p) , (3)

where ρ is the signal to noise ratio (SNR) and χ2
k(1 − p) is the chi-squared, in the case of k

degrees of freedom. We can use this relation to determine the regions in the parameter space

in which two different wave-forms can be distinguished. For a given SNR, if spins are neglected,

BNS templates have only 4 parameters: the chirp mass M, the mass ratio q and the two tidal

deformabilities Λ1, Λ2 because the match is maximized over phase, time and distance. Since we

want to measure matter effects to distinguish between a neutron star and a black hole, we consider

only the tidal deformabilities as free parameters and fix the others. In addition, we make the

simplifying assumption that Λ1 = Λ2. We write Eq. (3) for the case where h(〈θ〉) is a BBH wave-

form and for the case where h(θ) is a BNS one with Λ1 = Λ2. It follows that BBH and BNS can

be distinguished (and the nature of the compact object can be determined) if:

2ρ2 [1−M(hBNS, hBBH)] ≥ χ2
k(1− p) , (4)
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with χ2
k(1 − p) = 2.71 at 90% C.L., which corresponds to one degree of freedom since the tidal

deformability is the only free parameter (Λ1 = Λ2). The left-hand side of Eq. (4) depends on the

fixed parameters but also on the luminosity distance d through the SNR: ρ ' 〈hBBH|hBBH〉1/2 '

〈hBNS|hBNS〉1/2 which is proportional to 1/d. Figure 2 shows 2ρ2 [1−M(hBNS, hBBH)] as a function

of the deformability of neutron stars. The horizontal lines correspond to the 90 and 99% C.L. limits:

a point above one of these lines means that BBH and BNS mergers can be distinguished at more

than 90% of 99% C.L. The wave-forms are calculated using IMRPhenomPv2 [18–20] for BBH and

IMRPhenomPv2_NRTidal [21–23] for BNS. As expected, the ability of distinguishing BBH and BNS

increases with the tidal deformabilities and the chirp mass, and decreases with the distances. For

example, for a distance of d = 200 Mpc, withM = 1.44 M� and q = 0.9, the nature of the compact

objects can be determined if the tidal deformabilities are higher than 200, while for a distance of

400 Mpc even tidal deformabilities of 1000 are not enough to make the BBH and BNS wave-forms

distinguishable at 99% C.L.

We performed a similar study for the comparison of BBH and BHNS wave-forms, to determine

the conditions under which it is possible to distinguish the nature of the compact object coalescing

with the black hole. For this case, the BBH wave-forms are generated with IMRPhenomPv3HM [24],

because higher-order modes are important for such asymmetric systems, and IMRPhenomNSBH [25]

is used for BHNS. The results are shown in Figure 3, for different asymmetric systems. For a small

mass ratio of 0.112, the overlap between BBH and BHNS wave-forms does not really depend on

the tidal deformability of the second compact object. Indeed, in such asymmetric configurations,

the coalescence evolution is driven by the most massive object: the smallest object is absorbed

by the black hole and its tidal deformability has a negligible effect. In this case, for a chirp mass

of 4 M�, the nature of the companion can be determined only for a system at low distance (less

than 200 Mpc). The more symmetric the system, the more important the tidal deformability is to

distinguish BBH and BHNS wave-forms.

The results shown in Figures 2 and 3 depend strongly on the detector sensitivity. Indeed, any

change in the power spectral density (PSD) Sn(f) directly affects the noise-weighted inner product

between two wave-forms (Eq. (1)). Some examples of PSD are drawn in Figure 1. Their impact on

the ability to distinguish between BBH and BNS templates and to determine the nature of compact

objects is shown in Figure 4 for the system defined byM = 1.44 M�, q = 0.9 and d = 200 Mpc.
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Figure 2. Comparison between BBH and BNS wave-forms. The curves show the left-hand side of Eq. (4)

as a function of the tidal deformabilities of the neutron stars. The horizontal lines show the value of χ2
k for

different confidence level thresholds : if a point is below the horizontal lines, the two mergers are too similar

to be distinguished at the given confidence level. Different types of curves (solid, dashed and dotted) of

the same color indicate different chirp masses and different types of colors indicate different distances. In

particular, (M = 1.2M�, q = 0.9) corresponds to (m1 = 1.45M�, m2 = 1.31M�), (M = 1.44M�, q = 0.9)

to (m1 = 1.74M�, m2 = 1.57M�) and (M = 1.8M�, q = 0.9) to (m1 = 2.18M�, m2 = 1.96M�)

