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Abstract

A search for dark matter in the form of strongly interacting massive particles (SIMPs)
using the CMS detector at the LHC is presented. The SIMPs would be produced in
pairs that manifest themselves as pairs of jets without tracks. The energy fraction of
jets carried by charged particles is used as a key discriminator to suppress efficiently
the large multijet background, and the remaining background is estimated directly
from data. The search is performed using proton-proton collision data correspond-
ing to an integrated luminosity of 16.1 fb−1, collected with the CMS detector in 2016.
No significant excess of events is observed above the expected background. For the
simplified dark matter model under consideration, SIMPs with masses up to 100 GeV
are excluded and further sensitivity is explored towards higher masses. These are
the first results from a search for the production of strongly interacting dark matter
candidates at a collider.
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1 Introduction
A major thrust of the experimental programme at the CERN LHC is the search for physics
beyond the standard model. In this context, strong emphasis has been placed on the search for
dark matter (DM), the nature of which is one of the central questions in particle physics. These
DM searches typically target a weakly interacting massive particle (WIMP) with a mass around
the electroweak scale. Such a particle can account naturally for the measured DM abundance in
the universe, assuming thermal DM production in the ΛCDM standard cosmological model [1,
2]. If produced at the LHC, such a WIMP would, like a neutrino, not be seen in the detector, so
would give rise to signatures with transverse momentum (pT) imbalance.

Because existing searches for WIMPs have excluded much of the parameter space of minimal
models, many theoretical developments now extend those models or alter their basic assump-
tions. In this analysis, we consider the possibility that DM is produced at the LHC, and that its
interaction cross section with ordinary matter is so large that the particles are not WIMPs, but
rather SIMPs, or strongly interacting massive particles, whose interactions with nucleons have
large cross sections. Such particles could be copiously produced at the LHC, and leave observ-
able signals in the CMS detector. With an interaction cross section as large as the hadronic one,
these SIMPs manifest themselves as jets in the calorimeter, but without the presence of tracks
from charged hadrons in the tracking detector, in other words as “trackless jets”, in sharp con-
trast to typical quantum chromodynamics (QCD) jets. While at first sight it may not seem
plausible that such a particle would not have been detected before, it is actually possible to
construct a simplified model of SIMPs, interacting through a new scalar or vector low-mass
mediator, that evades the many relevant existing bounds [3, 4]. In this model, the interaction
Lagrangian for a SIMP fermion χ and a scalar mediator φ is given by

Lint = −gχφ χχ− gqφ qq. (1)

One of the requirements of this model is a purely repulsive SIMP-nucleon interaction with
opposite-sign couplings to avoid the formation of bound states between SIMPs and nucleons.
At relativistic energies, repulsive and attractive interactions with the same absolute strength
have similar behaviour and result in similar kinematics. The coupling strength between the
SIMP and nucleons is limited to minimize the impact of the new interaction on the nuclear
potential. Furthermore, a scenario with fermionic, asymmetric DM, where no dark antimatter
remains, must be considered to avoid excessive Earth heating and neutron star collapse [4].

For this search, we assume that the SIMPs are produced in pairs via an s-channel exchange of a
new scalar mediator that is also coupled to quarks. The SIMPs are stable neutral particles that
interact with a large cross section with matter but do not hadronize, except by the suppressed
higher-order production of quarks via a mediator radiated by one of the SIMP particles. The
SIMPs traverse the detector leaving energy in the calorimeters but little activity in the tracking
system. The exact signatures of the resulting trackless jets depend upon the unknown but large
interaction cross sections with hadrons and are difficult to predict [3]. To perform this search,
we adjust the couplings such that the SIMP would be detected as a trackless jet contained
completely within the calorimeters. Stronger couplings would give rise to showers starting
earlier, e.g. in the tracker, and weaker couplings would lead to late extended showers leaking
into the muon system. The constrained model under consideration thus provides a framework
for exploring the possible pair production of SIMP-induced jets in the CMS calorimeters.

