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Dependence of the current renormalisation constants on the quark mass
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We study the behaviour of the vector and axial current renormalisation constants Z

V

and Z

A

as a function of

the quark mass, m

q

. We show that sizeable O(am

q

) and O(g

2

0

am

q

) systematic e�ects are present in the Wilson

and Clover cases respectively. We �nd that the prescription of Kronfeld, Lepage and Mackenzie for correcting

these artefacts is not always successful.

The numerical non perturbative estimate of the

vector and axial current matrix elements is af-

icted by systematic errors due to the �niteness

of the lattice spacing a. These errors, which are

monitored by measuring the current renormali-

sation constants Z

V

and Z

A

, are of O(am

q

) in

lattice simulations based on the Wilson action

and O(g

2

0

am

q

) in those based on the Clover ac-

tion (m

q

is the quark mass). For light quarks,

at � = 6:0, the above e�ects were found to be

� 25% in the Wilson case. The main success of

Clover improvement consists in reducing such sys-

tematic e�ects to � 5%. However, when we deal

with heavy quark masses m

h

, O(g

2

0

am

h

) e�ects

may become relevant even in the Clover case. In

this talk we present a preliminary study of the

dependence of Z

V

and Z

A

on the quark mass.

Recently, Lepage, Mackenzie [1] and Kronfeld

[2] (abbreviated as KLM) attempted to absorb

these artefacts in modi�ed normalisation factors

which match the fermion �elds to their continuum

counterparts. For clarity of presentation, we sep-

arate their proposals into two parts:

(1) KLM normalisation: This is the normali-

sation factor between the free continuum propa-

gator P

cont

(t; ~p) and its Wilson discrete counter-

part P

latt

(t; ~p) which are related by P

cont

(t; ~p) =

2K(1 + am

q

)P

latt

(t; ~p) at ~p =

~

0. This suggests

�
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that continuum fermion �elds are given in terms

of lattice ones by

 

cont

= a

�3=2

q

2K(1 + am

q

) 

latt

(1)

where am

q

= 1=(2K) � 1=(2K

cr

) and the crit-

ical hopping parameter K

cr

is obtained non

perturbatively. We call the above factor the

KLM normalisation. The standard normalisation

used previously in lattice simulations,  

cont

=

a

�3=2

p

2K 

latt

, di�ers from the KLM one by

terms of O(am

q

).

(2) MFTI normalisation: Mean Field argu-

ments of [1] suggest a further Mean Field Tad-

pole Improved (MFTI) prescription for relating

the lattice and continuum �elds:

U

�

! U

�

=u

0

; K !

~

K = Ku

0

am

q

! ~am

q

= 8K

cr

[1=(2K)� 1=(2K

cr

)] (2)

where u

0

is any reasonable MF estimate of the ex-

pectation value of the link (we use u

0

= 1=(8K

cr

)

after [1]). This implies the MFTI normalisation

 

cont

= a

�3=2

q

2

~

K(1 + a ~m

q

) 

latt

(3)

Bernard [3] took up these ideas and applied

them to the non perturbative calculation of Z

V

from the ratio of the conserved (V

C

�

) to local (V

L

�

)

vector current matrix elements. The spatial com-

ponent of the conserved current V

C

k

has the stan-
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Figure 1. Wilson action estimates of Z

V

obtained

from the following ratios: R(�); R

KLM

(�);

R

MFTI

(2). The errors are smaller than the sym-

bols.

dard KLM normalisation of eq.(1), but the tem-

poral one, V

C

0

, being point split in time, requires

an extra KLM factor [3]. With P

5

=

�

 

5

 de-

noting the pseudoscalar density, the �nal KLM

predictions for ratios of the 3-point correlation

functions are [3]

R �

< P

5

j

�

V

C

0

jP

5

>

< P

5

jV

L

0

jP

5

>

= Z

V

2 + am

1

+ am

2

2

(4)

which means that an improved estimate of Z

V

may be obtained from

R

KLM

�

< P

5

j

�

V

C

0

jP

5

>

< P

5

jV

L

0

jP

5

>

2

2 + am

1

+ am

2

= Z

V

(5)

and its MFTI version is given by

R

MFTI

�

< P

5

j

�

V

C

0

jP

5

>

< P

5

jV

L

0

jP

5

>

2

2 + a ~m

1

+ a ~m

2

(6)

The spatial components, on the other hand,

should behave like

~

R �

< P

5

j

�

V

C

k

jP

5

>

< P

5

jV

L

k

jP

5

>

= Z

V

(7)

