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Abstract

Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions
at
√

sNN = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are
presented in the pseudorapidity range |η | < 0.8 and transverse momentum 0.2 < pT < 2.0 GeV/c.
The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean
of the multiplicity distribution. The η and pT dependences of the fluctuations and their evolution
with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease
from peripheral to central collisions. The results are compared to those obtained from HIJING and
AMPT Monte Carlo event generators as well as to experimental data at lower collision energies.
Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal
compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.

*See Appendix A for the list of collaboration members
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1 Introduction

According to quantum chromodynamics (QCD), at high temperatures and high energy densities, nuclear
matter undergoes a phase transition to a deconfined state of quarks and gluons, the quark–gluon plasma
(QGP) [1–5]. Heavy-ion collisions at ultra-relativistic energies make it possible to create and study
such strongly-interacting matter under extreme conditions. The QGP formed in high-energy heavy-ion
collisions has been characterised as a strongly-coupled system with very low shear viscosity. The primary
goal of the heavy-ion program at the CERN Large Hadron Collider (LHC) is to study the QCD phase
structure by measuring the properties of QGP matter. One of the important methods for this study is the
measurement of event-by-event fluctuations of experimental observables. These fluctuations are sensitive
to the proximity of the phase transition and thus provide information on the nature and dynamics of the
system formed in the collisions [6–12]. Fluctuation measurements provide a powerful tool to investigate
the response of a system to external perturbations. Theoretical developments suggest that it is possible
to extract quantities related to the thermodynamic properties of the system, such as entropy, chemical
potential, viscosity, specific heat, and isothermal compressibility [6, 13–21]. In particular, isothermal
compressibility expresses how a system’s volume responds to a change in the applied pressure. In the
case of heavy-ion collisions, it has been shown that the isothermal compressibility can be calculated from
the event-by-event fluctuation of charged-particle multiplicity distributions [17].

The measured multiplicity scales with the collision centrality in heavy-ion collisions. The distribution of
particle multiplicities in a given class of centrality and its fluctuations on an event-by-event basis provide
information on particle production mechanisms [22–24]. In this work, the magnitude of the fluctuations
is quantified in terms of the scaled variance,

ωch =
σ2

ch
〈Nch〉

, (1)

where 〈Nch〉 and σ2
ch denote the mean and variance of the charged-particle multiplicity distribution, re-

spectively. Event-by-event multiplicity fluctuations in heavy-ion collisions have been studied earlier at
the BNL-AGS by E802 [25], the CERN-SPS by the WA98 [26], NA49 [27, 28], and CERES [29] ex-
periments, and at the Relativistic Heavy Ion Collider (RHIC) by the PHOBOS [30] and PHENIX [31]
experiments. A compilation of available experimental data and comparison to predictions of the event
generators are presented elsewhere [19]. In this work, measurements of the scaled variance of multiplic-
ity fluctuations are presented as a function of collision centrality in Pb–Pb collisions at

√
sNN = 2.76 TeV

using the ALICE detector at the LHC.

In thermodynamics, the isothermal compressibility (kT ) is defined as the fractional change in the volume
of a system with change of pressure at a constant temperature,

kT =− 1
V

(
∂V
∂P

)∣∣∣∣
T
, (2)

where V,T,P are the volume, temperature, and pressure of the system, respectively. In general, an in-
crease in the applied pressure leads to a decrease in volume, so the negative sign makes the value of
kT positive. In the context of a description in terms of the grand canonical ensemble, which is ap-
proximately applicable for the description of particle production in heavy-ion collisions [5], the scaled
variance of the multiplicity distribution can be expressed as [17],

