
Vol.:(0123456789)1 3

Computing and Software for Big Science (2023) 7:1
https://doi.org/10.1007/s41781-023-00094-w

ORIGINAL ARTICLE

The Tracking Machine Learning Challenge: Throughput Phase

Sabrina Amrouche8 · Laurent Basara10,11 · Paolo Calafiura1,2 · Dmitry Emeliyanov5 · Victor Estrade10,11 ·
Steven Farrell1,2 · Cécile Germain10,11 · Vladimir Vava Gligorov15 · Tobias Golling8 · Sergey Gorbunov6 ·
Heather Gray1,2 · Isabelle Guyon12 · Mikhail Hushchyn14 · Vincenzo Innocente4 · Moritz Kiehn8 · Marcel Kunze7 ·
Edward Moyse9 · David Rousseau13  · Andreas Salzburger4 · Andrey Ustyuzhanin14 · Jean‑Roch Vlimant3

Received: 14 May 2021 / Accepted: 10 November 2022
© The Author(s) 2023

Abstract
This paper reports on the second “Throughput” phase of the Tracking Machine Learning (TrackML) challenge on the Codalab
platform. As in the first “Accuracy” phase, the participants had to solve a difficult experimental problem linked to tracking
accurately the trajectory of particles as e.g. created at the Large Hadron Collider (LHC): given O(105) points, the participants
had to connect them into O(104) individual groups that represent the particle trajectories which are approximated helical.
While in the first phase only the accuracy mattered, the goal of this second phase was a compromise between the accuracy and
the speed of inference. Both were measured on the Codalab platform where the participants had to upload their software. The
best three participants had solutions with good accuracy and speed an order of magnitude faster than the state of the art when
the challenge was designed. Although the core algorithms were less diverse than in the first phase, a diversity of techniques
have been used and are described in this paper. The performance of the algorithms is analysed in depth and lessons derived.

Keywords  Tracking · LHC · Data science · Optimisation ·
Competition

Introduction

The Tracking Machine Learning (TrackML) challenge took
place in two phases, an Accuracy phase [1] in 2018 on the
Kaggle platform,1 and a Throughput phase in 2018–2019 on
Codalab,2 preceded by a limited scope 2D prototype compe-
tition [2]. This paper is documenting in detail the Through-
put phase, which combined accuracy and inference speed,
while only the minimal summary of the Accuracy phase is

given (see [1] for details). The goal of these competitions
was to reach out to a wider community to stimulate various
approaches to tracking on a uniform setup, as it has been
done in the past on various HEP issues [3].

The LHC is a unique particle accelerator complex collid-
ing protons at unprecedented energies. It allowed the Higgs
boson discovery [4, 5] in 2012, as acknowledged by the 2013
Nobel prize in physics. It will collect data of increasing com-
plexity and at an increasing rate with a significant upgrade,
the so-called High Luminosity LHC (HL-LHC) [6] currently
planned for 2027. The analysis pipelines of the proton colli-
sions (or events) rely as an essential step on the reconstruc-
tion of the trajectories of the particles within the innermost
parts of the detector. The time to reconstruct the trajecto-
ries—in a constant magnetic field, these would follow a heli-
cal path—from the measurements (3D points) is expected
to increase faster than the projected computing resources.
New approaches to pattern recognition are thus necessary
to fully exploit the discovery potential of the HL-LHC. A
typical event of this challenge would have about 100.000
points to be associated into about 10.000 trajectories. State
of the art was of order 10 s per event on a single CPU core
when the challenge was designed [7, 8]. Given that 10 to
100 billion such collisions need to be processed each year,

Dmitry Emeliyanov, Sergey Gorbunov and Marcel Kunze
were participants to the challenge, others were organisers.

 *	 Andreas Salzburger
	 asalzburger@gmail.com

Extended author information available on the last page of the article

1  https://​www.​kaggle.​com.
2  https://​compe​titio​ns.​codal​ab.​org.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-023-00094-w&domain=pdf
http://orcid.org/0000-0001-7613-8063
https://www.kaggle.com
https://competitions.codalab.org

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 2 of 19

the importance of increasing the reconstruction throughput
becomes evident.

A dataset consisting of a relatively detailed simulation
[9] of an LHC-like experiment has been created, listing for
each event the measured 3D points and the list of 3D points
associated with a true track. The dataset is large enough to
allow for the training of data-intensive Machine Learning
methods; the order of magnitude estimates are: ten thousand
events, one billion measurement points, and one hundred
million trajectories (“tracks”) to be found. In practice, the
task is to build the list of 3D points belonging to each track.
As usual, the solutions proposed by the participants were
evaluated on a test set stripped of the ground truth. The final
step of track reconstruction, i.e. the inference of the particle
properties (track parameters) at the particle’s origin, was not
a goal of the challenge, given that the estimation of track
parameters by applying fitting or other inference techniques
is believed to be well understood and does not significantly
drive the computing requirements.

For the Accuracy phase, participants had to upload a solu-
tion file (in csv format) indicating how the points are clus-
tered (like for a typical competition on the Kaggle platform).
In contrast, for the Throughput phase, participants had to
upload their software to the Codalab platform, on which it
was executed in a controlled environment. In doing so, the
resource usage was measured in a standardised way, and the
Throughput score was then derived from a combination of
the accuracy and the inference speed.

This paper is organised as follows. Section 3 details the
setup of the competition, the changes to the dataset with
regards to the Accuracy phase and accuracy score evalu-
ation, the score and the details of the implementation on
the Codalab platform. Section 4 narrates the competition
as it happened. Section 5 details the performance of the
algorithms submitted. The top three algorithms are then
detailed each in Sects. 6, 7 and 8, respectively, and 9 is
the Conclusion.

Throughput Phase Setup

This section details the setup of the competition, building on
the Accuracy competition description in [1].

Dataset Update

The dataset [10] for this Throughput phase is slightly dif-
ferent from the one [11] for the Accuracy phase. It was
produced with the fast detector simulation that is part of
the ACTS project [9]. The detector setup, as pictured in
Fig. 1, was unchanged with respect to the Accuracy phase
and mimicked a typical LHC general purpose experiment.
The overall detector setup is as follows: A central silicon

pixel detector with the 50�m square pixels is enclosed by
a silicon short strip detector and an outermost long strip
detector and embedded in a solenoidal magnetic field with
a central field strength of 2 T. The response of the silicon
detectors to the passage of a charged particle is accurately
simulated: neighbouring pixels or strips that measure a
charge deposit from the charged particle above a thresh-
old are clustered together to provide a 3D position meas-
urement; there is one simplification which is that clusters
from neighbouring tracks are not merged, as it would only
affect less than 0.5% of the tracks. The layout is such that
a charged track has, on average, 10 measurement points.

Minor adaptions to the dataset have been made for the
Throughput phase, predominantly to correct issues iden-
tified with the Accuracy dataset (those issues, however,
were checked not to have any impact on the outcome of the
Accuracy phase results). These changes were:

–	 Correction of electron scattering: due to an incor-
rect unit setting in the multiple scattering module, the
strength of multiple Coulomb scattering had been over-
estimated in the Accuracy phase dataset. This affected
a maximum of 0.5 % of all particles in the first phase.

–	 Correction of the virtual thickness of the strip mod-
ules: in the cluster size calculation of strip clusters, the
wrong silicon thickness was initially used.

–	 Correction of the beam spot size: the longitudinal beam
spot size, i.e. the luminous regions where proton-proton
interactions could occur, was corrected from 5.5 mm
to 55 mm, which corresponds more accurately to the
expected parameters of HL-LHC conditions. This cor-
rection only concerned the size of the luminous region:
in particular, the particle multiplicity is unchanged with
an additional 200 soft QCD interactions overlaid to the
main event to simulate the expected pile-up conditions
at the HL-LHC

Fig. 1   Sketch of the TrackML detector as used in both the ”Accu-
racy” and ”Throughput” phase. Vertical lines indicate disks, while
horizontal lines indicate cylinders, all with the z axis as the axis of
revolution. Three different sub-detectors build the overall detector
setup: a central pixel system (blue), enclosed by first a short strip
(red) and then a long strip detector (green)

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 3 of 19  1

The format of the dataset remained unchanged: the output
was organised in a set of comma-separated text files organ-
ised per event containing both simulated data and ground
truth. The ground truth was only available to the contestants
for the training dataset.

Throughput Score

The goal of this competition was to combine high accu-
racy and high speed. Therefore a score combining both was
required. The experience of the first Accuracy competition
has shown that the accuracy score defined as the weighted
fraction of points correctly assigned (see [1] Eq. 1) was very
effective, as the best algorithms in terms of the accuracy
score were still the best in terms of the more detailed analy-
sis. A random algorithm has a score of 0, and a perfect algo-
rithm has a score of 1; the top algorithms in the Accuracy
phase reached a score just above 0.9. One slight modification
was introduced, which was to remove from the computation
of the score trajectories stemming from secondary particles,
i.e. particles that do not originate from the primary beam-
beam interaction but from either subsequent particle decay
or interaction of primary particles with the detector material.
These secondary tracks are not originating close to the origin
and are essentially less attractive from the point of view of
physics. Not considering them somewhat eases the task of
the algorithms and reduces their complexity.

The speed is defined as t the average time per event (in
seconds) measured on the test dataset, on the allocated
resources in the docker environment as detailed in Sect. 3.3.

The accuracy, S, and speed, t, were measured on a test
dataset of 50 events (instead of 100 for the Accuracy phase)
to limit the resource usage on the platform and also because,
from preliminary tests, the variance of the two quantities
appeared to be limited.

