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Abstract

A novel approach for designing the next generation of vertex detectors fore-
sees to employ wafer-scale sensors that can be bent to truly cylindrical geome-
tries after thinning them to thicknesses of 20-40 µm. To solidify this concept,
the feasibility of operating bent MAPS was demonstrated using 1.5 cm × 3 cm
ALPIDE chips. Already with their thickness of 50 µm, they can be success-
fully bent to radii of about 2 cm without any signs of mechanical or electrical
damage. During a subsequent characterisation using a 5.4 GeV electron beam,
it was further confirmed that they preserve their full electrical functionality as
well as particle detection performance.

In this article, the bending procedure and the setup used for characteri-
sation are detailed. Furthermore, the analysis of the beam test, including the
measurement of the detection efficiency as a function of beam position and local
inclination angle, is discussed. The results show that the sensors maintain their
excellent performance after bending to radii of 2 cm, with detection efficien-
cies above 99.9 % at typical operating conditions, paving the way towards a new
class of detectors with unprecedented low material budget and ideal geometrical
properties.

Keywords: Monolithic Active Pixel Sensors, Solid state detectors, Bent
sensors

1. Introduction

The precision of barrel vertex detectors is mainly determined by three con-
tributions: their radial distance to the interaction point, their material budget,
and their intrinsic sensor resolution. In order to achieve hermiticity, they are
typically built out of detector staves placed in layers around the beam pipe. This
arrangement effectively sets a practical limit on the first two factors. ALICE,
for instance achieves an average radial position of 24 mm and a material budget
of 0.3 %X0 for its new Inner Tracking System (ITS2) [1]. More than 80 % of the
material is due to the support structure, and the average distance is determined

∗See Appendix Appendix A for the complete list of authors.

Preprint submitted to Nucl. Instrum. Methods Phys. Res. A August 18, 2021

ar
X

iv
:2

10
5.

13
00

0v
2 

 [
ph

ys
ic

s.
in

s-
de

t]
  1

7 
A

ug
 2

02
1



by the chip’s active area in rϕ-directions of 1.3 cm together with the need of
some overlap to catch particles passing at various angles.

A way to vastly improve these figures of merit is to use truly cylindrical
detection layers made of wafer-size chips. This would not only allow placing
them closer to the beam pipe, but would also largely eliminate the need for the
support structure, and in turn would largely minimise the material budget to
essentially that of the sensor itself. This idea is the gist of the ITS3, a proposal
by the ALICE Collaboration for a novel vertex detector consisting of curved,
wafer-scale, ultra-thin silicon sensors arranged in perfectly cylindrical layers,
with the innermost layer positioned at a radial distance of only 18 mm from the
nominal interaction point [2].

A major R&D milestone towards these new detectors is the proof of con-
cept of bent Monolithic Active Pixel Sensor (MAPS). Using readily available
ALPIDE chips (the MAPS of the ALICE ITS2 [3, 4, 5], Section 2), mechanical
(Section 2.1) and electrical (Section 2.3) studies as well as a beam test with
5.4 GeV electrons (Sections 3–5) were carried out.

2. The bent ALPIDE chip

The ALPIDE sensor was developed by the ALICE Collaboration for its Inner
Tracking System (ITS2) [3, 4, 5]. The chip is produced in the 180 nm CMOS
process of TowerJazz [6] featuring a 25 µm-thick epitaxial layer. Here, chips
thinned to 50 µm have been used.

ALPIDE features a matrix of 1024 × 512 (column × row) pixels with binary
output. The pixels of size 26.88 µm × 29.24 µm are organised in double-columns,
each one having 1024 pixels (Fig. 1). The central part of each double-column
is occupied by priority encoding circuits which propagate the addresses of the
hit pixels to the digital circuity on the chip periphery. The digital periphery
occupies an area of 1.2 mm × 30 mm along the edge of the chip. A series of
aluminum pads on top of the digital periphery, close to the edge of the chip,
provide the electrical interface to the chip.