In the analysis presented here, we search for SIMPs yielding trackless jets using a set of
√

s =

13 TeV proton-proton (pp) collision data, corresponding to an integrated luminosity of 16.1 fb−1,
collected by the CMS experiment at the LHC in the second half of 2016. In particular, we search
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for the pair production of SIMPs, and experimentally select the resulting trackless jets using
the energy fractions of these jets carried by charged particles (ChF) as a highly effective dis-
criminating observable to suppress the huge QCD multijet background. Tabulated results are
provided in HEPData [5].

The ATLAS Collaboration has performed a search [6] for long-lived neutral particles decaying
exclusively in the hadron calorimeter with trackless jets as the experimental signature. How-
ever, that search is sensitive to a somewhat different phase space, as in the present search we
use a different trigger strategy, and search for a new particle that is seen via its new interac-
tions in both the electromagnetic and hadron calorimeters. The use of a dedicated trigger in
the ATLAS analysis, on the one hand makes it possible to lower significantly the jet momentum
requirements and, consequently, to boost the sensitivity to trackless jets. On the other hand, jet
showers starting in the electromagnetic calorimeter are severely penalized by the event selec-
tion, and thus reduced sensitivity is expected for SIMP-nucleon interaction cross sections at the
level of hadronic cross sections or stronger. The present analysis thus investigates a region of
parameter space for new physics previously unexplored at colliders.

Noncollider experiments have probed similar phase space as well, considering dark matter
masses of order a GeV or less [7]. In particular, several direct-detection DM experiments were
briefly operated at the Earth’s surface [8, 9]. A direct comparison of these results with collider
results, however, depends on the model assumptions [10, 11].

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator
hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the
solenoid.

Events of interest are selected using a two-tiered trigger system. The first level, composed of
custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of about 4 µs [12]. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [13].

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [14].

3 Event reconstruction
In this analysis, we search for jet-like objects with very small ChF values. To reconstruct and
identify these objects, we take as input the charged and neutral hadrons, photons, electrons,
and muons, all of which are coherently reconstructed by a particle-flow event algorithm [15].
Charged hadrons not associated to the primary interaction vertex are removed to mitigate the
effect of overlapping pp collisions (pileup). Next, we cluster these particles into jets using the
anti-kT algorithm [16, 17] with a distance parameter R = 0.4, which by construction provides an
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unambiguous association of tracks with jets. The energies of these jets are subsequently further
corrected for contributions from pileup and for η- and pT-dependent response biases [18].

The candidate vertex with the largest value of summed physics-object p2
T is taken to be the

primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding
algorithm [16, 17] with the tracks assigned to candidate vertices as inputs, and the associated
missing pT, taken as the negative vector sum of the pT of those jets.

Since the principal discriminant for identifying SIMP candidates is ChF, it is important to
minimize incorrect primary vertex identification, because the removal of spurious charged
hadrons from pileup depends on their primary vertex association. While jets with many high-
momentum tracks can usually be associated with a primary vertex, this is not the case for
neutral jets. The underlying event and initial-state QCD radiation may provide some tracks,
but it is likely that the wrong vertex is selected in signal-like events. In such cases, the removal
of charged particles not associated with the chosen primary vertex also removes the tracks from
the SIMP production vertex.

In the case of signal events, an incorrect choice of vertex has little effect as their jets exhibit a
low charged content already. However, a wrongly chosen vertex in a QCD multijet background
event causes the pileup suppression procedure to purge the tracks from the true vertex, result-
ing in the spurious appearance of neutral jets. This makes such an event appear signal-like. For
the most stringent ChF requirements considered in this analysis, this reconstruction-induced
background becomes dominant as compared with backgrounds from prompt photons and very
rare jet fragmentation into mostly neutral hadrons and photons.

Simulation studies have shown that when the first vertex is wrongly chosen, the second of the
p2

T-ordered list of reconstructed vertices is the true vertex from the hard collision in more than
50% of the cases, often because a single poor-quality track from a pileup collision is erroneously
reconstructed with high momentum. Therefore, to mitigate this reconstruction-induced back-
ground, we reconstruct each event twice: once with the standard reconstruction, and again
assuming the second vertex to be the collision vertex. In the case that the second vertex is the
correct one, QCD jets acquire larger values of ChF compared to those obtained with the default
reconstruction. Thus the subsequent event selection requires the condition set on ChF to be
satisfied for both vertex choices.