ωch =
kBT 〈Nch〉

V
kT , (3)

where kB is the Boltzmann’s constant, and 〈Nch〉 is the average number of charged particles. Measure-
ments of fluctuations in terms of ωch can be exploited to determine kT and associated thermodynamic
quantities such as the speed of sound within the system [17, 32].
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Measurements of the multiplicity of produced particles in relativistic heavy-ion collisions are basic to
most of the studies as a majority of the experimentally observed quantities are directly related to the
multiplicity. The variation of the multiplicity depends on the fluctuations in the collision impact pa-
rameter or the number of participant nucleons. Thus, the measured multiplicity fluctuations contain
contributions from event-by-event fluctuations in the number of participant nucleons, which forms the
main background towards the evaluation of any thermodynamic quantity [33, 34]. This has been partly
addressed by selecting narrow intervals in centrality and accounting for the multiplicity variation within
the centrality of the measurement. The remainder of participant fluctuations is estimated in the context
of an MC Glauber model in which nucleus–nucleus collisions are considered to be a superposition of
nucleon–nucleon interactions.

Thus, the background fluctuations contain contributions from independent particle production and cor-
relations corresponding to different physical origins. The background-subtracted fluctuations can be
used in Eq. (3) to estimate kT with the knowledge of the temperature and volume from complementary
analyses of hadron yields, calculated at the chemical freeze-out [35, 36].

In addition to fluctuations in the number of participant nucleons, several other processes contribute to
fluctuations of the charged particles multiplicity on an event-by-event basis [17, 37]. These include
long-range particle correlations, charge conservation, resonance production, radial flow, as well as Bose-
Einstein correlations. Since these contributions can not be evaluated directly, the value of kT extracted
and reported in this work amounts to an upper limit.

The article is organized as follows. In section II, the experimental setup and details of the data analysis
method, including event selection, centrality selection, corrections for finite width of the centrality inter-
vals, and particle losses are presented. In section III, the measurements of the variances of multiplicity
distributions are presented as a function of collision centrality. Additionally, the dependence of the fluc-
tuations on the η and pT ranges of the measured charged hadrons are studied. The results are compared
with calculations from selected event generators. In section IV, methods used to estimate multiplicity
fluctuations resulting from the fluctuations of the number of participants are discussed. An estimation of
the isothermal compressibility for central collisions is made in section V.

2 Experimental setup and analysis details

The ALICE experiment [38] is a multi-purpose detector designed to measure and identify particles pro-
duced in heavy-ion collisions at the LHC. The experiment consists of several central barrel detectors
positioned inside a solenoidal magnet operated at 0.5 T field parallel to the beam direction and a set of
detectors placed at forward rapidities. The central barrel of the ALICE detector provides full azimuthal
coverage for track reconstruction within a pseudorapidity (η) range of |η | < 0.8. The Time Projection
Chamber (TPC) is the main tracking detector of the central barrel, consisting of 159 pad rows grouped
into 18 sectors that cover the full azimuth. The Inner Tracking System (ITS) consists of six layers of
silicon detectors employing three different technologies. The two innermost layers are Silicon Pixel
Detectors (SPD), followed by two layers of Silicon Drift Detectors (SDD), and finally, the two outer-
most layers are double-sided Silicon Strip Detectors (SSD). The V0 detector consists of two arrays of
scintillators located on opposite sides of the interaction point (IP). It features full azimuthal coverage
in the forward and backward rapidity ranges, 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C). The
V0 detectors are used for event triggering purposes as well as to evaluate the collision centrality on an
event-by-event basis [39]. The impact of the detector response on the measurement of charged-particle
multiplicity based on Monte Carlo simulations is studied with the GEANT3 framework [40].

This analysis is based on Pb–Pb collision data recorded in 2010 at
√

sNN = 2.76 TeV with a minimum-
bias trigger comprising of a combination of hits in the V0 detector and the two innermost (pixel) layers
of the ITS. In total, 13.8 million minimum-bias events satisfy the event selection criteria. The primary
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interaction vertex of a collision is obtained by extending correlated hits in the two SPD layers to the
beam axis. The longitudinal position of the interaction vertex in the beam (z) direction (Vz) is restricted
to |Vz| < 10 cm to ensure a uniform acceptance in the central η region. The interaction vertex is also
obtained from TPC tracks. The event selection includes an additional vertex selection criterion, where
the difference between the vertex using TPC tracks and the vertex using the SPD is less than 5 mm in
the z-direction. This selection criterion greatly suppresses the contamination of the primary tracks by
secondary tracks resulting from weak decays and spurious interactions of particles within the apparatus.