In addition, the resource usage in terms of the maximum
allowed time was set to tmax = 600 s per event. To exclude
possible extremely fast algorithms with mediocre accuracy
(which would be useless from the point of view of physics),
a minimum accuracy of Smin = 0.5 is required.

The formula gives the overall score:

The score is an unbounded dimensionless positive number;
the higher, the better. A particular score value can be reached
by different combinations of speed and accuracy; these lines
of equal score can be seen on Fig. 3. The challenge’s goal
was to encourage participants to reach the best compromise
between accuracy and time, leading toward values in the bot-
tom right corner of the chart. The formula was defined based

(1)
√

log
(
1 +

tmax

t

)
× (S − Smin)

2

on the finding of the Accuracy phase and a poll on the infer-
ence speed of their algorithms (which then was not a ranking
criterion), which ranged between 100 s per event and a full
day. The target expectation for solutions to the Throughput
challenge was to yield algorithms with a throughput execu-
tion time of 10 s per event. Nevertheless, as it will be shown,
the formula also behaved well with sub-second algorithms
submitted.

Codalab Implementation

The first Accuracy phase of the TrackML competition was
hosted by Kaggle, the well-known competition platform. For
the Throughput phase, the algorithm had to be run within a
fully controlled environment to measure the execution speed.
This requirement was not possible on the Kaggle platform
at the time. The Throughput phase was implemented on
Codalab, a platform popular for scientific competitions,
which allows for a more customised setup.

Participants had to develop their algorithms on the train-
ing dataset (including the ground truth) provided. As for
the Accuracy phase, a library [12] was available to them to
evaluate their score. Then they had to prepare and upload
the inference part of their algorithm to the platform. The
platform then runs the algorithm on the public test data-
set, statistically identical to the training dataset, but with-
out the ground truth. The execution time and accuracy
score, together with the overall score obtained with Eq. 1,
are measured and reported on the public leaderboard (see
Table 1). It should be noted that in this Throughput phase,
contrary to the Accuracy phase, the public test dataset is
undisclosed to the participants, it is “public” only because
it is used for the public leaderboard. As commonly done in
such competitions, to avoid that participants overtrain on the
public leaderboard score, the overall score was reevaluated
after the end of the competition on a private test dataset,
statistically identical to the public one.

The overarching goal of the competition was to foster
algorithms and ideas from a broader community than the
high energy physics community. In the years the competition

Table 1   TrackML Throughput competition leaderboard

Participant Score Accuracy (%) Speed (s/event)

Sgorbuno 1.17 94.4 0.56
Fastrack 1.11 94.4 1.11
Cloudkitchen 0.90 92.8 7.28
Cubus 0.77 89.5 13.5
Taka 0.59 87.5 53.4
Vicennial 0.56 81.5 25.4
Sharad 0.29 67.4 38.0

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 4 of 19

was designed then run, the workhorse for large scale pro-
cessing of LHC experimental data has been single cores
CPU with 2GB RAM. In practice, the single cores are
made available as virtual machines instantiated on a vari-
ety of physical hardware in world-wide distributed comput-
ing centres. Meanwhile, the community has been moving
towards multi-core computing, and GPUs are increasingly
used in specific contexts. As a compromise between current
and future HEP computing landscape, the resources used
to evaluate an algorithm were 2 CPU cores with 4GB of
RAM. A participant using a traditional single thread algo-
rithm would lose a factor of 2 in speed, which would be a
small handicap given the logarithmic dependency in speed in
Eq. 1. We deliberately did not choose to favour a higher level
of parallelism in order not to skew the competition towards
a parallel-computing coding competition.

Two physical machines have been dedicated to the chal-
lenge, each having two Intel Xeon Processor E5-2650 v4
@2.20 GHz with hyper-threading, each processor having
12 physical cores. This is a typical processor used on the
LHC Computing Grid; it has been benchmarked to 10.26
HS06 unit [13], a benchmark routinely used for High Energy
Physics computing.

Each participant had to implement their algorithm within
a provided skeleton. The skeleton is a small Python class
Model for which C/C++, Python and R bindings examples
were given in the starting-kit. The code is then run by the
platform within a docker [14] environment limited to 2 CPU
and 4 GB of memory. The C/C++ code could be compiled
at home and shipped with the binaries since the docker was
publicly available (which was the method used for almost
all submissions). Before being evaluated, the participant’s
Model could be initialised by compiling source code, load-
ing data, etc.

The skeleton loops over the input data one event at a time,
call the participant’s code and writes out the solution found.
The time measured is the wall clock time spent in the par-
ticipant’s code (so that all the overhead, in particular in I/O,
is not included). To avoid extremely slow submissions using
up resources, a pre-test was first done on one single event
with a time limit at 600 s. If this pre-test was successful, the
measurement was made on the 50 events public test dataset.

Thorough tests prior to the competition determined that
the time evaluation was reproducible to within 2%, which
was independent on possible other evaluations running con-
currently on the same physical machine. This small vari-
ance could have, in principle, impacted the ranking of the
participants. Hence, it was decided, and participants were
warned about it, that the final measurement of the time of a
submission would be done after the end of the competition
with a repetition of 10 runs on the final private test dataset.
When this was done, no unexpected discrepancies were seen,

even though the diversity of code tested was larger than in
the tests run prior to the competition.

A standard docker environment was provided, including
typical libraries. Participants could also install on-the-fly
libraries from internet, which access remained open to the
worker node. However, in practice, participants preferred to
directly ship additional libraries with their own software.
Execution logs were not made available to the participants,
as they could have been used to obtain insights on the undis-
closed test dataset. Otherwise, there was no thorough attempt
to eliminate all possible methods of hacking. Hacking was
obviously forbidden in the competition rules participants had
to agree to. In addition, the prizes were conditioned to a full
release of the source code which was scrutinised (for the top
participants) at the end of the competition.

The Competition as it Happened

The TrackML Throughput competition opened on 3 Septem-
ber 2018, a few weeks after the end of the Accuracy compe-
tition on Kaggle on 10 August 2018. It was initially due to
18 October 2018, but given the initial lack of competitors, it
was extended until 15 March 2019.

The leaderboard is shown in Table 1. As detailed in
Sec. 3.2, participants obtained a non zero score only if their
submission could achieve more than 50% accuracy in less
than 600 s per event. In the end, only seven contributors
achieved non zero scores; their score evolution as a function
of date of submission is summarized on Fig. 2 and on Fig. 3
as a function of the accuracy and computation speed. From
the shade of the blue curve, it can be seen that the competi-
tion winner, sgorbuno, made a late entry in the competi-
tion, with only four submissions that earned him the title.

The number of participants in the Throughput phase
has been rather low, especially considering that there were
648 teams participants in the Accuracy phase on Kaggle,
which could, in principle, have carried on to the Throughput
phase. In hindsight, this has been understood to come from
a combination of factors:

–	 the lower popularity of Codalab compared to Kaggle,
where people can earn points across competitions.

–	 the complexity of the problem.
–	 the perceived necessity to write optimised C++ code

when a typical Kaggle participant is more familiar with
python.

–	 the threshold of less than 600 s per event and more than
50% efficiency, it was already non-trivial to have a non
zero score

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 5 of 19  1

Fig. 2   TrackML Throughput
phase participants overall score
evolution as a function of the
date of submission. sgor-
buno is Sergey Gorbunov (see
Sect. 6), fastrack is Dmitry
Emeliyanov (see Sect. 7) and
cloudkitchen is Marcel
Kunze (see Sect. 8)

Fig. 3   TrackML Throughput
phase participants score evolu-
tion. The horizontal axis is the
mean accuracy over the 50 test
events, and the vertical axis is
the average computation speed
per event. The total score, a
function of both variables, is
displayed in grey contours. Each
colour/marker type corresponds
to a contributor; the lines help
to follow the score evolution.
sharad only made a single
contribution, identical to the
first point from Vicennial 

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 6 of 19

–	 despite all the efforts to document and streamline the
procedure to submit a solution, it still required a larger
commitment than for a typical Kaggle competition.

–	 the fact that we did not provide the log files made debug-
ging rather difficult to the participants.

Nevertheless, the fewer number of participants was more
than compensated by the high quality of the top three partici-
pants (see Fig. 3), who all obtained better than 90% accuracy
with an execution time up to 0.5 s, compared to an initial
goal of better than 10 s per event. After the end of the com-
petition, all participants made their documented software
available, which was scrutinised. The score was re-evaluated
on the private test dataset, which confirmed the score from
the online leaderboard. Hence the final rankings confirmed
the online one.

The original idea was that the algorithms developed in
the Accuracy phase would be optimised and adapted to
the second phase, not necessarily by the same participants.
This was not enforced in any way but it is largely what has
happened:

–	 Sergey Gorbunov (pseudonym sgorbunov) rank 1 in
the Throughput phase had obtained rank 3 in the Accu-
racy phase (with pseudonym Sergey Gorbunov)

–	 Dmitry Emeliyanov (pseudonym fastrack) rank 2 in
the Throughput phase had obtained rank 4 in the Accu-
racy phase (with pseudonym demelian)

–	 Marcel Kunze (pseudonym cloudkitchen rank 3 in
the Throughput phase) used as a starting point the algo-
rithm of TopQuark, rank 1 in the Accuracy phase, and
has largely augmented it

–	 the algorithm of outrunner, rank 2 in the Accuracy
phase, was quite innovative but very slow, a full day per
event so was not seen promising enough to be recycled
in the Throughput phase.

Algorithmic Performances

In this section, a thorough investigation of the performance
of the highest ranking algorithms is discussed, as was
done for the Accuracy phase in [1]. The box plot on Fig. 4
indicates the accuracy score on the 50 event test dataset.
Interestingly, the accuracy follows the general ranking, indi-
cating that little compromise was made in optimising the
algorithms. Only the first two candidates have very similar
accuracy and differ in regards to the speed, as could be seen
in Table 1.