Figure 3. Same as Figure 2 for BBH and BHNS templates. (M = 4M�, q = 0.112) corresponds to

(m1 = 15.2M�, m2 = 1.7M�), (M = 4M�, q = 0.2) to (m1 = 10.9M�, m2 = 2.2M�) and (M = 4M�,

q = 0.4) to (m1 = 7.4M�, m2 = 3.0M�).
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Figure 4. Comparison between BBH and BNS mergers, assuming the different power spectral densities

shown in Figure 1. The chirp mass is fixed at 1.44 M�, the mass ratio at 0.9 and the distance at 200 Mpc.

B. The odds number

The Bayes’ theorem links the posterior distribution to the likelihood, the prior and the evi-

dence [26]:

p(θ|d,MA) =
π(θ|MA)L(d|θ,MA)

Z(d|MA)
, (5)

p(θ|d,MA) is the posterior distribution which gives the probability of all unknown parameters θ,

given the experimental data d within the model MA. L(d|θ,MA) is the likelihood function.

π(θ|MA) is the prior assuming MA. Z(d|MA) is the evidence which is the integral over the

full set of parameters θ of the product of the likelihood and the prior:

Z(d|MA) =

∫
dθL(d|θ,MA)π(θ|MA) . (6)

Our goal is to study when BNS, BHNS and BBH mergers can be distinguished via the wave-forms

of the emitted GWs. Bayesian analysis estimates the posterior probability density function for a

given modelMA. In order to compare two competing models, the odds number can be used [26]:

BAB =
p(MA|d)

p(MB|d)
=
p(MA)

p(MB)

ZA
ZB

, (7)

where ZA/B is the evidence and p(MA/B) is the prior belief in model A/B. Thereafter, GW data

are analyzed without assumption on the nature of the compact objects whichever their mass, and

p(MA)/p(MB) is fixed to one. BAB = ZA/ZB is the Bayes factor between the two competing

modelsMA andMB. Jeffrey’s scale [27] gives an empirical calibration of the strength of evidence



8

and if lnBAB > 5, MA is strongly preferred. Limits for strong evidence, moderate evidence and

inconclusive are given in the Table I.

It is important to notice that a Bayes factor penalizes more complicated models with a large

prior volume or a fine tuning. In other words, a particularly simple model giving a worse fit to

the data can be preferred over a complicated model giving a better fit. This can be intuitively

understood invoking the Occam’s razor principle as explained in reference [28].

| lnBAB | Probability

< 1 < 0.731 Inconclusive

2.5 0.924 Moderate evidence

5 0.993 Strong evidence

Table I. Jeffrey’s scale to compare two competing models using the Bayes factor.

III. MODEL COMPARISON WITH BAYES FACTOR IN INJECTED DATA

In this section we use IMRPhenomPv2, IMRPhenomPv2_NRTidal and IMRPhenomNSBH to describe

BBH, BNS and BHNS wave-forms, respectively. The generated templates are used to analyze

LIGO/Virgo data, and will constitute our model hypothesis to test against the simulated data. For

this, we choose to perform a Bayesian analysis for each template and study its output in terms

of the posterior distribution of the parameters and the signal-to-noise ratio. To determine which

template better describes the data, we use the odds number introduced in the previous section. The

power spectral density of the detector noise is taken to be the one of the advanced configurations

for the O4 simulations1. As the nature of the compact objects is assumed unknown, three analyses

are performed, one with the BBH system, one with the BNS system and finally one with the

BHNS system. Then, we compute the Bayes factor between these models in order to find which

one describes best the simulated data, with a decisive choice whenever the Bayes factor is higher

than 5. The results are computed using pBilby [29–31] with nested sampling, as introduced by

Skilling [32].