Charged particles are reconstructed using the combined information of the TPC and ITS [38]. In the TPC,
tracks are reconstructed from a collection of space points (clusters). The selected tracks are required
to have at least 80 reconstructed space points. Different combinations of tracks in the TPC and SPD
hits are utilized to correct for detector acceptances and efficiency losses. To suppress contributions
from secondary tracks (i.e., charged particles produced by weak decays and interactions of particles
with materials of the detector), the analysis is restricted to charged-particle tracks featuring a distance
of closest approach (DCA) to the interaction vertex, DCAxy < 2.4 cm in the transverse plane and of
DCAz < 3.2 cm along the beam direction. The tracks are additionally restricted to the kinematic range,
|η |< 0.8 and 0.2 < pT < 2.0 GeV/c.

2.1 Centrality selection and the effect of finite width of the centrality intervals

The collision centrality is estimated based on the sum of the amplitudes of the V0A and V0C signals
(known as the V0M collision centrality estimator) [39]. Events are classified in percentiles of the
hadronic cross section using this estimator. The average number of participants in a centrality class,
denoted by Npart, is obtained by comparing the V0M multiplicity to a geometrical Glauber model [41].
Thus, the centrality of the collision is measured based on the V0M centrality estimator, whereas the
measurement of multiplicity fluctuations is based on charged particles measured within the acceptance
of the TPC.

A given centrality class is a collection of events of measured multiplicity distributions within a range in
V0M corresponding to a mean number of participants, 〈Npart〉. This results in additional fluctuations in
the number of particles within each centrality class. To account for these fluctuations, a centrality interval
width correction is employed. The procedure involves dividing a broad centrality class into several
narrow intervals and correcting for the finite interval using weighted moments according to [42, 43],

X =
∑i niXi

∑i ni
. (4)

Here, the index i runs over the narrow centrality intervals. Xi and ni are the corresponding moments of
the distribution and number of events in the ith interval, respectively. With this, one obtains, N = ∑i ni as
the total number of events in the broad centrality interval.

The centrality resolution of the combined V0A and V0C signals ranges from 0.5% in central to 2% in
the most peripheral collisions [39]. A correction for the finite width of centrality intervals has been made
with Eq. 4 using 0.5% centrality intervals from central to 40% cross section and 1% intervals for the rest
of the centrality classes.

2.2 Efficiency correction

The detector efficiency factors (ε) were evaluated in bins of pseudorapidity η , azimuthal angle ϕ , and
pT. By defining Nch(x) as the number of produced particles in a phase-space bin at x, n(x) as the number
of observed particles at x, and ε(x) as the detection efficiency, the first and second factorial moments of
the multiplicity distributions can be corrected for particle losses according to the procedure outlined in
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Ref. [44, 45]:

F1 = 〈Nch〉=
m

∑
i=1
〈Nch(xi)〉=

m

∑
i=1

n(xi)

ε(xi)
, (5)

and

F2 =
m

∑
i=1

m

∑
j=i

〈n(xi)(n(xj)−δxixj)〉
ε(xi)ε(xj)

, (6)

respectively. Here, m denotes the index of the phase-space bins and i, j are the bin indexes. δxixj = 1 if
xi = xj and zero otherwise. The variance of the charged-particle multiplicity is then calculated as:

σ
2
ch = F2 +F1−F2

1 . (7)

The correction procedure is validated by a Monte Carlo study employing two million Pb–Pb events
at
√

sNN = 2.76 TeV generated using the HIJING event generator [46], and passed through GEANT3
simulations of the experimental setup, taking care of the acceptances of the detectors. The efficiency
dependencies on η , ϕ , and pT are calculated from the ratio of the number of reconstructed charged
particles by the number of produced particles. In order to account for the pT dependence of efficiency,
the full pT range (0.2 < pT < 2.0 GeV/c) was divided to nine bins (0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6,
0.6-0.8, 0.8-1.0, 1.0-1.2, 1.2-1.6, 1.6-2.0) with larger number of bins in low pT ranges. In the Monte
Carlo closure test, the values of 〈Nch〉, σch, and ωch of the efficiency corrected results from the simulated
events are compared to those of HIJING at the generator level to obtain the corrections. By construction,
the efficiency corrected values for 〈Nch〉match with those from the generator, whereas σch and ωch values
differ by∼0.7% and∼1.4%, respectively. These differences are included in the systematic uncertainties.