Since photons are reconstructed as neutral jets, we need to efficiently identify and reject them.
In this analysis, we identify photons using loose identification requirements [19]. To further in-
crease the photon identification efficiency, we also consider as photons those jets not coinciding
with a loose photon but containing a reconstructed electron-positron pair (potentially coming
from photon conversion) whose pT is greater than 30% of that of the jet itself.

4 Simulation
The interaction Lagrangian (1) is implemented in FEYNRULES 2.0 [20] with couplings gχ = −1
and gq = 1, and mass mφ = 0.14 GeV, and interfaced with MADGRAPH5 aMC@NLO v2.1.1 [21]
to generate SIMP pair events at leading order using PDF set CTEQ6L1. In what follows, the
actual choice of the mediator mass is not relevant, as long as off-shell SIMP production is con-
sidered.

The SIMP signal is simulated for a range of masses. The lowest mass considered is 1 GeV with a
production cross section of σχχ = 15.03 µb, while the highest mass of 1000 GeV has a production
cross section of σχχ = 3.63 fb. Using PYTHIA v8.212 [22] and tune CUETP8M1 [23], we then add
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an underlying event arising from the fragments of the protons that did not participate in the
hard collision, and the generated partons are hadronized. The interactions of the resulting
particles with the CMS detector are simulated using GEANT4 [24], and pileup collisions are
overlayed on the main collision.

The interaction of SIMPs with matter is not implemented in GEANT4. An implementation
of the SIMP interaction Lagrangian as a physics model in GEANT4 could address this, but is
complicated because of possible hadronic physics effects that are not evaluated in the proposed
simplified model.

Therefore, since the shower induced by the SIMP interaction is reasonably described by the
interaction of a high-momentum neutral hadron, we model the interactions of the SIMPs using
neutron-like interactions. However, this description is only approximate, since the neutron is
a composite particle that breaks up in the interaction and ceases to exist at high momentum,
and may be absorbed at low momentum. By contrast, a SIMP will continue to propagate and
induce further interactions and may leave the detector before depositing all its energy.

The assumption of a neutron interaction is only valid for a certain range of couplings. As
described in Ref. [3], decreasing the SIMP-nucleon interaction cross section σχ,N ∼ g2

q g2
χ by a

factor 10 reduces the signal acceptance by a factor 6. An increase in cross section, on the other
hand, is constrained from above by measurements of the cosmic microwave background [3].
Our assumption of a hadron-like interaction cross section with the detector material is thus
an apt choice to demonstrate the experimental signature targeted with the simplified model
considered.

To implement this neutron-like interaction, we added to the GEANT4 simulation a new SIMP
particle as a clone of the neutron, but with an adjustable mass. The SIMP was set to deposit
only its kinetic energy in the interaction, and not its mass. To simplify the setup, we use only
the inelastic part of the neutron interaction, which dominates at high momentum. As a further
approximation, we consider only the first SIMP interaction in simulation. Since a true SIMP
could undergo additional interactions before leaving the calorimeter, our approach of including
only the first interaction conservatively represents an underestimate of the observable energy
in the induced shower. With this setup, SIMP signal samples are simulated and reconstructed,
and narrow jets with large neutral hadron energy fractions are obtained. For SIMPs with the
mass of a neutron, this SIMP simulation was verified to match that obtained with neutrons in
the standard version of GEANT4.

While SIMPs with large incident momenta and with the mass of a neutron will deposit virtu-
ally all their momentum in the first interaction [3], high-mass SIMPs will transfer only a part
of their momentum in collisions with the low-mass nucleons at rest in the detector material,
and will thus induce smaller shower energy depositions than if they had a small mass. Using
our simulation setup, we indeed observe a suppression of the reconstructed jet energies due to
reduced shower depositions. As an example, a SIMP with a 1000 GeV mass and pT > 200 GeV
leads in our simulation on average to a jet momentum about half as large as for a neutron of the
same momentum. However, from kinematic considerations in elastic scattering, a significantly
smaller momentum transfer may be expected at such high SIMP mass, depending on the target
mass. The approach in the simulation of this trackless-jet test model, of treating the SIMP as
having neutron-like interactions at all masses, must thus be seen as an approximative assump-
tion. Allowing coherent scattering of the SIMP off the calorimeter nuclei, the interactions of
the SIMPs with mass up to about 100 GeV, i.e. of the order of the mass of those nuclei, are ex-
pected to be reasonably well modelled. At higher masses, the simulation is more exploratory
and is presented as a yardstick in the current absence of a more developed treatment of the
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SIMP-nucleon interaction.