A. Injected wave-form

The first step in this study consists in generating a gravitational wave-form given by a template

and adding it to the design Gaussian noise of advanced detector configurations as reported in [33].
1 https://dcc.ligo.org/LIGO-T2000012/public
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The GW depends on 15 parameters: chirp massM, mass ratio q, two angular momenta ~S1,2 (for

aligned spin systems, only χi = ~Si.~̂L/m
2
i are needed, where ~̂L is the normalized orbital momentum),

2-dimensional sky localization (right ascension ra and declination dec), luminosity distance d, two

angles for the orbital plane (inclination angle ι and the polarization angle ψ), coalescence time t

and phase of coalescence φ. For a BNS merger, 17 parameters must be used because the two tidal

deformabilities Λ1 and Λ2 must be added to the list.

The location of the source in the sky is chosen to maximize the signal for the most sensitive

detector (optimal configuration). The PSD for the Virgo detector, which determines the sensitivity

of the detector, is chosen for the advanced configuration, shown in purple in Figure 1. For the

Hanford and Livingston detectors, the PSD has been represented in orange and is the same for both.

The source location is taken to maximize the signal for the Hanford detector. For a coalescence at

a GPS time of 1.2× 109 s, this gives 5.49 rad for right ascension and 0.81 rad for declination. The

inclination and polarization are chosen at 0 rad. For a physical luminosity distance of 400 Mpc,

the effective distance for these parameters gives 400 Mpc for Hanford, 449 Mpc for Livingston,

and 1867 Mpc for Virgo; the antenna pattern of the emission is maximal for Hanford as expected.

Unfortunately, the Virgo detector is almost blind. A simple change in declination improves the

average effective distance of the three detectors. For example, a declination of 1.49 rad instead of

0.81 rad gives an effective distance of 512 Mpc for Hanford, 626 Mpc for Livingston and of 590 Mpc

for Virgo. However, this change in declination does not improve the signal/noise Bayes factor:

BSN = ZS/ZN where ZN is the noise evidence sometimes called null likelihood.

The spin of neutron stars in a binary system is generally extremely weak. Well before the

inspiral phase detected by gravitational wave detectors, the spin of neutron stars is suppressed by

electromagnetic interactions. On the contrary, standard and primordial black holes, which do not

have this suppression mechanism, can have larger spins during the merger, and a primordial black

hole can even have a spin very close to that of an extreme Kerr black hole. If a compact object

is detected with a large spin, there is a strong chance that it is a black hole and if the spin is

almost equal to 1: a primordial black hole. As for the mass criterion, we propose here to study

the distinction between BH and NS only with the Bayes factor without adding assumptions in the

prior and we will restrict ourselves to compact objects injected without spin. A priori, the presence

of a spinning BH in the coalescence will not increase the odds number to distinguish two models,

because it is always possible to assume a spinning NS.

In the following, we will consider an injected signal with the optimal configuration for Hanford

as described in above. Compact objects are chosen without spin and with masses equal to m1 =
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Name of models Number Sampling parameters

R
es
tr
ic
te
d
sp
ac
e BBH W/O Spin 2 M, q

BNS W/O Spin 4 M, q, Λ1, Λ2

BBH 1D Spin 4 M, q, χ1, χ2 (aligned spin)

BBH 3D Spin 8 M, q, a1, a2, θ1, θ2, φJL, φ12 (full spin description)

BNS W/O Spin with Λi fixed 2 M, q (Λ1 and Λ2 are fixed at 0)

Fu
ll
sp
ac
e BBH 11 M, q, χ1, χ2, ra, dec, d, θJN , ψ, t, φ

BHNS 12 M, q, χ1, χ2, Λ2, ra, dec, d, θJN , ψ, t, φ

BNS 13 M, q, χ1, χ2, Λ1, Λ2, ra, dec, d, θJN , ψ, t, φ

BNS with Λi fixed 11 M, q, χ1, χ2, ra, dec, d, θJN , ψ, t, φ (Λ1 = Λ2 = 0)

Table II. Sampling parameters used for the different Bayesian analyses. The parameters not mentioned in

sampling parameters are set to the value used in the injected data.