2.3 Statistical and systematic uncertainties

The statistical uncertainties of the moments of multiplicity distributions are calculated based on the
method of error propagation derived from the delta theorem [47]. The systematic uncertainties have
been evaluated by considering the effects of various criteria in track selection, vertex determination, and
efficiency corrections.

The systematic uncertainties related to the track selection criteria were obtained by varying the track
reconstruction method and track quality cuts. The nominal analysis was carried out with charged parti-
cles reconstructed within the TPC and ITS. For systematic checks, the full analysis is repeated for tracks
reconstructed using only the TPC information. The differences in the values of 〈Nch〉, σch, and ωch re-
sulting from the track selections using the two methods are listed in Table 1 as a part of the systematic
uncertainties. The DCAxy and DCAz of the tracks are varied by±25% to obtain the systematic uncertain-
ties caused by variations in the track quality selections. The effect of the selection of events based on the
vertex position is studied by restricting the z-position of the vertex to ±5 cm from the nominal ±10 cm,
and additionally by removing restrictions on Vx and Vy. The efficiency correction introduces additional
systematic uncertainty as discussed earlier. The experimental data were recorded for two different mag-
netic field polarities. The two data sets are analyzed separately and the differences are taken as a source
of systematic uncertainties.

The individual sources of systematic uncertainties discussed above are considered uncorrelated and
summed in quadrature to obtain the total systematic errors reported in this work. Table 1 lists the sys-
tematic uncertainties associated with the values of 〈Nch〉, σch, and ωch.

3 Results and discussions

Figure 1 shows the corrected mean (〈Nch〉), standard deviation (σch), and scaled variance (ωch) as a
function of 〈Npart〉 for the centrality range considered (0-60%) corresponding to Npart > 45. Uncertainties
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Table 1: Systematic uncertainties on the mean, standard deviation, and scaled variance of charged-particle multi-
plicity distributions from different sources. The ranges of uncertainties quoted correspond to central to peripheral
collisions.

Source 〈Nch〉 σch ωch

Track selection 3.5−4.8% 3.8−6.0% 4.0−7.5%
Variation of DCAxy 0.5−0.9% 0.8−1.2% 1.3−1.6%
Variation of DCAz 0.4−0.9% 0.7−1.0% 1.2−1.7%
Vertex (Vz) selection 0.1−0.5% 0.5% 0.1−0.8%
Removal of Vx,Vy selec-
tions

0.1% 0.2% 0.5%

Efficiency correction <0.1% 0.7% 1.4%
Magnetic polarity 0.2−1.0% 0.5−1.5% 0.8−1.7%
Total 3.5−5.1% 4.1−6.4% 4.8−8.3%

on the estimated number of participants, 〈Npart〉, obtained from Ref. [38], are smaller than the width of
the solid red circles used to present the data in the centrality range considered in this measurement. It
is observed that the values of 〈Nch〉 and σch increase with increasing 〈Npart〉. The value of ωch decreases
monotonically by ∼29% from peripheral to central collisions.

3.1 Comparison with models

The measured ωch values are compared with the results of simulations with the HIJING and the string
melting option of the AMPT models. HIJING [46] is a Monte Carlo event generator for parton and
particle production in high-energy hadronic and nuclear collisions and is based on QCD-inspired models
which incorporate mechanisms such as multiple minijet production, soft excitation, nuclear shadowing
of parton distribution functions, and jet interactions in the dense hadronic matter. The HIJING model
treats a nucleus–nucleus collision as a superposition of many binary nucleon–nucleon collisions. In the
AMPT model [48], the initial parton momentum distribution is generated from the HIJING model. In the
default mode of AMPT, energetic partons recombine and hadrons are produced via string fragmentation.
The string melting mode of the model includes a fully partonic phase that hadronises through quark
coalescence.