Each ALPIDE pixel contains the sensing diode connected to its individual
and continuously active front-end amplifier, shaper, discriminator, and multiple-
event buffer. It also contains analog and digital testing circuitry, allowing the
measurement of the charge threshold by injecting a programmable test charge
into the sensing node. The threshold can be changed for all pixels simultaneously
by adjusting the amplifier parameters [3, 4, 5, 7].

At this point, it is worth pointing out that the pixel matrix itself – which will
be the part of the chip that is bent, see below – is a highly integrated circuit,
including analog and digital circuitry totaling to order of 200 transistors per
pixel cell and with a dense metal routing.

2.1. Bending procedure
A procedure to bend the chip in a progressive and reversible manner was

specifically developed and is described as follows. The long edge hosting the
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Periphery logic (bias, control, readout)Periphery logic (bias, control, readout) 1.2 mm

13.8 mm

30 mm

Glued
part

Figure 1: Layout of the ALPIDE pixel matrix. The pixels are organised in double-columns,
each featuring a priority encoder circuit which propagates the addresses of the hit pixels to the
periphery logic. The aluminum pads providing the electrical interface to the chip are located
on the top of the periphery logic.

bonding pads and the periphery logic and about 0.8 mm-wide strip of the pixel
matrix (Fig. 1) is glued onto a carrier board for a 2 mm-wide section (Fig. 2a)
by means of acrylic adhesive1. The chip is then wire-bonded to the carrier
card, before executing the bending procedure. The bonding area remains flat
and well secured throughout and after the procedure. The rest of the chip is
left unattached and is lightly compressed between two layers of 120 µm-thick
polyimide foil (Fig. 2a). The polyimide foil layers are attached to two lateral
wheels (Fig.2a) that can be moved in parallel to the short edge of the chip by
means of a micrometer-precision positioning system (not visible in pictures). By
moving the wheels towards the chip, the polyimide foils wrap around them, and
bend the chip into a cylindrical shape. Once the desired curvature is achieved,
the wheels position is fixed using the Ω-shaped aluminum fixtures (visible in
Fig. 2a). Alternatively, the micro-positioning system allows reverting to the flat
or any intermediate position.

2.2. Curvature measurement
A 3-D metrological mapping of the chip surface was performed using a Coor-

dinate Measuring Machine (CMM) before and after the testbeam measurement.
The carrier card with the bent chip (Fig.2a) was laid on the measurement ta-
ble and a series of data points was measured with an optical head, providing
a resolution of 5 µm in the table plane, and 80 µm on the height. The data
point series was projected on the axis given by the short edge of the chip, as
reported in Fig. 3, and fitted with a circle of radius r and origin in y0, with
y0 parameter describing the flat (glued) part of the chip. The fit procedure

13M™Adhesive Transfer Tape 467MP, https://www.3m.com/
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Figure 2: The ALPIDE chip glued to the carrier card and held in bent position via two
polyamide foils attached to the aluminum wheels (a) and the same arrangement inserted in
the testbeam telescope consisting of six flat ALPIDE tracking planes (b).

provided an average curvature radius of 16.9 mm before and 24.4 mm after the
testbeam. The change in curvature is attributed to a relaxation of the polyimide
foil holder before, during, or after the testbeam. Therefore, it was expected, and
later confirmed by the data analysis (Section 5.1), that the curvature during the
testbeam measurement was in-between the two CMM measurements.
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Fit: r=16.9 mm, y0=2.3 mm
Fit: r=24.4 mm, y0=1.8 mm
Data analysis result: r=22.0 mm

Figure 3: Curvature radius measured using a Coordinate Measuring Machine (CMM) and
obtained from the testbeam data analysis (Section 5.1).

2.3. Performance comparison before and after bending
To verify the electrical functionality, i.e. the analogue in-pixel circuitry and

the digital column circuitry propagating the position of the hit pixels to the
periphery, the chip was characterised in terms of number of non-responsive
pixels, pixel thresholds, noise and fake-hit rate before and after the bending.
The tested parameters are unchanged or their change is negligible, as is shown
in Fig. 4 for the pixel threshold distribution, as an example.