Performance assessments of HEP detectors are typically
several hundred pages in length, with many histograms
assessing the performances from various angles. For prac-
ticality, algorithms evaluated in the TrackML challenge are

ranked based on a single score, concerning accuracy and
speed. In the TrackML Accuracy paper [1], it was demon-
strated that the Accuracy score was indeed selecting algo-
rithms which were indeed the best after a more thorough
analysis. This analysis is repeated here for the TrackML
Throughput competition, to ensure that the assertion still
holds despite the strong speed incentive. Instead of using the
Accuracy score, which is a hit-based efficiency (weighted
fraction of points correctly assigned), we use the particle-
based efficiency, which is the fraction of particles correctly
reconstructed; this quantity is more commonly used in par-
ticle physics. A particle is considered to be correctly recon-
structed if there is a track sharing more than 50% of the
points with the original particle, as indicated by the ground
truth. Contrary to the Accuracy score, this efficiency is not
weighted to decrease the relative weight of the lower trans-
verse momentum (larger curvature) particles. This is the
main reason why the particle efficiency is a few per cent
less than the Accuracy score. The fake rate (the fraction of
tracks that cannot be uniquely attributed to a truth particle,
another quantity commonly used in particle physics) has not
been studied in depth, because, given the requirement that
one point can only be assigned to one track, the fake rate
was found to be very much anti-correlated to the efficiency.

Figure 5 displays the efficiency for the 7 best participants
as a function of several variables relevant for physical analy-
ses (these variables are obtained from the truth particle):

–	 z0 is the z coordinate of the vertex.
–	 r0 is the transverse distance to the beam axis, z, of the

particle vertex (creation point)
–	 pT (GeV), the transverse momentum, is the projec-

tion on the plane perpendicular to the beam axis of
the momentum P, product of the particle speed by its
relativistic mass; for particles of unit charge, it is pro-

Fig. 4   Box plot of the per-event accuracy score on test events for the
top participants. The whiskers indicate the total range, the box the
quartiles of the individual distributions

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 7 of 19  1

portional to the radial component of the particle trajec-
tory.

–	 � (rad) is the azimuthal angle (around the beam axis)
–	 � , the pseudorapidity, is a dimensionless quantity describ-

ing the angle of the particle with respect to the beam axis
and varying between −4 and 4 for this detector; with � the
angle in radians, we have � ≡ ln(tan �∕2)

The efficiency curves for the seven participants are well sep-
arated. A striking feature is that fastrack’s efficiency is
consistently better than sgorbuno’s, despite the two hav-
ing very close Accuracy score. This is because fastrack’s
tracks are typically missing more points than sgorbuno’s,
thus lowering its Accuracy score, which is a point-based
efficiency.

All algorithms have similar pT dependencies with a dip at
low pT which correspond to particles with large curvature.
Reconstructing these large curvature particles might require
to enlarge the search window, at the risk of increasing the
number of combinations and decreasing speed; it is also the
case that these particles are more difficult to reconstruct

because they suffer more material interactions. The best
algorithms are able to mitigate this effect. After a plateau,
the efficiency decreases slightly for pT above 8 GeV. This
common feature has not been understood as these particles
are almost straight and in principle easy to find. Although
this concerns less than a per mil of all particles as can be
seen Fig. 5 in [1], they can be of high interest from the point
of view of physics. This feature was already seen, although
less pronounced, in the Accuracy phase (Fig. 13 in [1]). It
is most likely a side effect of the speed optimisation, which
was not noticed by the participants given the very small
weight of this region of the phase space in the calculation
of the accuracy.

Given the cylindrical symmetry of the detector (see Fig. 4
in [1]), the efficiency is expected to be flat according to � . In
general, this is observed. For fastrack and sgorbuno
the efficiency for positively charged particles shows a dip
just above � = −� , and another dip for negatively charged
particles just below � = � . Due to the approximately sole-
noidal magnetic field pointing along the z axis, positively
charged particles turn clockwise, so positive particles

Fig. 5   Efficiency as a function of six physical variables ( log10 PT , � ,
� , vertex distance r0 from beam axis in mm, zoom on the latter, and
vertex beam axis coordinate z0 , see text for details) for different par-
ticipants, each represented by a different colour. Only primary par-

ticles are included. Light-shaded curves are for positively charged
particles, dark-shaded ones for negatively charged particles. The band
shows the statistical uncertainty on the efficiency measurement

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 8 of 19

starting with � just above −� are then crossing the � = �
boundary into the region with � just below � (and the oppo-
site for negative particles). The � = � boundary does not
correspond to any concrete geometric feature of the detector
so the dips are likely due to a feature of the implementation.
The � efficiency curve for cloudkitchen shows a dip
at � = 0 , shifted between positive and negative particles,
which is most likely due to a similar feature when handling
the � = 0 boundary.

The efficiency curves as a function of � show the evolu-
tion of the efficiency as a function of the polar angle, for
track close to −z direction ( � = −4 ), perpendicular to z
( � = 0 ) and then track close to z direction ( � = 4 ). All the
curves are symmetric, as expected, and showing a more or
less deeper dip around |�| = 2 . In these regions, as can be
seen Fig. 13 in [1], tracks cross the first disks. The best
algorithms manage to handle this transition much better than
the others.

The efficiency curves as a function of r0 are as expected
highest at r0 = 0 since most particles are originating very
close to the origin because only primary particles are taken
into account in the score and in the efficiency. The efficiency
drops rapidly as r0 increases because assuming particles are
coming from the origin is a strong constraint which increases
the speed of the algorithms.

The z0 of the primary particles follow a centred Gauss-
ian distribution with a width of 55 mm (this was 5.5 mm for
the Accuracy phase). Participants have successfully acco-
modated for this, and obtained a relatively flat efficiency,
except for cubus.

To investigate deeper the quality of the algorithms,
the efficiency as a function of the angular separation
between tracks was studied. The typical separation variable

(commonly used to analyse LHC proton collisions) is defined
to be

(for small values of Δ� , ΔR is similar to the 3D angle in
radian). For each particle, the nearest neighbouring ground
truth particle as a function of ΔR is searched for. Figure 6
shows the efficiency as a function of ΔR of the nearest neigh-
bour (few particles have a neighbour distant of more than
0.025). The best three participants achieve a reconstruction
efficiency independent of the distance to the nearest neigh-
bour, while the other participant algorithms achieve a slight
drop of efficiency for low values of ΔR . Neighbours of the
same charge stay close together for a longer distance as they
move away from the origin since they are turning in the same
direction. However, there is no visible effect on efficiency
whether the nearest neighbour is of the same or of opposite
charge, which is a sign of robustness.

Winner: Mikado by Sergey Gorbunov

The Mikado approach for the TrackML challenge is a com-
binatorial algorithm. Its strategy is to reconstruct data in
small portions, trying not to damage the rest of the data each
time. The idea resembles a Mikado game, where players
need to remove carefully wooden sticks one by one from a
pile without the pile collapsing.

The algorithm performs 60 reconstruction passes with
different settings. During the first passes, it only looks for
high-momentum (hence almost straight) tracks within very
tight requirements. Found tracks are removed from the

ΔR =
√
Δ�2 + Δ�2

Fig. 6   Efficiency as a function of the distance ΔR to the nearest
neighbouring ground truth particle for different participants, each
corresponding to a different colour. Particles having the same sign as

the nearest neighbour are indicated by light-shaded, plain lines, and
of the opposite sign with dark-shaded, dotted lines

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 9 of 19  1

detector after each pass, thereby reducing combinatorics for
the subsequent passes. The cuts are loosened, and the algo-
rithm runs again. The cuts are very loose for the last passes,
allowing the algorithm to collect all the remaining tracks.

Despite the high combinatorial factor, the outcome of the
first passes is very pure. There are almost no incorrect hit-
to-track associations. During the last passes, the algorithm
accepts almost everything it finds. Therefore at the latest
stage, it collects many wrong hit combinations in addition
to the real tracks.

Performing 60 reconstruction passes within a reasonable
time is only possible when data access is fast. To do that,
the hits from every detector layer are arranged in a two-
dimensional grid. The algorithm accesses only those hits
located within a current search window and the other hits
are untouched.

The algorithm uses different fixed-size search windows
for each detector layer and reconstruction pass. Therefore,
tens of thousands of internal parameters need to be tuned.
Optimal parameters are not calculated mathematically but
are trained on the training dataset. The optimising routine
is, unfortunately, not fully autonomous and requires manual
intervention.

The Mikado tracker shows 94.4% accuracy and takes
0.56 s per event. It uses 48 MB of memory run standalone,
and the overall memory usage is 730 MB when run in the
official TrackML docker container.

The Algorithm

The algorithm uses a local track reconstruction model. Each
time it needs to estimate a particle trajectory, it creates a
local helix through three nearby hits that belong to the parti-
cle. This three-hit helix is the most flexible trajectory model,
which follows all local features of a real trajectory. Even
though the model uses only a minimal amount of measure-
ments (contrary to classical algorithms, which will build a
model from all the points already assigned to the track being
built), it appears to be accurate enough to predict the particle
position on neighbouring layers.

Detector layers consist of many detector elements and
have different orientations in space. Each detector layer is
represented as a two-dimensional surface for easy naviga-
tion to the next modules where to search for more hits. This
surface has two coordinates: a polar angle � and the second
coordinate t, which is equal to the z coordinate for cylinders
and a radial r coordinate for disks. We project all the hits
towards the origin onto their layer surfaces and use their
(�, t) projections when searching for hits.