In order to enable a proper comparison with data obtained in this work, Monte Carlo events produced
with HIJING and AMPT are grouped in collision centrality classes based on generator level charged-
particle multiplicities computed in the ranges 2.8 < η < 5.1 and −3.7 < η < −1.7, corresponding to
the V0A and V0C pseudorapidity coverages. The results of the scaled variances from the two event
generators are presented in Fig. 1 as a function of the estimated number of participants, Npart. As a
function of increasing centrality, the ωch values obtained from the event generators show upward trends,
which are opposite to those of the experimental data. It is to be noted that the Monte Carlo event
generators are successful in reproducing the mean of multiplicity distributions. This follows from the
fact that the particle multiplicities are proportional to the cross sections. On the other hand, the widths of
the distributions originate from fluctuations and correlations associated with effects of different origins,
such as long-range correlations, Bose–Einstein correlations, resonance decays, and charge conservation.
Because of this, the event generators fall short of reproducing the observed scaled variances.

3.2 Scaled variance dependence on pseudorapidity acceptance and pT range

Charged-particle multiplicity distributions depend on the acceptance of the detection region. Starting
with the measured multiplicity fluctuations within |η | < 0.8 and 0.2 < pT < 2.0 GeV/c with a mean
〈Nch〉 and scaled variance of ωch, the scaled variance (ωacc

ch ) for a fractional acceptance in η or for a
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Figure 1: Mean (〈Nch〉), standard deviation (σch), and scaled variance (ωch) of charged-particle multiplicity distri-
butions as a function of the number of participating nucleons for experimental data along with HIJING and AMPT
(string melting) models for Pb–Pb collisions at

√
sNN = 2.76 TeV, shown in panels (a), (b), and (c), respectively.

For panel (a), 〈Npart〉 for the two models are shifted for better visibility. The statistical uncertainties are smaller
than the size of the markers. The systematic uncertainties are presented as filled boxes.
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Figure 2: Scaled variances of charged-particle multiplicity distributions for different η and pT ranges as a
function of number of participating nucleons measured in Pb–Pb collisions at

√
sNN = 2.76 TeV, shown in panels

(a), and (b), respectively. The estimated ωch for |η | < 0.3 and |η | < 0.5 are obtained from the experimental data
of |η |< 0.8 by using Eq. 8. The estimated ωch for 0.2 < pT < 1.5 GeV/c and 0.2 < pT < 1.0 GeV/c are obtained
from the experimental data of 0.2 < pT < 2.0 GeV/c, also by using Eq. 8. The statistical uncertainties are smaller
than the size of the markers. The systematic uncertainties are presented as filled boxes.

limited pT range with mean of 〈Nacc
ch 〉 can be expressed as [31],

ω
acc
ch = 1+ f acc(ωch−1), (8)

where f acc =
〈Nacc

ch 〉
〈Nch〉

. (9)

This empirical estimation for the acceptance dependence of the scaled variance is valid assuming that
there are no significant correlations present over the acceptance range being studied. The validity of
this dependence has been checked by comparing the experimental data of scaled variances at reduced
acceptances along with the results from the above calculations. This is shown in Fig. 2 for different
η or pT ranges. In the top panel, the scaled variances are shown, as a function of 〈Npart〉, for three η

ranges. The solid symbols show the results of measured scaled variances, whereas open symbols show
the estimated values for the two reduced η windows. The calculated values yield a good description
of the measured data points. The choice of the pT range also affects the multiplicity of an event. In
the bottom panel of Fig. 2, the scaled variances are shown, as a function of 〈Npart〉, for three pT ranges
keeping |η | < 0.8. A decrease in the value of ωch is observed with the decrease of the pT window.
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The results from the calculations of scaled variances are compared to the measured data points. The
calculated values are close to those of the measurement. This estimation of the scaled variances of
multiplicity distributions is particularly useful in extrapolating fluctuations to different coverages.