1.74 M� and m2 = 1.57 M� i.e. a chirp mass of M = 1.44 M� with q = 0.9 and χi = 0.

For an injected BBH data created by IMRPhenomPv2 routine, only the luminosity distance varies

between the different injections. For BNS data created by the IMRPhenomPv2_NRTidal routine, the

luminosity distance and the tidal deformabilities will be varied.

B. Black hole mergers interpreted as neutron star mergers

Figure 5. Bayes factor for different models as a function of the luminosity distance for the optimal con-

figuration. The chirp mass of BBH injected data is chosen to be 1.44 M� with a mass ratio of 0.9 and

the sampling parameters for BBH, BHNS and BNS are given in Table II. A point above the dashed black

lines means that the BBH hypothesis is strongly favoured. In the blue region labelled "Inclusive" it is not

possible to strongly prefer one model over the other.
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The Bayes factor is calculated between BBH/BHNS models and BBH/BNS models for an in-

jected BBH signal of 128 seconds as described in the previous section. The sampling parameters

used for the Bayesian analysis, performed using parallel bilby are given in Table II. The full set

of parameters is searched: there are 11 parameters for BBH, 12 parameters for BHNS and 13 pa-

rameters for BNS. The Bayes factor depends on the template but also on the prior. To reduce the

dependence on the prior, the same is used for a BBH and for a BNS, namely we use a uniform

prior between 0.87M� and 5M� for the chirp mass and between 0.125 and 1 for the mass ratio with

constraints 1M� < m1 < 5M� and 1M� < m2 < 3M� for all the models. We also use aligned spins

in the low spin limit corresponding to |χi| < 0.05 for each model. Only the tidal deformability,

modeling the matter for a NS, has no correspondent for a BH. In this case, a uniform prior between

0 and 5000 for Λ is added for a NS.

Figure 5 shows the variation of the Bayes factor as a function of the distance. In all cases

the values of lnBAB represented by the dots are positive, meaning that the MA model is always

preferred. If a point is above the dashed horizontal line, the MA model is strongly better (cf.

Table I). The MA model corresponds to a BBH merger, i.e. the model which corresponds to the

BBH injected signal, and theMB model corresponds either to a BNS merger or to a BHNS merger.

For a distance smaller than 200 Mpc, the purple dots in Figure 5 are in the orange region and the

BBH model is preferred over the BNS model which is not really the case for the BHNS model (green

dots). We can therefore conclude that there is at least one black hole in the source that emitted the

gravitational wave. The BNS wave-form with almost zero tidal deformability fits very well with the

BBH wave-form, so the Bayes factor will prefer the model with the least parameter and as expected,

the purple dots are above the green dots and above zero. Each dot plotted in Figure 5 is the result

of one or two independent Bayesian analyses and is accompanied by a vertical bar corresponding to

the possible variation of the result: this bar represents the uncertainty of the Bayes factor and its

variation due to different realizations of the noise. This uncertainty has been estimated with eight

simulations in the zone where a model is strongly favored (d = 150 Mpc) and in the "Inclusive"

zone (d = 300 Mpc). Later in the manuscript (Figure 7), we show those simulation points. When

the odds number is close to the limit of 5 it is not always possible to discriminate between the BBH

and BNS models even with a source at a distance of 100 Mpc.

In this section and in the following we have assumed the source as oriented favorably for detection

and the results are therefore rather optimistic. Moreover, we have considered a Gaussian noise for

the detectors without considering terrestrial noise due for instance to meteorological conditions or

human activity which is an ideal case. On the other hand, the limit can slightly improve with the
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increase of the chirp mass.

C. Neutron star mergers interpreted as black hole mergers

In this section, we consider the case where the injected data are generated by mergers of BNS

and we try to determine whether it is possible to confuse a BNS merger with nonzero tidal de-

formability with a BBH merger. We inject the GWs generated by mergers of BNS with different

tidal deformabilities and zero spin at different distances and study the Bayes factor between BNS

and BBH.

