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Abstract
The betatron tune in the Large Hadron Collider (LHC)

is measured using a Base-Band-Tune (BBQ) system. Pro-
cessing of these BBQ signals is often perturbed by 50 Hz
noise harmonics present in the beam. This causes the tune
measurement algorithm, currently based on peak detection,
to provide tune estimates during the acceleration cycle with
values that clearly oscillate between neighbouring harmon-
ics. The LHC tune feedback cannot be used to its full extent
in these conditions as it relies on stable and reliable tune
estimates. In this work we present two alternative tune mea-
surement algorithms, designed to mitigate this problem by
ignoring small frequency bands around the 50 Hz harmonics
and estimating the tune from spectra with gaps. One is based
on Gaussian Processes and the other is based on a weighted
moving average. We compare the tune estimates of the new
and present algorithms and put forward a proposal that can
be implemented during the renovation of the BBQ system
for the next physics run of the LHC.

INTRODUCTION
The tune (Q) of a circular accelerator is defined as the

number of betatron oscillations per turn [1]. This is a crit-
ical parameter in the Large Hadron Collider (LHC) which
has to be monitored and corrected in order to ensure stable
operations [2] and adequate beam lifetime. The Base-Band
Q (BBQ) system in the LHC is used to measure the tune. It
essentially consists of an electromagnetic pickup followed
by a diode-based detection and acquisition system [3]. The
diode detectors pick-up a small modulation caused by beta-
tron motion on the large beam intensity pulses and converts
it to baseband, which for the LHC is in the audible frequency
range. The BBQ system in the LHC is sensitive enough to
not require that the beam is externally excited in order to
measure the tune, picking-up the residual beam oscillations.
This normally results in a frequency spectrum where the
tune is the dominant peak [3, 4].

Since the start of the LHC, spectral components at har-
monics of the 50 Hz mains frequency have been observed
with several different diagnostic systems [5]. Studies have
shown that these modulations are on the beam itself, al-
though their source is unclear. These harmonics are clearly
visible in the BBQ system, resulting in a frequency spectrum
polluted with periodic lines every 50 Hz (Fig. 1). Since these
harmonics are also present around the betatron tune, they are

∗ leander.grech@um.edu.mt

Figure 1: Example of 50 Hz harmonics present in the BBQ
spectrum.

a potential source of error for the tune estimation algorithm.
The current tune estimation algorithm applies a series of
filters and averaging techniques which have been developed
in order to mitigate the impact of the 50 Hz harmonics on the
final measured value. However, it is not uncommon to have
the estimated tunes oscillate between neighbouring 50 Hz
harmonics. The fact that the tune estimate locks-in to a
particular ∼50 Hz harmonic is clearly not desirable. On
top of that, having the tune jump from one line to another
affects the tune feedback system, causing it to switch off as
a protective measure against unstable behaviour.

In this paper, we present a study on alternative approaches
for the tune estimation algorithm. The common underlying
idea is to mask-out the 50 Hz harmonics from the frequency
spectrum of the BBQ signal. Following this, a polynomial
fit, a weighted moving average and Gaussian Processes have
been selected for comparison in terms of tune estimation
performance.

We begin by describing the presently implemented tune
estimation algorithm and then proceed to describe the pro-
posed alternatives. We then perform a thorough comparison
of all methods by simulating numerous plausible BBQ spec-
tra for different tune values and widths. Finally we show
two examples with comparisons between all three methods
applied to recorded BBQ data and finish with concluding
remarks.
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Figure 2: Present algorithm diagram.

PRESENT TUNE ESTIMATION
ALGORITHM

The present tune measurement system is normally config-
ured to provide a spectrum of 1024 frequency bins at a rate
of 6.25 Hz. Since the original signal is sampled at the LHC
revolution frequency of approximately 11 kHz, the spectral
resolution is approximately 5.5 Hz. The set of sequential
processing blocks which form the present tune estimation al-
gorithm is depicted in Fig. 2. First, each calculated spectrum
update is passed through a bank of independent exponential
moving average filters, each of them working on a single
frequency bin. This pre-processing stage is essentially used
to reduce spectral noise. Median and average filters are sub-
sequently applied to the spectrum to increase its smoothness
and mitigate the effect of the 50 Hz harmonics. At this stage
the frequency corresponding to the maximum value of the
processed spectrum is taken. This frequency is subsequently
refined by going back to the output of the bank of exponen-
tial moving averages and performing a Gaussian fit of the
spectral region in its immediate vicinity.

ALTERNATIVE ALGORITHMS
With a spectral resolution of 5.5 Hz, changes of the mains

frequency at the percent level hardly impact the centre and
width of the spectral regions containing the 50 Hz harmonics.
Therefore, the periodic regions with the observed 50 Hz
harmonics remain fairly unchanged. These regions have a
finite width mainly due to the effect of the jitter on the 50 Hz
mains frequency coupled with the smoothing introduced by
the spectral filter bank.