3.3 Comparison to scaled variances at lower collision energies

Scaled variances of charged-particle multiplicity distributions were earlier reported by the PHENIX Col-
laboration at RHIC for Au–Au collisions at

√
sNN = 62.4 GeV and 200 GeV [31]. The beam–beam

counters (BBC) in PHENIX covering the full azimuthal angle in the pseudorapidity range 3.0< |η |< 3.9
provided the minimum-bias trigger and were used for centrality selection. The pseudorapidity acceptance
of the PHENIX experiment amounted to |η |< 0.26 with an effective average azimuthal active area of 2.1
radian and 0.2 < pT < 2.0 GeV/c for charged particle measurements. The published results of mean and
scaled variances of charged-particles were corrected for fluctuations of the collision geometry within a
centrality bin. This was performed by comparing fluctuations from simulated HIJING events with a fixed
impact parameter to events with a range of impact parameters covering the width of the centrality bin, as
determined from Glauber model simulations. The corrected results are reproduced in Fig. 3 for the two
collision energies. To enable an appropriate comparison with results reported by PHENIX, the ALICE
data are reanalyzed by imposing the same kinematic ranges as in PHENIX, and the resulting mean and
scaled variances are presented in Fig. 3. It is observed that for the same acceptance and kinematic cuts,
the mean values and the scaled variances are larger at the LHC energy compared to those obtained at
RHIC energies.

It is also of interest to study σ2
ch

〈Nch〉2
, the ratio of the variance by the square of the average multiplicity as

a function of collision centrality. At lower beam energies, these distributions obey a power-law relative
to the number of participants [49]. In the lower panel of Fig. 3, the values of σ2

ch
〈Nch〉2

are presented as a

function of 〈Npart〉 for the ALICE data, for the common coverage of ALICE and PHENIX data, as well

as PHENIX data at two collision energies. The data points are fitted by a scaling curve, σ2
ch

〈Nch〉2
= A ·Nα

part.

The exponent α =−1.25±0.03 fits the four sets of experimental data well with χ2/ndf (where ndf is the
number of degrees of freedom) as 0.88, 1.1, 0.95, 0.84 for Pb–Pb collisions at

√
sNN = 2.76 TeV with the

ALICE acceptance, the PHENIX detector acceptance and Au–Au collisions at
√

sNN = 200 GeV and
62.4 GeV, respectively. The scaling, first described by the PHENIX Collaboration [49], also holds for
the ALICE data. The corresponding values of σ2

ch
〈Nch〉2

for HIJING and AMPT models for Pb–Pb collisions
at
√

sNN = 2.76 TeV are also displayed in Fig. 3. The trends as a function of centrality are observed to
be similar to those of the experimental data. Fits with a similar scaling curve yield power-law exponents
as −1.1 and −1.05 for HIJING and AMPT models, respectively. These exponents for the models are
lower compared those of the experimental data.

4 Background to the measured multiplicity fluctuations

The background to the measured multiplicity fluctuations contains contributions from several sources.
In this section, the background fluctuations are presented first from a participant model calculation and
then the expectations from a Poisson distribution of particle multiplicity are discussed.

In the wounded nucleon model, nucleus–nucleus (such as Pb–Pb) collisions are considered to be a su-
perposition of individual nucleon–nucleon interactions. In this context, the fluctuations in multiplicity
within a given centrality window arise in part from fluctuations in Npart and from fluctuations in the num-
ber of particles (n) produced by each nucleon–nucleon interaction [22, 26, 31]. The values of n and their
fluctuations are also strongly dependent on the acceptance of the detector. Within the context of this
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Figure 3: Comparison of 〈Nch〉, ωch, and σ2
ch/〈Nch〉2 measured in this work based on the acceptance of the

PHENIX experiment with results reported by PHENIX [31] as a function of number of participating nucleons,
shown in panels (a), (b), and (c), respectively. The statistical uncertainties are smaller than the size of the markers.
The systematic uncertainties are presented as filled boxes.
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Figure 4: Scaled variance as a function of 〈Npart〉 for charged-particle multiplicity distributions and background
fluctuations (ωback

ch ) based on a participant model calculation for |η | < 0.5. The expectation from Poisson-like
particle production is indicated by the dotted line. The statistical uncertainties are smaller than the size of the
markers. The systematic uncertainties are presented as filled boxes.