The main QCD multijet background is also simulated using MADGRAPH5 aMC@NLO v2.2.2
at leading order using PDF set NNPDF 3.0, with the same PYTHIA v8.212 tune CUETP8M1
for the underlying event. Interactions in the detector are simulated with GEANT4, and pileup
collisions are overlayed.

5 Event selection
This analysis used only a portion of the data collected during 2016 because, for the early part
of that running period, saturation-induced dead time was present in the readout of the silicon
strip tracker. This caused hard-to-model instantaneous-luminosity-dependent inefficiencies for
the reconstruction of tracks, which led to subtle event-wide correlations that prevented a reli-
able prediction of the background arising from low-charge jets in QCD multijet events. With
this detector issue corrected for the second half of 2016, a dataset was collected correspond-
ing to an integrated luminosity of 16.1 fb−1, and events passing an online selection (trigger)
algorithm requiring a jet with pT > 450 GeV were used for this analysis.

As a baseline offline selection, we select two jets, each with pT > 550 GeV, such that the applied
trigger requirements are almost fully efficient for the selected events. Furthermore, we require
these jets to have |η| < 2.0, so they are fully within the tracking volume, thus suppressing
backgrounds from jets that have tracks falling outside of the tracker acceptance, resulting in an
underestimation of ChF.

Except for the suppressed process of SIMPs radiating a mediator that decays into quarks, SIMPs
do not undergo parton showering themselves, while quarks and gluons undergo QCD final-
state radiation. Therefore, events with SIMPs have on average a lower number of jets compared
with QCD multijet background events. To suppress this background, we reject events if in
addition to the two already selected jets other jets are found with pT > 30 GeV and |η| < 5.
The same radiation argument also implies that the selected high-pT jets are better separated in
azimuth in signal events than in QCD multijet background events. Following this, we further
require an azimuthal separation of ∆φ > 2 between the two selected jets.

We also apply a photon veto to suppress γ+jets events. This is done by rejecting events for
which the identified photon with the highest pT falls within ∆R =

√
(∆η)2 + (∆φ)2 < 0.1

of the leading or subleading jet. In cases where the electromagnetic energy fraction of the jet
carried by neutral particles is larger than 0.8, but the photon candidate in the jet does not satisfy
the identification requirements, we still reject the event in the case that a conversion is found
within ∆R < 0.2 of the photon candidate, as described in Section 3. Furthermore, the photon
veto is complemented by requiring both jets to have an electromagnetic energy fraction carried
by neutral particles lower than 0.9, which additionally removes spurious jets formed around
anomalous ECAL deposits. Finally, we apply a dedicated selection [25] to remove beam halo
events.

Because standard jet identification criteria would suppress the trackless jets of our signal pro-
cess and cannot be applied in this analysis, it is possible that our selection criteria enhance
instrumental issues leading to spurious jet measurements. It is, however, highly unlikely for
noise in the calorimeter to lead to two back-to-back high-pT jets. In addition, we verify that in-
dividual events with jets at the smallest ChF values do not exhibit unexpected features, using
both the QCD multijet simulation, and events in the triggered data sample that do not pass the
jet pT thresholds.
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In the following, we refer to the sample of events satisfying the above set of selection criteria
as the “baseline selection”.