Figure 2. Wilson action estimates of Z

V

obtained

from the following ratios:

~

R(�);

^

R(�). The errors

are only shown when greater than the symbols.

and the same is true for the ratio of 2-point cor-

relation functions

^

R �

< 0j

�

V

C

k

j� >

< 0jV

L

k

j� >

= Z

V

(8)

(the above formulae di�er from those of [3] be-

cause the conserved current used in all our sim-

ulations is symmetrised;

�

V

C

�

(x) � 1=2[V

C

�

(x) +

V

C

�

(x��)]). In Figs. 1 and 2 we show the results

for the above ratios, as obtained from some ELC

data of [4]. The relevant parameters of this simu-

lation were: 20 confs.; � = 6:4; V = 24

3

�60. The

data shown here are for �xed light quark mass,

K

l

= 0:1485, and varying heavy quark masses

K

h

= 0:1275; 0:1325; 0:1375;0:1425. The spatial

momenta are all set to zero. By comparing the

results for R, R

KLM

of Fig. 1 to

~

R of Fig. 2,

we see that the KLM normalisation of [1{3] is

correcting most of the systematic O(am

q

) e�ects,

whereas the R

MFTI

estimate of Fig. 1 shows that

the MFTI correction is of little importance. How-

ever, all of these results were obtained from the

same matrix elements, < P

5

jV jP

5

>, as opposed

to the Z

V

estimates of

^

R (Fig. 2), obtained from
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< 0jV jV >. The latter estimate of Z

V

is incom-

patible with all the others. This is a typical O(a)

e�ect which the KLM normalisation fails to cor-

rect. Recall that, for light quark masses, Clover

improvement manages to correct these e�ects, by

implementing a conserved improved current V

CI

�

which di�ers from V

C

�

by a total divergence.

We now pass to Clover fermions; here the lead-

ing corrections are O(g

2

0

am

h

). We will show pre-

liminary results from 40 confs. at � = 6:0 and

V = 18

3

� 32. We have obtained Z

V

from ra-

tios of 3-point functions (R of eq.(4)) at zero

spatial momenta. The P

5

densities are located

at t = 0 and 16. We have data from correla-

tions obtained at degenerate quark masses K

h

=

0:1150; 0:1200;0:1250;0:1330; 0:1425; 0:1432. We

also have results for non - degenerate masses with

�xed K

l

= 0:1432 and K

h

varying as above. In

this case, Z

V

can be checked from the Ward Iden-

tity (W.I.) r

�

V

C

�

(x) =

1

2

[

1

K

h

�

1

K

l

]S(x) where

S =

�

  is the scalar density and r

�

is the asym-

metric lattice derivative. Although this W.I. suf-

fers from O(am

q

) e�ects, the O(am

q

) improved

estimate of Z

V

can also be derived from it [5].

Here we only state the �nal result:

Z

V

=

1

8

[

1

K

h

�

1

K

l

]

< P

5

j[2S(x) + S(x +

^

0) + S(x �

^

0)]jP

5

>

�

r

0

< P

5

jV

LI

0

(x)jP

5

>

(9)

The above equation has a symmetric lattice

derivative

�

r

�

and the local improved current

V

LI

�

; thus it has no O(am

q

) terms. Note that all

operators (except for S) have the standard Clover

- rotated fermion �elds. The P

5

's are at rest. For

the axial current renormalisation constant Z

A

, we

have used the estimate obtained from a gauge in-

variant W.I.[6].

The results are shown in Fig. 3; note that

the degenerate mass data does not interpolate

smoothly the non degenerate points. This e�ect

is related to the presence of a spectator quark

and is currently under investigation [5]. The non

zero slopes of the Z

V

and Z

A

curves of Fig. 3

show the presence of sizeable O(g

2

am

q

) linear ef-

fects even in the case of the Clover improved ma-

trix elements. A crucial observation from Fig. 3

Figure 3. Clover action estimates of Z

V

and Z

A

.

Z

V

is obtained from R at K

l

= K

h

(�) and at

K

l

6= K

h

(2). Z

A

is denoted by (�). Curves

simply guide the eye. The errors are only shown

when greater than the symbols.

is that the slopes of the two Z's have opposite

signs. Thus, a universal KLM (or MFTI) mass

dependent factor cannot atten out both curves

simultaneously. This is another case in which the

remedies of refs. [1{3] are shown to be inade-

quate. More details, as well as more accurate

results, consolidating these points, will be shortly

presented in [5].
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