1. Study on spin in restricted parameter space

First, we focus on the impact of the BH spins on the Bayes factor. In order to reduce the

computational cost, only the physical parameters of the objects are searched for, using a Bayesian

analysis. The sampling parameters for the different models considered are given in Table II and the

results are shown in Figure 6. In the top panel, the Bayes factor is calculated between the "BNS

without Spin" model and a BBH model with different spin descriptions defined in Table II. For

data injected with Λ1 = Λ2 = 600 or with Λ1 = Λ2 = 300, the "BNS without Spin" model is always

preferred regardless of the BBH models. For data injected with Λ1 = Λ2 = 600, the most favored

case is the "BBH without Spin" model. Not taking spin into account in the BBH analysis, a BBH is

unable to mimic a BNS and the posterior distribution of the mass ratio is not compatible with the

injected value of 0.9. The spin description allows for an improved signal fit with the BBH model

due to the flexibility provided by a larger parameter space. On the other hand, the Bayes factor

will not automatically be better because it penalizes models with a larger number of parameters,

as shown by the blue and red dots, and using a 3D spin description is worse than a 1D description

within the BBH model. For data injected with Λ1 = Λ2 = 100, some values of lnBAB slightly prefer

the BBH model in spite of the fact that the signal was created with a BNS model. The bottom

panel of Figure 6 shows a new Bayesian analysis with the model "BNS without Spin with Λi fixed"

represented with black dots. In this case, the BBH model is no longer preferred compared to the

BNS model.
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Figure 6. Top panel: Bayes factor in restricted space between the model called "BNS without Spin" and

different models of BBH as a function of the luminosity distance. The sampling parameters corresponding

to the different models are given in Table II and the injected data correspond to BNS mergers in optimal

configuration and with zero spins. Each point represents the mean value and the vertical bar the standard

deviation for 4 to 6 simulations with different noise realizations. A dot located in the orange regions means

that one of the two analyses is strongly preferred by the data. Bottom panel: zoom on the results for

an injection with Λ1 = Λ2 = 100. The black points are added and correspond to the Bayesian analysis

performed with "BNS without Spin with Λi fixed" and with "BBH without Spin" (see Table II).

2. Full space parameters

In this section, the complete parameter space is probed via a Bayesian analysis (see Table II)

for the same injected data as in Figure 6. The Bayes factor between BNS and BBH is shown in

Figure 7. As expected, the larger the tidal deformability, the clearer the distinction and the less

a BBH merger can mimic a BNS merger. We can also notice the strong impact of the distance

from the source on the results. When d = 100 Mpc, the tidal deformability is clearly reconstructed
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Figure 7. Bayes factor in full space between BNS and BBH models as a function of the luminosity distance

for different tidal deformabilities. The sampling parameters corresponding to the different models are given

in Table II and the injected data are the same as in Figure 6. A point in the orange regions means that

one of the two models is preferred, whereas a point in the blue region corresponds to an inconclusive

discrimination of the best model. The red points are obtained for the same injected data as for the purple

points (Λ1 = Λ2 = 100) but with the analysis called "BNS with Λi fixed" which sets the tidal deformabilities

to zero. The variation of the results using different realizations of the noise is represented by the black stars,

which were used to draw the vertical bars.

if Λ1 = Λ2 ≥ 300. For a distance around 200 Mpc, the Bayes factor is not systematically in the

orange region even for a strong tidal deformability and for a distance of 300 Mpc, it is no longer

possible to discriminate the nature of the compact objects.

When the injected signal is a BBH (see Figure 5), the Bayesian analysis never prefers the BNS

model even if it is not possible to conclude that it is a BBH because the Bayes factor does not

reach the strong evidence limit. The purple dots in Figure 7, which correspond to a BNS signal

with Λ1 = Λ2 = 100, seem to suggest that the BBH merger is preferred over the BNS one. This

preference is just a reminder that the BNS model is more complex than the BBH model because it

has two additional parameters. This is demonstrated by the red dots which are consistent with a

zero Bayes factor when the Bayesian analysis for BNS is performed by setting Λ1 = Λ2 = 0 ("BNS

with Λi fixed" model).