Figure 1 (left) shows the distribution of the number of jets for simulated events satisfying the
baseline selection criteria, except for the rejection of events with three or more jets with pT >
30 GeV and |η| < 5. Figure 1 (right) depicts the distribution of ChF values for the two leading
jets for simulated events satisfying the baseline selection criteria. The predicted QCD multijet
background is compared with the signal expected for three different SIMP masses. The ChF
distributions for QCD simulation and signal are very different, with the signal peaking strongly
at low ChF, just where the QCD events are minimal.
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Figure 1: Distributions of the number of jets with pT > 30 GeV and |η| < 5 (left), and the value
of ChF of the two leading jets (right). The simulated QCD multijet background is compared
with the signal expected for three different SIMP masses, with their cross sections scaled as
indicated in the legend. The baseline selection is applied, except the events with three or more
jets with pT > 30 GeV and |η| < 5 are included in the number of jets in the left plot.

In order to estimate the QCD multijet background from data, we define a control region con-
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sisting of a subsample of events satisfying the baseline selection, where at least one of the two
leading jets has ChF greater than 0.25. For this control sample selection, we apply the ChF re-
quirement only to jets reconstructed using the default primary vertex. The presence of at least
one jet with a large value of ChF ensures that the correct primary vertex is selected.

Candidate signal events are selected from the baseline event selection by requiring both leading
jets to have ChF below a certain threshold, both for the default and for the alternate choice of
the primary vertex.

6 Background estimation
The γ+jets background is verified to be negligible. The associated uncertainty is smaller than
any of the other systematic uncertainties in the estimation of the total background.

The QCD multijet background is not described accurately by the simulation, especially at low
ChF. The differences between data and simulation are not problematic, since we estimate the
QCD multijet background from data, while using simulated events only to validate the back-
ground estimation procedure.

As a first step, we measure the ChF selection efficiency of jets in the control sample by picking
one jet with large ChF (>0.25) and applying the ChF selection on the other jet. This measure-
ment is done in 6 bins of jet pT and 8 bins of jet η. The number of QCD events in the signal
region is then estimated using the QCD dijet events passing the baseline selection requirements
described in Section 5, and applying the appropriate pT- and η-dependent ChF selection effi-
ciencies on the two leading jets (2-leg prediction). Alternatively, events with one jet with ChF
below the signal requirement can be used, where the measured efficiencies are then applied on
the other jet (1-leg prediction).

As a first check, a closure test is performed on the background prediction method using jets
clustered from particles at the generator level, before interaction with the detector. Agreement
within statistical uncertainties is found between the fraction of low ChF dijets at generator-level
and the 1- and 2-leg predictions. This agreement confirms that no relevant underlying physical
correlations are present between the two jets, and also confirms that the choice of pT and η bin
sizes of the ChF efficiencies is adequate.

A further closure test is done by using the simulation as the data sample, and comparing the
Monte Carlo (MC) expectation with the 1- and 2-leg predictions using reconstructed objects
in simulation, as shown in Fig. 2. For the MC expectation, the ChF selection is applied to the
two leading reconstructed jets, for both choices of the primary vertex. As explained, this re-
moves events where the wrong primary vertex choice results in jets reconstructed incorrectly
as being neutral. As can be seen from the plot, the method correctly predicts the multijet back-
ground within the statistical precision of the test, proving that no significant correlations be-
tween the jets are introduced by the event reconstruction. The systematic uncertainty in the
background estimate is taken to be the statistical uncertainty of the test or the difference be-
tween the generator-level information and the prediction, whichever is the larger.

Next, we predict the background using data and compare with the observed data. To demon-
strate the closure of the method without potential contamination from a signal at low ChF, this
comparison is done using bins where either the leading or the subleading jet has a ChF within
the bin edges, and both jets have a ChF below the upper threshold of the bin. This comparison
is shown in Fig. 3. The 1- and 2-leg predictions agree within uncertainties in data, confirm-
ing that no correlations between the jets are present. The agreement demonstrates a reliable
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Figure 2: The number of background events obtained from the 1- and 2-leg predictions using
reconstructed objects in simulation, compared to the direct prediction from MC simulation,
shown for various upper ChF thresholds. The bottom panel shows the ratios of the MC predic-
tion to the 1-leg and the 2-leg background predictions.

prediction of the bulk of the ChF distribution and the normalization of the background.