framework, the scaled variance of the background, ωback
ch , amounts to

ω
back
ch = ωn + 〈n〉ωNpart , (10)

where 〈n〉 is the average number of particles produced by each nucleon–source within the detector ac-
ceptance, ωn is the scaled variance of the fluctuations in n, and ωNpart denotes the fluctuations in Npart.
The variance, ωNpart is calculated using event-by-event Npart from the HIJING model. The distribution
of Npart corresponds to the centrality obtained within the V0 detector coverage (2.8 < η < 5.1 and
−3.7 < η < −1.7). The extracted values of ωNpart are corrected for the effects of the finite width of
the centrality intervals.

For the central rapidity range (|η | < 0.5), the measured number of charged particles produced in pp
collisions within 0.2 < pT < 2.0 GeV/c at

√
s = 2.76 TeV [50] yields 〈n〉= 1.45±0.07, which is half of

the measured value. In order to calculate ωn, an extrapolation of the measured ωch is made to Npart = 2
using a polynomial fit function of the form a+ bx+ cx2 + dx3, which is shown in Fig. 4. In order to
calculate ωn, an extrapolation of the measured ωch is made to Npart = 2 using a polynomial fit function
of the form a+ bx+ cx2 + dx3, which is shown in Fig. 4. Since both the nucleon sources contributing
to Npart = 2 are correlated, ωn becomes half of the extrapolated value, yielding ωn = 1.445±0.12. This
result is also consistent with the value of ωn = 1.51±0.16 obtained from the parameterization given by
the PHENIX Collaboration [31].

Using the above numbers, ωback
ch are calculated and plotted as a function of 〈Npart〉 as in Fig. 4. The

obtained trend in ωback
ch mainly arises from the centrality dependence of ωNpart . For most central collisions,

the difference between the measured and background ωch is 0.02±0.18, which is consistent with zero
within the uncertainties. Except for most central collisions, ωback

ch is observed to be larger than ωch. Thus,
it seems likely that the background estimated in this way from the participant model is overestimated.

For an ideal gas, the number fluctuations are described by the Poisson distribution. So, if the emitted
particles are uncorrelated, then the multiplicity distributions become Poissonian, the magnitude of ωch
reduces to unity, which is independent of the multiplicity and thus independent of the centrality of the
collision. As seen from Fig. 4, the observed multiplicity fluctuations are significantly above the Poisson
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expectation for all centralities.

5 Estimation of isothermal compressibility

Equation (3) relates the magnitude of the charged-particle multiplicity fluctuations to the isothermal
compressibility. The calculation of kT requires knowledge of the temperature and volume of the system.
After the collision, as the system cools down, the hadronic yields are fixed when the rate of inelastic
collisions becomes negligible (chemical freeze-out), but the transverse-momentum distributions continue
to change until elastic interactions also cease (kinetic freeze-out). The number of charged particles
gets fixed at the time of chemical freeze-out (except for long-lived resonances). As the calculation
of kT depends on the fluctuations in the number of particles, the chemical freeze-out conditions are
considered as input. The ALICE Collaboration has published the identified particle yields of pions,
kaons, protons, light nuclei, and resonances [36, 51, 52]. The statistical hadronization models have
been successful in describing these yields and their ratios [5, 35, 53], using temperature and volume
as parameters at the chemical freeze-out. For most central Pb–Pb collisions at

√
sNN = 2.76 TeV, the

ALICE data on yields of particles in one unit of rapidity at midrapidity are in good agreement with
0.156±0.002 GeV and 5330±505 fm3, for temperature and volume, respectively [52]. In addition, the
charged-particle multiplicity within |η |< 0.5 in this centrality range is 〈Nch〉= 1410±47 (syst).