As shown in Figure 7, considering the PSD of the advanced detector configurations, the Bayes

factor does not distinguish between the BNS model and the BBH model when the source is at

300 Mpc even in the case where the tidal deformabilities are large (Λ1 = Λ2 = 600). A significant

improvement is expected with Einstein Telescope [34]. To have an idea of this improvement, a BNS

signal at 300 Mpc is injected in the Hanford detector with the PSD [35] of Einstein Telescope and
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in the Livingstone detector with the PSD of the advanced detector configuration. For a BNS signal

with Λ1 = Λ2 = 600, the Bayes factor is about 90 and the BNS model is strongly favored compared

to the BBH model. The distinction is even easier than with the previously considered signal which

was injected at 100 Mpc (see Figure 7). For a BNS signal with Λ1 = Λ2 = 100, the Bayes factor is

now well above the −5 limit while staying in the region labelled "Inclusive".

IV. CONCLUSION

The nature of the compact 2.6 M� object detected in the GW190814 event is unknown: is it a

neutron star, a black hole, a new type of compact object? Motivated by this event, we studied how

a gravitational wave-form of a BBH merger can be distinguished from a BNS merger. Normally, the

distinction is made by considering that there is a mass gap between black holes and neutron stars: a

neutron star has a mass lower than 2.2M� and a black hole higher than 5M�. The problem with the

observed 2.6 M� object is that it does not fit into this classification. Moreover, if primordial black

holes exist, they may have masses similar to neutron stars. Thus, we reconsidered the distinction

between a black hole and a neutron star by considering only the gravitational waveform without

priors on the masses.

As a first step, we compared a wave-form from a BBH template, a BNS template and a BHNS

template by using the match function defined in Eq. (2). In the case where the two objects are

described by the same physical parameters: same spin, same mass, the match between the different

gravitational wave-forms is close to 1. The parameter that allows us to distinguish them is the

tidal deformability of the neutron star. In absence of tidal deformability, it will be impossible to

have a difference. We have seen that even with a large tidal deformability, the observation of the

gravitational wave of a merger at 400 Mpc will not identify a difference between the templates. For

a highly asymmetric BHNS merger, the tidal deformability of the companion is not a distinguishing

parameter with a merger.

During a detection, the parameters of a fusion are determined by a Bayesian analysis. Such an

analysis must use the template corresponding to the nature of the compact objects. A selection

criterion for the nature of the fusion is given by the Bayes factor. In the case where two models A

and B are in competition: a BBH fusion for A and a BNS fusion for B for example, the quantity

lnBAB determines the best model. If BAB > 5, model A is strongly favored compared to B and

conversely if the ratio is less than −5. If the ratio is between these two values, the data can be

explained by both models.We have therefore studied this ratio for data injected by considering a
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fusion with 1.44 M� for the chirp mass. This factor depends on the prior volume and penalizes

the most complex systems with a larger number of parameters. For BBH injected data, the Bayes

factors of the BBH models are always better compared to the others. In such a merger, the wave-

form is very well reproduced by a BNS model with neutron stars having a tidal deformability equal

to zero but because of the tidal deformability, the BNS model is more complex and therefore worse

than the BBH model. For injected BNS data with Λ1 = Λ2 = 600, the Bayes factors of the BNS

models are largely favored over BBH. On the other hand, when Λ1 = Λ2 = 100, we find that the

BBH model is better than BNS when the data is made with BNS. A better fit does not mean a

better Bayes factor given by the evidence. To get rid of this effect, it is possible to fix the tidal

deformability of neutron stars at zero to have exactly the same prior volume. In this case, either

the Bayes factor becomes zero and one cannot be sure of the nature of the compact object or it

remains negative and lower than −5 and the nature of the compact object becomes known. A

very conservative limit to avoid preferring BBH when a BNS signal is injected without redoing a

Bayesian analysis and fixing the deformability would be to take a limit of 8 instead of 5. This limit

of 8 has been conventionally introduced in [26].

The detection of a merger at a distance larger than 250 Mpc will not have a good enough signal

to noise ratio to allow the determination of the nature of compact objects even if the merger is

perfectly oriented for the Hanford detector. This limit can be improved if we consider a higher

chirp mass for the merger but during a real detection, the noise is never ideal and the orientation

of the merger not optimal. By considering Einstein Telescope, the comparison between two models

is dramatically improved. This ability to discriminate between two models can be used to interpret

experimental measurements of GWs and obtain incredible insights in General Relativity.
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