Apart from the physical sources of photon and QCD multijet background, other sources of
an instrumental or algorithmic nature may arise, e.g. the previously mentioned possibility of
incorrectly choosing the primary vertex. To ensure the background prediction method does not
underestimate such additional sources of background, detailed checks were performed using
the events with the lowest ChF jets from the QCD multijet simulation, as well as in a slightly
larger data sample of events collected using the same online trigger, but which did not pass the
offline jet pT requirements. During these checks, no anomalous events were observed satisfying
the baseline event selection.

7 Results
Table 1 shows the number of predicted and observed events, along with the expected yield
from a SIMP signal for three different SIMP masses, for various values of the ChF requirement.
The background prediction is obtained using the 2-leg prediction, since it has a nearly identical
statistical uncertainty to the 1-leg prediction but avoids the nontrivial statistical overlap be-
tween the event sample used to measure the binned efficiencies, and the sample to which these
efficiencies are applied to obtain the background prediction. The systematic uncertainty in the
data prediction is dominated by the previously described uncertainty related to the closure test.
Additionally, a statistical uncertainty of up to 17% arising from the measured efficiencies of the
ChF selection is accounted for, as is a 2% inefficiency of the trigger observed after the offline jet
pT requirement of 550 GeV.

The signal region used to determine the final results is defined by ChF < 0.05. This rejects most
of the QCD background, while avoiding tighter ChF requirements, where the generator-level
information used in the closure tests starts to yield large statistical uncertainties, and where
higher-order contributions from mediator radiation off the SIMPs could become nonnegligible.

Using these results, we calculate model-independent limits at 95% confidence level (CL) using
the CLs criterion with a profile likelihood modified for upper limits as test statistics, in which
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Table 1: The numbers of background and observed events for different upper bounds on the
ChF value. The background estimations are derived using the data-based 2-leg predictions.
The expected number of signal events is given for the mχ = 1, 100, and 1000 GeV scenarios,
with the corresponding statistical uncertainties.

ChF selection Background prediction Obs.
SIMP signal [mχ]

criterion from data 1 GeV 100 GeV 1000 GeV

<0.20 898± 30 (stat)± 33 (syst) 969 1300± 58 634± 44 2.25± 0.07

<0.15 209± 10 (stat)± 17 (syst) 229 1269± 57 613± 43 2.18± 0.07

<0.10 26.6± 2.2 (stat)± 9.3 (syst) 30 1197± 56 589± 42 2.09± 0.07

<0.07 5.1± 0.6 (stat)± 4.1 (syst) 4 1153± 55 568± 41 2.00± 0.07

<0.05 1.27± 0.22 (stat)+ 3.40
− 1.27 (syst) 0 1101± 53 544± 40 1.90± 0.06

the systematic uncertainties are modelled as nuisance parameters [26, 27]. All included sys-
tematic uncertainties are profiled with a lognormal constraint, except for the uncertainty in the
background estimation, which is dominated by the statistical uncertainty associated with the
closure test, and is profiled with a gamma function. This results in both an observed and an
expected visible cross section upper limit of σ95%

vis = σ A ε = 0.18 fb, with A the acceptance and
ε the event selection efficiency.

For the SIMP signals, as is done for data events, the event selection requirements are applied
to jets for both primary vertex choices. The 95% CL upper limits on the SIMP production cross
section are then calculated for SIMP masses between 1 and 1000 GeV, for the signal region with
ChF < 0.05, using the same procedure as described for the model-independent limit.

Several systematic uncertainties are assigned to the estimation of the signal. Uncertainties aris-
ing from the jet energy corrections are evaluated assuming the jets to be clustered from calori-
metric input only, and range from 2.8 to 6.3%, increasing with decreasing SIMP mass. Fur-
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Figure 3: The number of background events obtained from the 1- and 2-leg predictions derived
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or subleading jet has a ChF within the bin edges, and both have a ChF below the upper bin
threshold. The bottom panel shows the ratios of the observation in data to the 1-leg and the
2-leg background predictions.
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thermore, uncertainties related to the integrated luminosity (2.5%) [28], to the trigger efficiency
mentioned before in the context of the background (2%), and to the limited signal sample size
(2.9 to 7.4%) are included. Other potential sources of uncertainty, like the photon and conver-
sion veto requirements and the effect of pileup, are found to be negligible.