With this in mind, we have added an extra pre-processing
stage immediately after the exponential moving average filter
bank which removes the spectral points lying inside the
affected regions. The reasoning behind this stage is that the
information contained in this region is completely dominated
by the presence of the 50 Hz harmonics peaks and can often
mask the true tune peak. Furthermore, even if the tune itself
happens to be on top of a 50 Hz dominated region, and since
the overall number of disregarded points will be less than a
fourth of the total number of points, the spectral baseline can

still be recovered. This leaves us with an overall smoothed-
out spectrum which contains periodic gaps every 50 Hz.

The approach we propose is to employ algorithms capa-
ble of handling non-uniformly sampled signals (in this case,
spectra with frequency gaps) for interpolation prior to retriev-
ing the maximum of the spectral baseline, corresponding to
the true tune value.

The first naive approach was to fit a polynomial over the
spectrum with gaps, however it was observed that a 10𝑡ℎ
order or higher polynomial is needed to obtain a close fit.
This approach did not prove to be very reliable, especially at
the extremities of the spectrum, where the quality of the fit
is worst, resulting in poor estimates of the tune frequency.

We will now describe two more promising algorithms
considered in this study.

Weighted Moving Average
The second algorithm which was attempted was a

Weighted Moving Average (WMA). Here we consider a
sliding window of size 2𝐿 + 1, where the weight of each
component within the window depends on its distance from
the center of the window. Therefore:

𝑦̂𝑖 (𝐿) =

𝐿∑︁
𝑗=−𝐿

𝑤( 𝑗 , 𝐿) × 𝑦𝑖+ 𝑗

𝐿∑︁
𝑗=−𝐿

𝑤( 𝑗 , 𝐿)

where:

𝑤(𝑘, 𝐿) =
{
𝐿 − |𝑘 | , if ∃ 𝑦𝑖+ 𝑗
0 , if � 𝑦𝑖+ 𝑗

(1)

Here the second case of Eq. (1) occurs at the edges of the
spectrum and where a frequency bin has been removed to
form a gap. When setting up the algorithm, one has to take
care to make the sliding window greater than the size of
the largest gap in the array to avoid that the averaging is
performed within the gap.

Gaussian Processes
The third algorithm uses a Bayesian modelling approach

with Gaussian Processes where, by using the available data
points, a statistical model is built which includes all the
uncertainty introduced in the data when the 50 Hz harmonics
are removed from the dataset. Gaussian Processes can be
thought of as a distribution of functions where, by drawing
a sample from the distribution, one of the infinitely possible
functions described by the Gaussian Process is obtained [6].
Such a sample function is drawn from a multi-variate normal
distribution:

𝑓 (𝑋) ∼ N (𝜇 = 𝑚(𝑥),Σ = 𝑘 (𝑋, 𝑋)) (2)

where 𝑚(𝑥) is usually assumed to be a zero vector and
𝑘 (𝑋, 𝑋) is a positive definite covariance function. The aim
would ultimately be to predict the output, 𝑦2, of some input
dataset, 𝑋2. Given some previously observed data, (𝑋1, 𝑌1),
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a covariance matrix, Σ, can be built. Σ models the joint
variability of the input variables via a prior function, also
known as a kernel. One such kernel is the exponentiated
quadratic kernel, or Radial Basis Function (RBF) kernel,
which uses the squared Euclidean distance between points
𝑥𝑎 and 𝑥𝑏 as a measure of correlation between the points:

𝑘 (𝑥𝑎, 𝑥𝑏) = 𝑒
− 1

2𝜎2 ∥𝑥𝑎−𝑥𝑏 ∥2
(3)

Here 𝜎 is a free parameter controlling the smoothness of
the resulting distribution. Under these conditions a new
distribution can be derived, which takes in the observations
from (𝑋1, 𝑌1) to make predictions over a new input dataset,
𝑋2:

𝑃(𝑦2 | 𝑦1, 𝑋1, 𝑋2) ∼ N (𝜇2 |1,Σ2 |1) (4)

where:

𝜇2 |1 =

(
Σ−1

11Σ12

)⊤
𝑦1

Σ2 |1 = Σ22 −
(
Σ−1

11Σ12

)⊤
Σ12

Σ𝑎𝑏 = 𝑘 (𝑋𝑎, 𝑋𝑏)

BENCHMARKING
When it comes to real experimental data, it is not possible

to know the precise value of the tune. As a consequence, we
decided to do the performance evaluation of these algorithms
via multiple spectral simulations of second-order systems
where we know the true value of the tune. The spectrum of
a second-order system is given by:

𝐺 (𝜔) = 𝜔2
res√︁

(2𝜔𝜔res𝜁)2 + (𝜔2
res − 𝜔2)2

+ N(0, 𝜎), (5)

where the resonant frequency, i.e. the true tune value, is
given by:

𝜔true
res =

√︃
1 − 2𝜁2𝜔res. (6)

Here 𝜁 is a damping factor that controls the width of the
resonance, and N(0, 𝜎) an additive spectral noise term.
Since the motion of a particle in a circular accelerator can
be described by a Hill’s equation we can assume that the
frequency spectrum of the beam as seen by the BBQ system
is approximated by that of second-order system.