Since this measurement exercises the full analog and digital processing chain
of the chip and hence it does not only show that its front-end performance is
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unaffected by the bending, but also that the whole circuit – notably the in-
matrix distributed digital readout network – is still in full function.
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Figure 4: Pixel threshold distribution before and after bending the chip. The difference
between the two measurements is negligible.

3. Testbeam set-up

The testbeam was carried out at DESY testbeam facility beam line 24 [8],
with a 5.4 GeV electron beam. The testbeam energy and particle species is
selectable with a dipole magnet and 5.4 GeV electrons were chosen. The beam
telescope comprised of 6 reference planes with flat ALPIDE chips. The bent
device under test (DUT) was placed in the middle, with 3 reference planes
on each side (Fig. 2b and Fig. 5). The vertical (y) position of the DUT was
adjustable, allowing the fine tunining of the position of the DUT with respect
to the beam.

direction
Beam

ALPIDE chip

Carrier card
0 1 2 3 4 5 6

Reference arm Reference armDUT

25mm 25mm 58mm 17mm 25mm 23mm

r

Column

Row

x

y

z

Figure 5: Sketch of the beam telescope with the bent DUT sandwiched between six flat
ALPIDE reference planes. The DUT position can be translated in the y-direction.

The trigger was given by the coincidence of the discriminated output of
two photomultiplier tubes (operated in the plateau region) connected to two
scintillators with size of 4 cm × 5 cm, placed in front and behind the telescope.
The triggering logic includes an event separation time of 100 µs and a past
protection time of 50 µs, i.e. a veto on triggering in 50 µs following a scintillator
output signal. The latter is added to avoid the pile-up as the ALPIDE in-pixel
amplifier pulse can reach lengths of few tens of µs for very low threshold values
[7].
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The data acquisition was based on the EUDAQ framework [9]. A total of
176 runs with at least 300k events each were taken corresponding to different
thresholds and DUT positions.

4. Analysis tools and methods

Data were processed in the Corryvreckan test beam reconstruction software
framework [10] by fitting straight lines to clusters found in the six reference
planes and interpolating the tracks to the DUT. Event and track quality se-
lection criteria were applied to ensure a clean data sample: precisely one track
per event, good straightness (χ2/NDF < 3) of the track, and track points on
each reference plane. Pixels with too large overall firing quantities (more than
1000 times the average) were ignored. On the DUT, clusters with a distance
of below 250 µm are matched to the track. The size of the search window was
chosen as large as possible without impacting the statistics due to border ex-
clusion regions. Given the one track per event requirement, the implemented
trigger logic (Section 3), extremely low ALPIDE noise [3, 4, 5] and masking of
noisy pixels, the association of clusters to non corresponding tracks is considered
negligible.

The reference planes and the DUT are aligned to each other by software
using a track-cluster residual minimisation, allowing the planes to move in x, y
and to rotate around z. In a second iteration, the DUT alone was allowed to
rotate around the other two axes and to move in z. In this last step, also the
bending radius was used as an optimisation parameter, resulting in a data-driven
estimation of this quantity.

As discussed in Section 2.1, a part of the DUT containing a small fraction of
the pixel matrix (≈30 rows) is glued to the carrier card. Due to the additional
scattering from the carrier card, the sensitivity to the geometrical model used
to describe the DUT is reduced in this region. Therefore, the bent shape of the
DUT was approximated as a purely cylindrical segment in this analysis, without
considering the flat part (y0 in Section 2.2).

The efficiency of the DUT is then estimated by the fraction of tracks with
associated clusters. The relative uncertainties are obtained by calculating the
Clopper-Pearson interval.

5. Results

5.1. Cluster size, curvature radius and residuals
The results presented in this section are based on the data from a single

measurement (run) where the DUT was operated at the nominal conditions
i.e. a threshold of 100 e-. To fully illuminate the DUT, the measurement was re-
peated in two DUT positions with a relative shift along the y-axis (row direction,
see Fig. 5) of 2.5 mm, of which the lower one is shown here.