Figure 4 shows the expected and observed 95% CL upper limits on the production cross section
for SIMPs with masses between 1 and 1000 GeV. These limits are obtained for off-shell produc-
tion of the SIMP pair through a new scalar mediator with couplings gχ = −1 and gq = 1, under
the assumption that the SIMP’s interaction in the detector is neutron-like, as described in Sec-
tion 4. Within this framework, we exclude SIMP masses up to 100 GeV, which includes the
phenomenologically most interesting low-mass phase space [3]. At higher masses, the limits
shown are subject to the caveats discussed in Section 4.

In the case of production through a new vector mediator, the production cross section is be-
tween 15 and 30% larger [3] compared to the scalar mediator that is assumed here. These
results are the first report of a search for the production of strongly interacting dark matter
candidates at a collider.
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Figure 4: The expected and observed 95% CL upper limits on the production cross section for
SIMPs with masses between 1 and 1000 GeV, with the assumption that the SIMP interaction
in the detector can be approximated as neutron-like. The theoretical prediction of a simplified
model incorporating this approximation and including a scalar mediator with couplings gχ =
−1 and gq = 1 is also shown (red line). For masses above 100 GeV, where the modelling of the
SIMP-nucleon interaction becomes more speculative, the obtained cross section upper limits
are increasingly uncertain (shaded area).

8 Summary
A search has been presented for dark matter in the form of strongly interacting massive parti-
cles (SIMPs) manifesting themselves in the detector as trackless jets. The large multijet back-
ground is efficiently suppressed using the charged energy fraction of jets as the key discrimina-
tor. The remaining background is estimated directly from data. Using proton–proton collision
data corresponding to an integrated luminosity of 16.1 fb−1 collected by the CMS experiment
in 2016, we set first limits on the production cross section for SIMPs with masses between 1
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and 1000 GeV at 95% confidence level (CL), using a signal simulation that assumes the SIMP
interaction in the detector can be approximated as neutron-like. The signal modelling assump-
tions stated previously have small uncertainties, and hence a small impact on the cross section
upper limits, for SIMP masses up to about 100 GeV, but become increasingly uncertain above
100 GeV, where an improved phenomenology of the SIMP-nucleon interaction would be wel-
come. Within this framework we exclude SIMPs with masses less than 100 GeV. These limits
were obtained for the off-shell production of SIMP pairs, through a new scalar mediator with
couplings gχ = −1 and gq = 1. An upper limit on the fiducial cross section of 0.18 fb at 95%
CL is also provided for a generic signal of high-momentum trackless jets. With this search,
strongly interacting massive particles, for which the interaction strength is constrained to gen-
erate a trackless jets signature, have been ruled out over a wide mass range. These are the first
results reporting a search for the production of strongly interacting dark matter candidates at
a collider.
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University, Budapest, Hungary, Budapest, Hungary
31: Also at Wigner Research Centre for Physics, Budapest, Hungary
32: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
33: Also at Institute of Physics, Bhubaneswar, India
34: Also at G.H.G. Khalsa College, Punjab, India
35: Also at Shoolini University, Solan, India
36: Also at University of Hyderabad, Hyderabad, India
37: Also at University of Visva-Bharati, Santiniketan, India
38: Also at Indian Institute of Technology (IIT), Mumbai, India
39: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
40: Also at Sharif University of Technology, Tehran, Iran
41: Also at Department of Physics, University of Science and Technology of Mazandaran,
Behshahr, Iran



31
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45: Also at Università di Napoli ’Federico II’, NAPOLI, Italy
46: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
47: Also at Consejo Nacional de Ciencia y Tecnologı́a, Mexico City, Mexico
48: Also at Institute for Nuclear Research, Moscow, Russia
49: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’
(MEPhI), Moscow, Russia
50: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent,
Uzbekistan
51: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
52: Also at University of Florida, Gainesville, USA
53: Also at Imperial College, London, United Kingdom
54: Also at P.N. Lebedev Physical Institute, Moscow, Russia
55: Also at California Institute of Technology, Pasadena, USA
56: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
57: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
58: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
59: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
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