For fast data access, a regular two-dimensional grid is
created at each layer that stores the hits in corresponding
grid cells according to their (�, t) coordinates.

The algorithm consists of three parts. The first part is
tracklet construction. It creates short tracklets on pre-
selected detector layers from the hits. The second part is
tracklet prolongation. It creates track candidates by extend-
ing the tracklets to other layers and collecting their hits there.
The third part is a final selection of good tracks among the
track candidates. To make full use of the two available
threads, the code is multithreaded; each thread processes all
combinations with one hit on the first combinatorial layer.

The algorithm flow is as follows.

1.	 Tracklet construction (see Fig. 7) It is performed on
three (optionally, two) selected layers.

(a)	 Every hit1 from the layer1 is considered. Option-
ally, the first hit can be the origin (0, 0, 0).

(b)	 A straight line which connects the origin and the
hit1 is projected to the layer2 . Within a (�, t)-search
window every hit2 is considered.

(c)	 A straight line, which connects hit1 and hit2 is pro-
jected to the next layer, layer3 . Again, within a
(�, t)-search window every hit3 is considered.

(d)	 A helix of axis collinear to the z axis is constructed
on hit1, hit2, hit3 . In the xy plane, the helix crosses
all the three hits, in Z it goes through hit2 and hit3 ,
as shown in Fig. 12. Then a distance in z of the
helix from the hit1 is examined. When it is too
large, the hit combination is rejected. Otherwise,
the set of three hits is accepted as a tracklet, and
the prolongation step starts.

2.	 Tracklet prolongation (see Fig. 8) The tracklet is pro-
longed to the next detector layer along its trajectory and
the closest hit on that layer is identified.

Fig. 7   Combinatorial Layers

Fig. 8   Tracklet prolongation

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 10 of 19

(a)	 If the hit is close enough, it is added to the track-
let and the trajectory is recreated using the new
hit and two hits from the previous layers. Given
that modules can overlap in the same layer, we
perform a search for additional hits on the layer
within a tiny window around the recreated trajec-
tory.

(b)	 When there is no good hit found on the layer,
when the prolonged trajectory crosses the layer’s
inner part far from edges, a hit on the layer is con-
sidered to be missing. When hits are missing on
more than one layer, the prolongation stops.

(c)	 In certain cases a good closest hit is found, all
the additional hits on the recreated trajectory are
picked up, but some hits remain in the search
area. In this case, the algorithm creates another
search branch with a different hit on this layer.
The branching is realised in an efficient way with
almost no computational overhead.

	  Once the layer have been processed, the tracklet is
extended further until hits on all the layers are collected.
Then the tracklet is stored in a list of track candidates
and the next tracklet is processed.

3.	 Selection of good tracks The selection of good tracks is
performed by identifying the best one in the list of track
candidates. The track should have more hits than the
others or at least the same number of hits, but a smaller
average deviation of its hits from its trajectory. The best
candidate is stored as a “track”; its hits are removed from
the detector. Then the search for the next best candidate
is performed, and so on. The selection stops when the
best candidate no longer have enough hits.

Once all tracks of the current pass have been found, the algo-
rithm repeats from step 1, performing the next pass of the
reconstruction with a new set of base layers and new search
parameters.

Fast Data Access: Regular 2D‑grid on Detector
Layers

For a combinatorial algorithm, it is crucial to have fast
access to data. For this purpose, hits on every detector layer
are stored in cells of a regular two-dimensional grid.

The size of the grid cells is equal to the size of a prede-
fined search window, which is specific for each detector
layer in each reconstruction pass. Search for hits inside
the search window is simple. First, one calculates the cell
index of the centre of the search area by doing a couple of
modulo operations. Then one looks over the hits in four
neighbouring cells overlapping with the search window,
as it is illustrated in Fig. 9.

To avoid any special treatment of border regions, the
grid is surrounded by layers of empty cells. Unfortunately,
this technique does not work with the � border at ±� , as
this border of the detector surface is purely virtual. To
handle the ±� border, we let the grid overlap in � . For that
purpose, the surrounding empty cells at ±� are filled with
hits from the opposite � edge, as it is shown in Fig. 10.
The overlap solves the border problem for � and covers
the ±� region without introducing unnecessary conditional
branches in the code. However a small inefficiency is left
as reported in Sect. 5.

The implementation of the grid is presented in Fig. 11.
The grid consists of two arrays: the array of hits A1 and the
array of grid cells A2 . Each cell contains only two values:
index of its first hit in the array A1 and the number of hits in
the cell. The creation of the grid is extremely fast, created

Tmin

Tmax

- +

X

X

Fig. 9   Grid structure for storing hits on a detector layer. To find hits
in a blue area, one needs to examine four yellow cells around it

Tmin

Tmax

- +

X X
X

Fig. 10   The grid overlap in �

Fig. 11   Implementation of the grid

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 11 of 19  1

by looping twice over the input hits and twice over the grid
cells and performed as follows:

–	 initialize the number of cell hits in the A2 array to 0
–	 loop over the input hits and count number of hits in all

the cells in A2

–	 loop over the cells in A2 and calculate their pointers to
A1 according to the number of hits in cells

–	 loop again over the input hits and copy them to their
places in the A1 array according to their cell number.
This is done with a deep copy to avoid multiple reference
look-up during the combinatorial search.

The efficient access to the data makes the algorithm fast and
allows many reconstruction passes to be performed within a
reasonable computing time.

Physical Trajectory Model and the Magnetic Field

The magnetic field changes significantly from layer to layer,
which means that trajectories deviate from a mathematical
helix. To account for this feature, the physical trajectory
model (x, y, z, px, py, pz, q) is used. It is presented in Fig. 12.
Here (x, y, z) is the spatial position of a trajectory point,
(px, py, pz) are the three components of the particle momen-
tum, q = ±1 is the charge.

Even though a description of the magnetic field was not
provided in the competition, an average field on each layer
can be constructed using the “truth” data and approximating
this field with a simple polynomial model. The polynomial
field is calculated at initialization time for each detector layer
and stored in a geometry file. At the beginning of the event
reconstruction, the approximate field value is calculated for
every hit using the above polynomials and stored directly
in the hit data structure. Three different approximate field
values are actually used: one for the construction of the local
helix, one for the inward prolongation of the helix and one
for the outward.

Parameter Tuning

To achieve the best result, one has to tune all thousands of
algorithm parameters simultaneously, maximizing the over-
all score Eq. 1. But due to a lack of computing resources, a
step-by-step optimization is performed instead. Each recon-
struction pass is adjusted individually, optimizing the result
of the partial reconstruction after that pass.

The overall score Eq. 1 is inapplicable in this scheme.
Therefore each pass uses its own optimization criterion,
which is a compromise between the number of tracks
found at that pass and the purity of these tracks. The pass
optimization is performed several times with manually
adjusted criteria, set depending on the results.

Within a reconstruction pass and the chosen optimiza-
tion criterion, the parameters are adjusted automatically
using a primitive gradient following method. The recon-
struction time is monitored manually and not explicitly
included in the optimization.

Outlook

As the Mikado tracker performs fast hit search within
predefined search windows, it has tens of thousands
of internal parameters to tune (e.g. size of the search
windows). This situation is not typical for traditional
track finders, where the search windows are estimated
individually for each track using relatively involved tra-
jectory extrapolation with uncertainties. These internal
parameters have been tuned semi-automatically on the
training dataset.

Runner Up: FASTrack by Dmitry Emeliyanov

The FASTrack (Filter and Automaton for Silicon Track-
ing) algorithm won second place in the throughput phase
of the TrackML competition with an accuracy of 0.944,
a processing time per event of 1.11 s and an overall score
of 1.1145. After several post-competition improvements,
the final accuracy of the algorithm was 0.948, and the
projected time per event was about 0.8 s. The memory
consumption of the algorithm itself was approximately
0.6 GB, and when the algorithm was run in the TrackML
docker environment, the overall memory consumption was
1.4 GB.

Algorithm Summary

The FASTrack algorithm is based on the following key ideas
and techniques:

Y

S

(X,Y,Z)

(Px,Py,Pz) (P
x,

Py
,P

z)

(X,Y,Z)

X
S

Z

Fig. 12   Physical track model

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 12 of 19

–	 hit clusters shape (numbers of cells in u- and v-directions
on the module plane) are used to predict the intervals of
track inclination angles and save CPU time by avoiding
hit combinations with parameters incompatible with the
prediction;

–	 the track segment-based track following network is used
with an embedded Kalman filter for fast discovery of
track candidates;

–	 limited usage of the Kalman filter-based combinatorial
track following for missing hits search and track exten-
sion to areas not covered by the track following network,
such as long strip in the outer volumes

The track finding is organised as a multi-stage process.
There are three stages: the first finds higher momentum cen-
tral tracks (coming from the interaction region along z-axis),
the second finds lower momentum central tracks, and the
third stage targets the remaining tracks. Once all stages are
completed, the output track collections are concatenated, and
hit labels are generated. To create a unique ”hit-to-track”
assignment, all reconstructed tracks are sorted following
their quality and assigned increasing integer track indices
(track Ids) so that the best track has the smallest track Id.
Then a hit is assigned a track Id only if the hit is not already
assigned to another track with a smaller track Id.