Here, an attempt is made to estimate kT for Pb–Pb collisions using the charged-particle multiplicity
fluctuations along with the temperature, volume, and mean number of charged particles from above.
The measured multiplicity fluctuation for central collisions is ωch = 2.15± 0.1. In the absence of any
background where the full fluctuation is attributed to have a thermal origin, one would obtain kT =
52.1±5.81 fm3/GeV. As the measured ωch contains background fluctuations from different sources, this
value of kT can be only be considered as an absolute upper limit.

In the previous section, the background fluctuations have been estimated from the participant model
calculation as shown in Fig. 4. For central collisions, the value of the measured fluctuation above that
of the participant model fluctuation is ωch = 0.02± 0.18. This leads to kT = 0.48± 4.32 fm3/GeV. On
the other hand, the background fluctuations from the participant model for other centralities are larger
compared to the measured ones making the background-subtracted fluctuations negative. So it is not
possible to obtain estimates of kT for these centrality ranges based on the present model of participant
fluctuations.

The measured multiplicity fluctuations can be viewed as combinations of correlated and uncorrelated
fluctuations. If the particle production is completely uncorrelated, the system effectively behaves as an
ideal gas, and the multiplicity distribution is expected to follow a Poisson distribution (ωch = 1). For
central collisions, fluctuations above the Poisson estimation gives, ωch = 1.15± 0.06, which in turn
implies a value of kT = 27.9±3.18 fm3/GeV.

It may be noted that other sources likely also contribute to the background of the measured multiplicity
fluctuations. A quantitative determination of these effects requires further studies and theoretical model-
ing, which is beyond the scope of this work. In view of this, the estimation of kT from the background-
subtracted event-by-event multiplicity fluctuation provides an upper limit of its value.

It is imperative to put the extracted values of kT in perspective with respect to that of normal nuclear
matter. The incompressibility constant of normal nuclear matter at pressure P, expressed as K0 =
9(∂P/∂ρ) at zero temperature and normal nuclear density, ρ = ρ0, has been determined to be K0 =
240± 20 MeV [54–56]. Using the relation, kT = (9/ρK0), one obtains the isothermal compressibility
of nuclear matter to be kT ' 234±20 fm3/GeV. This is consistent with the expectation that normal nu-
clear matter at low temperature is more compressible than the high temperature matter produced at LHC
energies (as of Eq. 3). From the above estimation, the value of kT = 27.9± 3.18 fm3/GeV, which cor-
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responds to multiplicity fluctuations above the Poisson expectation, serves as a conservative upper limit,
and is even significantly below the normal nuclear matter at low temperature.

6 Summary

Measurements of event-by-event fluctuations of charged-particle multiplicities are reported as a function
of centrality in Pb–Pb collisions at

√
sNN = 2.76 TeV. The mean, standard deviation, and scaled variances

of charged-particle multiplicities are presented for |η |< 0.8 and 0.2 < pT < 2.0 GeV/c as a function of
centrality. A monotonically decreasing trend for the scaled variance is observed from peripheral to
central collisions. Corresponding results from HIJING and AMPT event generators show a mismatch
with the experimental results. The scaled variance of the multiplicity decreases with the reduction of the
η acceptance of the detector as well as with the decrease of the pT range. The multiplicity fluctuations are
compared to the results from lower beam energies as reported by the PHENIX experiment. For the same
acceptance, the observed scaled variances at RHIC energies are smaller compared to those observed at
the LHC.

As multiplicity fluctuations are related to the isothermal compressibility of the system, the measured
fluctuations are used to estimate kT in central Pb–Pb collisions at

√
sNN = 2.76 TeV. The multiplicity

fluctuations above the Poisson expectation case yields kT = 27.9±3.18 fm3/GeV, which may still con-
tain contributions from additional uncorrelated particle production as well as from several non-thermal
sources as discussed in section 5. Proper modeling of background subtraction needs to be developed by
accounting for all possible contributions from different physics origins, which is beyond the scope of
the present work. This result serves as a conservative upper limit of kT until various contributions to the
background are properly understood and evaluated. The estimation of kT at lower collision energies and
for different system-sizes is an interesting way to explore the QCD phase diagram from thermodynamics
point of view.
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