The positions of all the clusters on the DUT and those associated to a track
are shown in figure 6. In the area near row 512, where the chip is glued to
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the carrier card, less associated clusters are found given the lower number of
reconstructed tracks (Section 4). On the opposite side, i.e. near row 0, there are
no clusters associated to tracks due to the relative position of the DUT with
respect to the reference planes. The associated cluster distribution is further
affected by the relative position of the reference planes; given the precision of
mechanical alignment of the chip position of few millimeters and the requirement
of a hit in all reference planes for the reconstructed tracks, the effective area
illuminated by the beam is smaller than the chip size. This effect is mostly
notable as a drop-off in the number of associated clusters near rows 100 and 400.
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Figure 6: Distributions of all the clusters on the DUT (left) and of those associated to the
tracks (right). Fewer clusters are associated to tracks in columns 376-381 due to exclusion of
a dead double column.

From the data in Fig. 6 (left), the average cluster sizes were calculated for
16 groups of 32 rows and shown in Fig. 7. With the increasing row number, the
incident angle of the beam with respect to the DUT decreases, thus decreasing
the particle path in the active volume and therefore the deposited charge, finally
resulting in smaller clusters.
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Figure 7: Average cluster size as a function of row and incident angle. The average cluster
size decreases with the increasing row number; as the track incident angle decreases, so does
the interaction volume and thus the deposited charge.

The least squares optimisation of the cylindrical model (Section 4) yielded
the DUT radius of (22 ± 1) mm. The uncertainty on the radius takes into ac-
count the variation of the least square optimisation result over all the runs. The

7



impact of the beam profile on this result was evaluated using two sets of tracks:
the first uniformly distributed over the illuminated DUT surface and the second
using all tracks with associated clusters on the DUT, as visible in Fig. 6 (right).
Both sets result in the same curvature radius.

The mean and the RMS of the residuals in the column and row directions
are shown in Fig. 8. A systematic effect of magnitude of up to 35 µm can be
observed in the row residual mean, most prominent in the unattached corners of
the DUT and along the glued edge. The RMS of both residuals above row 400
increases, which is compatible with the position of the carrier card, i.e. can be
attributed to the increase of the multiple scattering. Also an increase of the row
residual RMS with decreasing row number can be observed, a trend compatible
with the cluster size increase that is observed for larger beam incident angles
(Fig. 7).
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Figure 8: Mean (top panels) and RMS (bottom panels) of the column and row residuals. The
cylindrical model description is compatible with the data within 35µm.

5.2. Detection efficiency
The data from different runs were combined to evaluate the efficiency at dif-

ferent thresholds and over the entire DUT surface. The border region equivalent
to the track association window size (250 µm i.e. 9 pixels), as well as the same
width region on each side of a dead double-column (columns 369 to 388) were
excluded from the efficiency calculation.

Figures 9 and 10 show the inefficiency as a function of row, beam incident
angle, and threshold. Each data point corresponds to at least 8k tracks, and
over 48k tracks for central rows (given the beam profile, Fig. 6). For threshold
above 100 e- (the nominal operating point of ALPIDE), the efficiency increases
with increasing beam incident angle (decreasing row number). Below 100 e-, the
inefficiency is generally lower than 10−4, showing that an excellent detecting
performance is retained.
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6. Summary

The feasibility of bent MAPS was demonstrated for the first time. In par-
ticular, 50 µm-thick ALPIDE chips were measured in the laboratory and in a
beam test while being bent to radii of about 22 mm. They show no sign of
any deterioration in operation. Their charge thresholds remain unaffected by
the bending and detection efficiencies are measured to largely exceed 99.9 %
without any visible systematic degradation across the full chip surface.

These very encouraging results do not only mark an important milestone in
the R&D carried out for the ALICE ITS3, but generally open the way to highly
integrated, silicon-only, bent sensor arrangements. A new class of detector de-
signs featuring ideal geometries and yielding unprecedented performance figures
is at reach.
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