The Algorithm Description

The algorithm starts by arranging input hits into circular
”bins” in all the detector layers. The bin widths are calcu-
lated following a uniform � binning to guarantee approxi-
mately the same number of hits per bin. The width of each
�-bin is 0.2. All hits in the bins are sorted along increasing
value of � (azimuthal angle). Next, the hits in each layer are
clustered into nodes to group the hits that likely belong to
the same track but are located in different modules on the
same layer. The nodes are used for the actual track find-
ing, while hits are subsequently used for more precise track
fitting. After the clustering, the nodes are pre-selected for
subsequent track segment creation based on their cell param-
eters (number of cells along u- and v-directions). For each
selected node an interval on � = cot � (where � is the track
inclination angle w.r.t. z-axis) is obtained using a lookup
table which relates the min/max values of � to the number
of cells in v-direction. The nodes are connected, and track
segments are formed following the layer linking scheme
trained on data. For example, the following scheme record
for a pair of layers:

8004, 8002, 0.876002
means that layer 2 of volume 8 is connected to layer 4 of

volume 8 and the average amount (called ”flow”) of track
score carried through this connection is 0.876002. By defini-
tion, the initial ”flow” emanating from the interaction region

is 1.0. The ”flow” parameter characterises the importance of
layer connections.

To facilitate parallel processing by OpenMP (needed to
make full use of the two available cores), the track segments
are created and stored in three separate arrays (Segment
Banks). The segment-building algorithm operates on node
collections from possible pairs of �-bins (rings in � ). The
bin pairing was trained on data to achieve 0.99 efficiency of
track segment finding. The output of the training procedure
is a set of paired bins indices stored in a look-up table.

The next step of track finding connects track segments,
which share the same nodes and creates the track following
network. The network is a directed graph in which the verti-
ces are the nodes containing hits, and the edges are connec-
tions between the nodes, i.e. track segment. Each vertex has
two collections of edges: incoming and outgoing. The sense
of direction is determined towards the z-axis of the detector.
The algorithm selects all the vertices with non-empty ”In”
and ”Out” collections, and for each ”In” edge finds possibly
connected ”Out” edges satisfying cuts on differences in azi-
muthal angle, pseudorapidity, and the track curvature. The
maximum allowed number of connections is set to 6.

Once the network has been built, the segments interact
with their neighbours in the ”Out” direction. The aim is to
calculate the maximum number (called level) of connec-
tions which can be traced from the segment and identify
the segments which are likely to be the starting points of
long tracks. The implementation of this algorithm employs
a cellular automaton (CA) [15]. The CA is parallelised using
OpenMP and operates in synchronous mode. First, the pro-
posal for the new level is calculated for all segments (e.g.
if a segment with level = 1 has a neighbour with the same
level, then the proposal for the next CA iteration is 1+1 =
2). Finally, all segments with proposals which differ from
their current states are updated.

The network evolution stops once no more segment-level
updates can be made throughout the whole network. The
algorithm then proceeds with the extraction of track can-
didates from the track following network. The track extrac-
tion starts with the segments with level values equal to the
maximum level observed during the CA iterations. The algo-
rithm continues track extraction until the maximum level
of remaining segments drops below the stage-dependent
threshold (4 for the first stage, 3 and 2 for the second and
third, respectively).

The track extraction is basically a segment-by-segment
track following process, which is implemented as a recursive
”depth-first” graph traversal. A simplified Kalman track fit is
embedded in the recursion to reduce the number of traversed
combinations quickly. The track fit estimates the track cot �
in the rz-projection and track � and d�∕dr or d�∕dz in the
rΦ-projection. The track fit does not use any magnetic field
description to speed up the calculations. Instead, it models

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 13 of 19  1

the track evolution in r − z as a random walk (caused by
the detector material effects) and as the Ornstein-Uhlenbeck
(AR(1)) process [16] in the rΦ projection, which emulates
gradual, trend-like, change in the track azimuthal direction
under the influence of the magnetic field.

The more precise track fit of the extracted track candi-
dates is performed using the Kalman filter algorithm, which
employs the 3rd order Runge–Kutta track parameter, a Jaco-
bian extrapolator and a fast approximation for the non-ideal
solenoidal magnetic field [17]. The parameters of the sole-
noid (field in the centre, half-length, and the aspect ratio =
radius/half-length) were learned from the data by the track-
ing efficiency maximisation during a hyper-parameter scan.

As many track candidates share the same hits, some
tracks are merged and removed in a clone removal pro-
cedure. All tracks are sorted according to their fit likeli-
hood (the weighed number of layers with associated hits
minus penalty on the �2 contributions of hits). Then hits are
labelled by the track index starting from the best track. In
this way, the shared hits are identified and depending on the
fraction of shared hits and the number of competing tracks,
and a decision is made whether to merge a track with a better
one or to delete it.

The merged tracks are refitted and extended towards the
interaction region and towards the outer long-strip volumes,
as they were not used in the segment creation and network-
building process. The track extension procedure consists of
predicting the track trajectory by extrapolation from the first
(last) hit on the track and collecting the hits around the tra-
jectory crossing points on detector layers and track update.
Any ambiguity in the ”hit-to-track” assignment is resolved
via the branching track propagation, which also employs the
Kalman track fit. The number of simultaneously propagated
”best” branches is one for the ”inside” track extension and
three for the ”outside” propagation. The track extension pro-
cedure can add up to three new hits per layer to account for
situations when more than one hit per layer is produced in
the overlapping detector modules.

Since the track extension can cause additional hit shar-
ing, the clone removal procedure is called again. Next, the
extended and possibly merged tracks are refitted, and the
”hit-to-track” assignments are reviewed. Any missing hits
found in the vicinity of estimated track positions on the
detector layers are added to a track. The hit addition algo-
rithm applies the constraint that a track can have at most one
hit per module.

Finally, all reconstructed tracks are checked for the
number of shared hits. If this number exceeds the stage-
dependent threshold (e.g. seven for the first stage), the track
is discarded. Otherwise, the track is accepted, and all the hits
on it are marked as assigned so that they cannot be used in
subsequent stages of the track finding.

Outlook

The execution time of the algorithm can be improved by
massive parallelisation on General Purpose Graphics Pro-
cessing Units (GPGPUs). Several parts of the algorithm are
already implemented in a thread-safe manner and acceler-
ated using OpenMP directives. By exploiting the track-level
parallelism, the track fitting parts of the algorithm can be
efficiently executed on a GPU since the fast and compact
magnetic field model can be implemented as a GPGPU
device code. Currently, the ”In ”and ”Out ”collections of
track segments are created independently. It might make
sense to group detector layer pairs in such a way that, firstly,
all ”In ”collections are formed for a particular layer. Then
these collections can be analysed to make predictions for the
”Out ”track segments. For example, these predictions can be
expressed as an interval of track inclination angle in rz-plane
compatible with the track segments in the ”In ”collection.
Using this approach, one can avoid creating segments that
cannot be connected at their common nodes.

Runner Up: Marcel Kunze

The algorithm uses artificial neural networks for pattern
recognition based on spatial coordinates together with sim-
ple geometrical information such as directional cosines or a
helix score calculation. Typical patterns to be investigated
are hit pairs and triplets that could seed candidate tracks. The
training of the networks was accomplished by presentation
of typically 5 million ground truth patterns over 500 epochs.
The hit data are sorted into voxels organized in directed acy-
clic graphs (DAG) to enable fast track propagation. In addi-
tion to the spatial hit data, the DAGs hold information about
the network model to apply, and a z vertex estimate derived
from the ground truth. As they combine the data with the
corresponding methods the DAGs form a nice foundation
to define tasks that can be run in parallel very efficiently in
a multi threaded environment. There are two sets of graphs:
one set covers detector slices along the z-axis, the other cov-
ers a grid transverse to the z-axis. Each set could be used
independently, but a clever combination of the two yields
the best overall score: The first set is used to seed the pair
finder while the second drives the triplet finder. Prior to the
execution of the model the DAGs were trained with track-
ing ground truth of typically 15-25 sample events, yielding
a good balance between graph traversal time and accuracy.
The path and track finding is based on inward and outward
triplet prolongation in combination with outlier density esti-
mation, as proposed by J.S. Wind (a.k.a TopQuark) in the
Accuracy phase [1]. With two threads the execution time
is on average about 7 s per event at 93% accuracy in the
Codalab docker environment.

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 14 of 19

High‑Level Description

The tracking model has been designed and implemented as a
standard C++11 shared library. It may be run using the main
C++ driver program, or it may be loaded into the python
runtime environment using ctypes. The architecture com-
prises a Tracker class for data housekeeping and steering, as
well as a Reconstruction class to implement the algorithms.
The data are organized in the Graph class that has been
designed as a STL-like header file. The neural networks are
handled by the XMLP class. The Trainer class inherits from
Tracker: it takes care of neural network training. While the
training is based on the Neural Network Objects [18] and
the ROOT toolkit [19] there is no dependency of the tracking
shared library to external packages. Persistence of graphs
and neural networks has been achieved by streaming of the
objects to corresponding text files. The program consists of
five parts: setup, pair finder, triplet finder, path finder, and
track assignment. The setup stage reads all configuration
data and initializes the neural networks and graphs prior
to processing the first event. The subsequent parts run as
threads in parallel for each event, followed by a final serial
track assignment to join the partial results into a common
solution. The program implements multi-threading by
instantiating corresponding reconstruction objects and man-
aging a set of tasks using a thread-safe stack. The tasks cor-
respond to graphs that hold the corresponding hit data and
a set of neural networks to classify the data. While an event
is being processed, each thread pops a task from the stack
and executes it. Once the stack is empty and all tasks are
finished, the first thread continues and combines the partial
results into the final assignment of hits to tracks. The track
assignment is written to a result file and handed over to the
Python frame that delivers it to the CodaLab platform.