A Monte Carlo approach was used to sample the resonant
frequencies and the damping factors which were used to
simulate the frequency spectrum of the beam. Moreover
Gaussian noise, as well as 50 Hz harmonics were artifi-
cially introduced into the simulated spectrum. By using
this approach, the reliability of these algorithms could be
impartially assessed.

The resonant frequencies were sampled from a normal
distribution with a mean of 3 kHz and a standard devia-
tion of 200 Hz, while the damping factors were sampled
from a uniform, logarithmic distribution of base 10 within
the range [10−4, 10−1] corresponding to different tune res-
onance widths. These ranges were chosen to mimic real
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Figure 3: Example of a simulated spectrum with 𝑓𝑟𝑒𝑣 =

3 kHz and 𝜁 = 0.01.

experimental observations. Figure 3 shows an example of a
simulated spectrum having a resonant frequency of 3 kHz
and 𝜁 of 0.01. The simulated spectrum also has 50 Hz har-
monics and Gaussian noise superimposed. On the same
figure, the orange plot shows the resulting spectrum with
gaps, after dropping all the data within a 10 Hz window
around each harmonic.

For each simulated spectrum, all four algorithms were
used to estimate the tune, and the statistics of the estima-
tion error assessed in order to benchmark the different ap-
proaches. The Weighted Moving Average (WMA) was per-
formed using three different window sizes (10, 30, 60), while
the Gaussian Process (GP) was performed using three dif-
ferent length scales (25, 70, 130), where the length scale is
associated with the 𝜎 free parameter as seen in Eq. (3). The
polynomial fit was of degree 15 and the original algorithm
(BQ) as presently implemented in the online system was
faithfully re-implemented in order to be compared against
the new algorithms.

RESULTS
Monte Carlo Simulation Results

An overview of the statistics of the tune estimation er-
rors obtained from the Monte Carlo simulation can be seen
in Fig. 4 and in Table 1. The first observation one can make
is that there seems to be a similar systematic error in the
BQ, WMA60 and GP130 algorithms. There is also a smaller
systematic error in GP70 and WMA30. GP25 and WMA10
show a higher accuracy, in the sense that the mean of the
errors is centred almost perfectly around 0, however they
seem to lack the precision of BQ, GP70, GP130, WMA30
and WMA60. POLY15 shows a small systematic error, but
a poor precision when compared to all the other methods.

Another important aspect that is shown in Table 1 is the
worst case estimation error, directly related to the tails of
the distribution. Overall, it seems that algorithms set up to
achieve high accuracy have a poorer precision. This suggests
that there is a trade-off of between precision and accuracy
that can be controlled by the parameters of each algorithm.
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Figure 4: Density plot of the errors from the Monte Carlo
simulation. In the legend, WMA30 refers to WMA with a
window of size 30, GP130 refers to GP with a length scale
of 130, and so on.

Table 1: Tune Estimation Error Statistics

Algorithm 𝜇[Hz] 𝜎[Hz] Max abs err[Hz]
BQ -3.0 12.8 114.7

GP25 -0.2 12.4 119.1
GP70 -1.1 5.2 43.8
GP130 -3.0 4.4 22.3

WMA10 -0.2 11.6 119.0
WMA30 -1.0 4.9 98.4
WMA60 -3.4 4.6 144.1
POLY15 -2.5 82.8 1371.8

Performance with Real Data
Figures 5 and 6 show two examples of reasonably per-

forming configurations of both WMA and GP when applied
to real spectra from the BBQ system. From Fig. 5 one can
see that the general tune estimates of the three algorithms
are comparable in terms of accuracy. However, zooming-in
(Fig. 6) we can see how the BQ algorithm is affected by the
presence of the 50 Hz harmonics with large downward spikes
which do not completely reach the harmonic frequency due
to the Gaussian fit. It can also be seen from this figure that
the WMA10 estimates seem to be more stable than those
from both the BQ and GP algorithms.

CONCLUSION
A new approach based on the rejection of spectral points

affected by 50 Hz harmonics is proposed to improve tune
measurements at the LHC. In line with this approach, three
methods were benchmarked against the presently imple-
mented tune estimation algorithm which is known to under-
perform in the presence of these polluting harmonic compo-
nents.

A Monte-Carlo simulation of second-order system fre-
quency spectra was performed in order to generate spectra
which mimic real beam spectra but for which the tune value
is exactly known. The results obtained indicate that when
properly configured both the WMA and GP algorithms can
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Figure 5: Tune trace plot with real data during the tune
change when reaching FLATTOP.
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Figure 6: Tune trace plot with real data from STABLE
beams.

achieve a better performance than the current algorithm in
terms of accuracy and precision. Examples using real ex-
perimental spectra confirm this observation, with the WMA
algorithm performing best.

This study will now be extended to more algorithms with
the aim of selecting the most robust, accurate and precise
one for real-time implementation on the LHC.
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