Scientific Details

The model is based on a cylindrical coordinate system
( rt,�, z ) to describe the hit data. A library of track patterns
has been organized utilizing direct acyclic graphs of space
elements such that any element has following elements. In
principle, the resolution could be chosen on a very fine-
granular detector cell level. Although this would yield very
accurate results, the resulting graphs tend to grow very large
and graph traversal becomes slow. For this reason, a two-
dimensional graphHash function has been defined to iden-
tify a �/� segment for any hit:

i1 = (int)(�1 ∗ 0.15 ∗ (� + �));

i2 = (int)(�1 ∗ 0.1 ∗ (5 − �));

where � corresponds to asinh(z∕rt) to flatten the distribu-
tion. The constants �1 and �1 define the granularity of the

spatial tessellation. It turned out by tuning that a setting
of 12 tiles in � and 14 tiles in � yielded the best com-
promise of accuracy vs. speed (i.e. highest overall score).
To improve execution speed, each tile is bound to a dedi-
cated graph (168 in total). The graphs have been trained by
presenting ground truth tracks of typically 15-25 events,
which takes about a minute in total for all graphs. In addi-
tion, a voxel hash function has been defined to identify a
hit and its correspondence to a spatial segment:

index = i1 << 32 | i2 << 24 | l << 16 | m;

where i1 and i2 are the corresponding graphHash values
and l and m are the layer and module numbers of the hit,
respectively. The use of the shift operator << in combina-
tion with the or | operator allows for very fast construc-
tion of the index bit pattern. There are two sets of graphs:
One set covers the two detector slices along the z-axis,
the other covers the angular grid (tiles). The first set is
used to seed the pair finder, the other is used to drive the
triplet finder. Each set would work perfectly well by itself,
but a clever combination of the two yields the best over-
all score. The pair finder utilizes two neural networks,
XMLP1 and XMLP2 to classify pair candidates. XMLP1
is an 8-15-5-1 multi-layer perceptron that has been trained
with the ground truth cylindrical coordinates of the two
hits in addition with the two directional cosines of the
hits along the trajectory. XMLP2 is a 9-15-5-1 multi-layer
perceptron that, in addition, takes the helix score as an
input as calculated in [1], assuming the origin in addition
to the pair. Both networks perform very well in any direc-
tion. As it consists of fewer nodes and does not require a
vertex calculation, XMLP1 executes a slightly faster than
XMLP2 at the expense of a few per cent lower accuracy in
the central region of the detector system. The final setup
therefore combines XMLP1 for the forward/backward sec-
tion (“disks”) with XMLP2 for the central section (“cylin-
ders”). In average there are about 500,000 pair combina-
tions accepted with a cut of 0.15 on the output of (XMLP1)
and a cut of 0.55 on the output of (XMLP2) yielding an
overall tracking score of 99.4%. The list of pairs is then
submitted to the triplet finder. The triplet finder uses a
10-15-5-1 multi-layer perceptron that has been trained
with the coordinates of 3 hits plus an additional helix score
(XMLP3). On average it accepts approximately 320,000
combinations per event with a tracking score around 97%.
The error rate presenting 100,000 validation patterns
reaches about 6–8% for XMLP1/XMLP2 and around 2%
for XMLP3, respectively. Figure 13 shows the signal effi-
ciency vs. background rejection of XMLP3 after training
350 epochs of 3.5 million patterns each.

The track finding and assignment is based on inward/out-
ward triplet prolongation in combination with outlier density
estimation from [1]. It takes care of joining the graph results

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 15 of 19  1

and yields an accuracy of about 93%. The track assignment
is necessarily executed as a serial task.

Interesting Findings

The following interesting findings have emerged during the
work for the contest:

–	 The training of the neural networks was initially based
on pure cylindrical coordinates. It was observed that the
input features could be folded in each coordinate due
to the detector and event symmetry, thus considerably
speeding up the training and reducing the number of pat-
terns. Technically, this octagonal folding is most simply
realized by use of the abs-function in combination with
a �∕2 shift, e.g. � is replaced by abs(abs(�)-�∕2).

–	 Conventional cuts on the vertex constraint considerably
reduce the number of patterns to be processed. Through
a simple geometrical estimate of the xy and the z verti-
ces by straight line propagation in the inner layers, the
number of patterns to be classified by the neural networks
decreases from more than 2,000,000 to about 1,200,000
combinations per event. In principle, the vertex determi-
nation could be made using a neural network: a prelimi-
nary version of the solution integrated a neural network
vertex estimate. However, despite achieving a better
accuracy, the relatively long inference time yielded a
reduced overall score.

–	 The training of the graphs happens once prior to the
model evaluation and needs only O(15-25) events to
yield optimum results. The graphs are persisted as part
of the model. If more events are used during training,
more accurate results may be achieved as the track library

contains more voxels, however at cost of a longer execu-
tion time (and hence a lower overall score).

–	 The accuracy improves by 0.2% if the graph tasks are
organized such that subsequent threads work on neigh-
bouring graphs. This is due to the fact that a track pre-
assembly already happens on the thread level prior to
the merging of the partial results at the end. In that way,
overlapping paths are already being merged on the paral-
lel thread level thus relieving the serial task.

Outlook

Great care has been taken to avoid using any low-level detec-
tor specific information in the core tracking algorithms to
keep the algorithm as generic as possible. The neural net-
works are mainly trained with spatial information. As such
the algorithms could be easily transferred to other environ-
ments or detectors.

The graph implementation furthermore offers a serial-
ization function that allows a list of tracks to be quickly
obtained from the triplets stored in a DAG by recursive
graph traversal. This already works surprisingly well in an
environment with a lower track density (up to a few hundred
tracks).

Conclusion

The TrackML challenge has been a long-running competi-
tion series to gather new algorithmic ideas to speed up track-
ing in the LHC experiments. After the first round of initial
discussions, a prototype challenge [2] was organised during
the Connecting The Dots workshop3 (an annual workshop
for experts in pattern recognition) held at IJCLab in Orsay
in March 2017. The problem was essentially the same as
the one exposed here but significantly simplified to be a 2D
problem with just 20 tracks per event (instead of 10.000
in 3D). There was no speed constraint. The same accuracy
score formula was used for the first time. This 2D challenge
has already yielded a variety of algorithms (not applicable
in 3D, though) and demonstrated that the accuracy score was
indeed selecting the best algorithms.

The first Accuracy phase of the TrackML challenge
proper was run on Kaggle [1]. It identified a variety of 3D
algorithms, and a thorough investigation has shown that the
Accuracy score was indeed selecting the best algorithms
when their performance was evaluated using standard
metrics.

The second, Throughput, phase had significantly lower par-
ticipation, but it yielded a few very high-quality and very fast

Fig. 13   Receiver operation characteristics of triplet finder perceptron
XMLP3 

3  https://​ctdwi​t2017.​lal.​in2p3.​fr.

https://ctdwit2017.lal.in2p3.fr

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 16 of 19

algorithms. It is not currently possible to compare directly to
in-house algorithms, which would need to be adapted to this
specific dataset. Also, in-house algorithms in common use usu-
ally ignore the numerous tracks with pT less than 400 MeV
(the tracks with the highest curvature). In contrast, the algo-
rithms presented here can reconstruct tracks down to 150 MeV.
So it can be estimated that in-house algorithms are at most of
order 10 s per event on one CPU core, so one order of magni-
tude slower than Mikado from Sergey Gorbunov (a.k.a sgor-
buno), 0.5 s on two CPU cores. On the other hand, the dataset
was significantly simplified (in particular neglecting sharing
of points between tracks), so it remains to be seen whether the
new algorithms can live up to expectations when used in the
full ATLAS and CMS experiment context. The community is
now in the process of doing this exercise.

In the end, what role can be expected for Machine Learning
in tracking in light of the TrackML challenges? It does not
appear that a clustering algorithm can find the track directly
(as was done with DBScan-based algorithms in the Accu-
racy phase, which are much too slow). Of course, the field of
machine learning is growing so rapidly that new algorithms
might appear, which would change this statement.

Nevertheless, after extended discussions between the
three winners and experts in the field, a consensus appears
that there are two likely avenues for the use of Machine
Learning in such problems (i) combine ML with discrete
optimisation, for example, using a classifier to select early
and quickly the best seed candidates as done by Marcel
Kunze a.k.a cloudkitchen (with a simple dense NN, but
Graph NN seem promising) (ii) use ML to automatise the
lengthy tuning of the internal parameters of the algorithms
on the training dataset (circa 10.000 in the case of Mikado
by Sergey Gorbunov a.k.a sgorbuno).

Separately, the availability of the TrackML datasets ([11]
for the Accuracy phase and [10] for this Throughput phase)
has been extremely useful in facilitating the collaboration of
experts which are usually working within their own experi-
mental team. It is being used for further studies like track
seeds finding with similarity hashing [20] or classification
with deep learning [21], investigating the use of cluster
shape to help seeding [22], investigating tracking with graph
networks [23–28] (including with GPU [29] and FPGA [30,
31]), investigating surface prediction [32] and automatic
optimisation of tracking algorithm parameters [33], investi-
gating tracking with simulated annealing on a D-Wave quan-
tum computer [34, 35] or Quantum Edge Network [36–39],
building a complete generic tracking pipeline [40] or for
data flow optimisation studies [41]. Finally, it is also used to
develop complex data visualisation tools [42, 43].

Acknowledgements  The team would like to thank CERN for allowing
the use of the dataset, and Codalab for hosting the competition. We are
very grateful to our generous sponsors without which the challenges
would not have been possible. Platinum sponsors: Kaggle, Nvidia and

Université de Genève. Gold sponsors: Chalearn and DataIA. Silver
sponsors: CERN Openlab, Paris-Saclay CDS, INRIA, ERC mPP,
ERC RECEPT, Common Ground, Université Paris Sud/Paris Saclay,
INQNET, Fermilab and pyTorch. TG acknowledges the support of the
Swiss National Science Foundation under the Grant 200020_181984.
SG acknowledges the support of the German BMBF ministry. This
project has received funding from the European Union Horizon 2020
research and innovation programme under Grant agreement No 724777
“RECEPT”, No 772369 “mPP” and No 654168 “AIDA-2020”. This
work was made possible by Institut Pascal at Université Paris-Saclay
with the support of the program “Investissements d’avenir” ANR-11-
IDEX-0003-01. In addition, the organisers would like to thank the
members of the International Advisory Committee: Markus Elsing
(CERN), Frank Gaede (DESY), Alison Lowndes (Nvidia), Maurizio
Pierini (CERN), Danilo Rezende (Google DeepMind), Marc Schoe-
nauer (INRIA-Saclay) and Svyatoslav Voloshynovskyy (U Genève).

Funding  Open access funding provided by CERN (European Organiza-
tion for Nuclear Research)

Declarations 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Amrouche S, Basara L, Calafiura P, Estrade V, Farrell S, Ferreira
D. R. , Finnie L, Finnie N, Germain C, Gligorov V. V, Golling T,
Gorbunov S, Gray H, Guyon I, Hushchyn M, Innocente V, Kiehn
M, Moyse E, Puget J-F, Reina Y, Rousseau D, Salzburger A,
Ustyuzhanin A, VlimantJ.-R. , Wind J. S. , Xylouris T, Yilmaz Y,
(2019) The tracking machine learning challenge: Accuracy phase.
In: The NeurIPS 2018 Competition, pp. 231–264. Springer Inter-
national Publishing. https://​doi.​org/​10.​1007/​978-3-​030-​29135-
8_9arXiv:1904.06778 [hep-ex]

	 2.	 Amrouche S et al (2017) Track reconstruction at LHC as a col-
laborative data challenge use case with RAMP. EPJ Web Conf
150:00015. https://​doi.​org/​10.​1051/​epjco​nf/​20171​50000​15

	 3.	 Rousseau D, Ustyuzhanin A (2022) Machine Learning scientific
competitions and datasets. In: Artificial Intelligence for High
Energy Physics, World Scientific, pp. 765–809. World Scientific.
https://​doi.​org/​10.​1142/​97898​11234​033_​0020. arXiv:​2012.​08520

	 4.	 ATLAS, Aad G, et al. (2012) Observation of a new particle in
the search for the Standard Model Higgs boson with the ATLAS
detector at the LHC. Phys Lett B f716:1. https://​doi.​org/​10.​1016/j.​
physl​etb.​2012.​08.​020. arXiv:​1207.​7214 [hep-ex]

	 5.	 CMS, Chatrchyan S, et al (2012) Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC. Phys Lett

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.1051/epjconf/201715000015
https://doi.org/10.1142/9789811234033_0020
http://arxiv.org/abs/2012.08520
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 17 of 19  1

B 716:30. https://​doi.​org/​10.​1016/j.​physl​etb.​2012.​08.​021. arXiv:​
1207.​7235 [hep-ex]

	 6.	 Apollinari G, Béjar Alonso I, Brüning O, Fessia P, Lamont M,
Rossi L, Tavian L (eds) (2017) High-luminosity large hadron
collider (HL-LHC): technical design report V. 0.1, vol. 4/2017.
https://​doi.​org/​10.​23731/​CYRM-​2017-​004

	 7.	 ATLAS Collaboration (2019) Fast track reconstruction for hl-lhc.
Tech. Rep. ATL-PHYS-PUB-2019-041, CERN. https://​cds.​cern.​
ch/​record/​26936​70

	 8.	 CMS Collaboration (2021) Evolution of the CMS computing
model towards phase-2. Tech Rep CMS-NOTE-2021-001,
CERN. https://​cds.​cern.​ch/​record/​27515​65

	 9.	 Gessinger P, Grasland H, Gray H, Kiehn M, Klimpel F, Lan-
genberg R, Salzburger A, Schlag B, Zhang J, Ai X (2020) The
Acts project: track reconstruction software for HL-LHC and
beyond. EPJ Web Conf 245:10003. https://​doi.​org/​10.​1051/​
epjco​nf/​20202​45100​03

	10.	 Salzburger A, Innocente V, Vlimant J-R, Rousseau D, Gligorov
V, Basara L, Estrade V, Calafiura P, Farell S, Gray H, Golling T,
Kiehn M, Amrouche S, Hushchyn M, Ustyuzhanin A, Moyse E,
Germain C, Guyon I (2018) Trackml throughput phase. https://​
doi.​org/​10.​5281/​zenodo.​47301​57

	11.	 Salzburger A, Innocente V, Vlimant J-R, Rousseau D, Gligorov
V, Estrade V, Basara L, Calafiura P, Farell S, Gray H, Golling T,
Kiehn M, Amrouche S, Ustyuzhanin A, Hushchyn M, Moyse E,
Germain C, Guyon I (2018) Trackml particle tracking challenge.
https://​doi.​org/​10.​5281/​zenodo.​47301​67

	12.	 TrackML team, “TrackML helper library .” https://​github.​com/​
LAL/​track​ml-​libra​ry

	13.	 “HEPSPEC06 benchmark results.” https://​www.​gridpp.​ac.​uk/​
wiki/​HEPSP​EC06

	14.	 Merkel D (2014) Docker: lightweight linux containers for con-
sistent development and deployment. Linux J 2014:2

	15.	 Abt I, Emeliyanov D, Kisel I, Masciocch S (2022) CATS: a cel-
lular automaton for tracking in silicon for the HERA-B vertex
detector. Nucl Instrum Meth A 489:389. https://​doi.​org/​10.​1016/​
S0168-​9002(02)​00790-8

	16.	 Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brown-
ian motion. Phys Rev 36:823. https://​doi.​org/​10.​1103/​PhysR​ev.​
36.​823

	17.	 Muniz SR, Bagnato VS (2015) Analysis of off-axis solenoid fields
using the magnetic scalar potential: An application to a Zeeman-
slower for cold atoms. Am J Phys. https://​doi.​org/​10.​1119/1.​49065​
16. arXiv:​1003.​3720 [physics.atom-ph]

	18.	 Kunze M, Steffens J (1996) The neural network objects. In: Pro-
ceedings AIHENP’96 Workshop. Inst. & Meth, Lausanne, Nucl

	19.	 Brun R, Rademakers F (1996) ROOT—an object oriented data
analysis framework. In: Proceedings AIHENP’96 Workshop. Inst.
& Meth, Lausanne, Nucl

	20.	 Amrouche S, Golling T, Kiehn M, Plant C, Salzburger A (2019)
Similarity hashing for charged particle tracking. In: IEEE Inter-
national Conference on Big Data 2019. https://​doi.​org/​10.​1109/​
BigDa​ta470​90.​2019.​90063​16

	21.	 Dietrich F (2019) Track Seed Classification with Deep Neural
Networks. In: Connecting the Dots and Workshop on Intelligent
Trackers. arXiv:​1910.​06779 [physics.ins-det]

	22.	 Fox P, Huang S, Isaacson J, Ju X, Nachman B (2021) Beyond
4D tracking: using cluster shapes for track seeding. J Instrument
16:P05001. https://​doi.​org/​10.​1088/​1748-​0221/​16/​05/​p05001

	23.	 Ju X, Farrell S, Calafiura P, Murnane D, Prabhat, Gray L, Kli-
jnsma T, Pedro K, Cerati G, Kowalkowski J, Perdue G, Spentzouris
P, Tran N, Vlimant J-R, Zlokapa A, Pata J, Spiropulu M, An S,
Aurisano A, Hewes J, Tsaris A, Terao K, Usher T (2020) Graph
Neural Networks for Particle Reconstruction in High Energy Phys-
ics detectors. In: 33rd Annual Conference on Neural Information
Processing Systems. arXiv:​2003.​11603 [physics.ins-det]

	24.	 Choma N, Murnane D, Ju X, Calafiura P, Conlon S, Farrell S,
Prabhat, Cerati G, Gray L, Klijnsma T, Kowalkowski J, Spent-
zouris P, Vlimant J-R, Spiropulu M, Aurisano A, Hewes J, Tsaris
A, Terao K, Usher T (2020) Track seeding and labelling with
embedded-space graph neural networks. arXiv:​2007.​00149 [phys-
ics.ins-det]

	25.	 Duarte J, Vlimant J-R (2022) Graph neural networks for particle
tracking and reconstruction. In: Artificial Intelligence for High
Energy Physics, pp. 387–436. World Scientific . https://​doi.​org/​
10.​1142/​97898​11234​033_​0012. arXiv:​2012.​01249

	26.	 Pata J, Duarte J, Vlimant J-R, Pierini M, Spiropulu M (2021)
MLPF: efficient machine-learned particle-flow reconstruction
using graph neural networks. Eur Phys J C 81:381. https://​doi.​
org/​10.​1140/​epjc/​s10052-​021-​09158-w. arXiv:​2101.​08578 [phys-
ics.data-an]

	27.	 DeZoort G, Thais S, Duarte J, Razavimaleki V, Atkinson M,
Ojalvo I, Neubauer M, Elmer P (2021) Charged particle tracking
via edge-classifying interaction networks. Comput Softw Big Sci
5:26. https://​doi.​org/​10.​1007/​s41781-​021-​00073-z. arXiv:​2103.​
16701 [hep-ex]

	28.	 Wang C-Y, Ju X, Hsu S-C, Murnane D, Calafiura P, Farrell S, Spi-
ropulu M, Vlimant J-R, Aurisano A, Hewes J, Cerati G, Gray L,
Klijnsma T, Kowalkowski J, Atkinson M, Neubauer M, DeZoort G,
Thais S, Ballow A, Lazar A, Caillou S, Rougier C, Stark J, Vallier
A, Sardain J (2022) Reconstruction of Large Radius Tracks with the
Exa. TrkX pipeline. In: 20th International Workshop on Advanced
Computing and Analysis Techniques in Physics Research: AI
Decoded-Towards Sustainable, Diverse, Performant and Effective
Scientific Computing. arXiv:​2203.​08800 [physics.ins-det]

	29.	 Lazar A, Ju X, Murnane D, Calafiura P, Farrell S, Xu Y, Spiropulu
M, Vlimant J-R, Cerati G, Gray L, Klijnsma T, Kowalkowski J,
Atkinson M, Neubauer M, DeZoort G, Thais S, Hsu S-C, Auris-
ano A, Hewes J, Ballow A, Acharya N, Wang C-Y, Liu E, Lucas
A (2022) Accelerating the Inference of the Exa.TrkX Pipeline.
In: 20th International Workshop on Advanced Computing and
Analysis Techniques in Physics Research: AI Decoded—Towards
Sustainable, Diverse, Performant and Effective Scientific Comput-
ing. arXiv:​2202.​06929 [physics.ins-det]

	30.	 Heintz A, Razavimaleki V, Duarte J, DeZoort G, Ojalvo I, Thais
S, Atkinson M, Neubauer M, Gray L, Jindariani S, Tran N, Har-
ris P, Rankin D, Aarrestad T, Loncar V, Pierini M, Summers S,
Ngadiuba J, Liu M, Kreinar E, Wu Z (2020) Accelerated Charged
Particle Tracking with Graph Neural Networks on FPGAs. In:
34th Conference on Neural Information Processing Systems.
arXiv:​2012.​01563 [physics.ins-det]

	31.	 Elabd A, Razavimaleki V, Huang S-Y, Duarte J, Atkinson M,
DeZoort G, Elmer P, Hauck S, Hu J-X, Hsu S-C, Lai B-C, Neu-
bauer M, Ojalvo I, Thais S, Trahms M (2022) Graph neural net-
works for charged particle tracking on FPGAs. Front Big Data
5:828666. https://​doi.​org/​10.​3389/​fdata.​2022.​828666. arXiv:​2112.​
02048 [physics.ins-det]

	32.	 Huth B, Salzburger A, Wettig T (2021) Machine learning for sur-
face prediction in ACTS. EPJ Web Conf 251:03053. https://​doi.​
org/​10.​1051/​epjco​nf/​20212​51030​53. arXiv:​2108.​03068 [physics.
ins-det]

	33.	 Chatain P, Garg R, Tompkins L (2021) Evolutionary algorithms
for tracking algorithm parameter optimization. EPJ Web Conf
251:03071. https://​doi.​org/​10.​1051/​epjco​nf/​20212​51030​71

	34.	 Bapst F, Bhimji W, Calafiura P, Gray H, Lavrijsen W, Linder L
(2020) A pattern recognition algorithm for quantum annealers.
Comput Softw Big Sci 4:1. https://​doi.​org/​10.​1007/​s41781-​019-​
0032-5. arXiv:​1902.​08324 [quant-ph]

	35.	 Zlokapa A, Anand A, Vlimant J-R, Duarte JM, Job J, Lidar D, Spi-
ropulu M (2021) Charged particle tracking with quantum anneal-
ing-inspired optimization. Quant Mach Intell 3:27. https://​doi.​org/​
10.​1007/​s42484-​021-​00054-w. arXiv:​1908.​04475 [quant-ph]

https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1207.7235
https://doi.org/10.23731/CYRM-2017-004
https://cds.cern.ch/record/2693670
https://cds.cern.ch/record/2693670
https://cds.cern.ch/record/2751565
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.5281/zenodo.4730157
https://doi.org/10.5281/zenodo.4730157
https://doi.org/10.5281/zenodo.4730167
https://github.com/LAL/trackml-library
https://github.com/LAL/trackml-library
https://www.gridpp.ac.uk/wiki/HEPSPEC06
https://www.gridpp.ac.uk/wiki/HEPSPEC06
https://doi.org/10.1016/S0168-9002(02)00790-8
https://doi.org/10.1016/S0168-9002(02)00790-8
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1119/1.4906516
https://doi.org/10.1119/1.4906516
http://arxiv.org/abs/1003.3720
https://doi.org/10.1109/BigData47090.2019.9006316
https://doi.org/10.1109/BigData47090.2019.9006316
http://arxiv.org/abs/1910.06779
https://doi.org/10.1088/1748-0221/16/05/p05001
http://arxiv.org/abs/2003.11603
http://arxiv.org/abs/2007.00149
https://doi.org/10.1142/9789811234033_0012
https://doi.org/10.1142/9789811234033_0012
http://arxiv.org/abs/2012.01249
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://doi.org/10.1140/epjc/s10052-021-09158-w
http://arxiv.org/abs/2101.08578
https://doi.org/10.1007/s41781-021-00073-z
http://arxiv.org/abs/2103.16701
http://arxiv.org/abs/2103.16701
http://arxiv.org/abs/2203.08800
http://arxiv.org/abs/2202.06929
http://arxiv.org/abs/2012.01563
https://doi.org/10.3389/fdata.2022.828666
http://arxiv.org/abs/2112.02048
http://arxiv.org/abs/2112.02048
https://doi.org/10.1051/epjconf/202125103053
https://doi.org/10.1051/epjconf/202125103053
http://arxiv.org/abs/2108.03068
https://doi.org/10.1051/epjconf/202125103071
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5
http://arxiv.org/abs/1902.08324
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
http://arxiv.org/abs/1908.04475

	 Computing and Software for Big Science (2023) 7:1

1 3

 1   Page 18 of 19

	36.	 Tüysüz C, Carminati F, Demirköz B, Dobos D, Fracas F, Novo-
tny K, Potamianos K, Vallecorsa S, Vlimant J-R (2020) Particle
track reconstruction with quantum algorithms. EPJ Web Conf
245:09013. https://​doi.​org/​10.​1051/​epjco​nf/​20202​45090​13. arXiv:​
2003.​08126 [quant-ph]

	37.	 Tüysüz C, Novotny K, Rieger C, Carminati F, Demirköz B, Dobos
D, Fracas F, Potamianos K, Vallecorsa S, Vlimant J-R (2020)
Performance of particle tracking using a quantum graph neural
network 12. arXiv:​2012.​01379 [quant-ph]

	38.	 Tüysüz C, Carminati F, Demirköz B, Dobos D, Fracas F, Novotny
K, Potamianos K, Vallecorsa S, Vlimant J-R (2020) A Quantum
Graph Neural Network Approach to Particle Track Reconstruc-
tion. In: Connecting The Dots 2020. arXiv:​2007.​06868 [quant-ph]

	39.	 Rieger C, Tüysüz C, Novotny K, Vallecorsa S, Demirköz B, Potami-
anos K, Dobos D, Vlimant J-R (2021) Embedding of particle tracking
data using hybrid quantum-classical neural networks. EPJ Web Conf
251:03065. https://​doi.​org/​10.​1051/​epjco​nf/​20212​51030​65

	40.	 Ju X, Murnane D, Calafiura P, Choma N, Conlon S, Farrell S, Xu
Y, Spiropulu M, Vlimant J.-R, Aurisano A, Hewes J, Cerati G,
Gray L, Klijnsma T, Kowalkowski J, Atkinson M, Neubauer M,
DeZoort G, Thais S, Chauhan A, Schuy A, Hsu S-C, Ballow A,

Lazar A (2021) Performance of a geometric deep learning pipeline
for HL-LHC particle tracking, Eur Phys J C 81:876. https://​doi.​
org/​10.​1140/​epjc/​s10052-​021-​09675-8. arXiv:​2103.​06995 [phys-
ics.data-an]

	41.	 Liu J, Maltzahn C, Curry ML, Ulmer C (2022) Processing Particle
Data Flows with SmartNICs. In: 2022 IEEE High Performance
Extreme Computing Conference (IEEE HPEC 2022). Virtual
Event, September 19-23

	42.	 Wang X, Besançon L, Rousseau D, Sereno M, Ammi M, Isenberg
T (2020) Towards an understanding of augmented reality exten-
sions for existing 3d data analysis tools. In: Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems

	43.	 Moyse E, Ali F, Cortina E, Bianchi RM, Couturier B (2021) The
Phoenix event display framework. EPJ Web Conf 251:01007.
https://​doi.​org/​10.​1051/​epjco​nf/​20212​51010​07

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Sabrina Amrouche8 · Laurent Basara10,11 · Paolo Calafiura1,2 · Dmitry Emeliyanov5 · Victor Estrade10,11 ·
Steven Farrell1,2 · Cécile Germain10,11 · Vladimir Vava Gligorov15 · Tobias Golling8 · Sergey Gorbunov6 ·
Heather Gray1,2 · Isabelle Guyon12 · Mikhail Hushchyn14 · Vincenzo Innocente4 · Moritz Kiehn8 · Marcel Kunze7 ·
Edward Moyse9 · David Rousseau13  · Andreas Salzburger4 · Andrey Ustyuzhanin14 · Jean‑Roch Vlimant3

	 Sabrina Amrouche
	 sabrina.amrouche@cern.ch

	 Laurent Basara
	 laurent.basara@inria.fr

	 Paolo Calafiura
	 pcalafiura@lbl.gov

	 Dmitry Emeliyanov
	 d.emeliyanov@outlook.com

	 Victor Estrade
	 estrade@lri.fr

	 Steven Farrell
	 sfarrell@lbl.gov

	 Cécile Germain
	 cecile.germain@inria.fr

	 Vladimir Vava Gligorov
	 Vladimir.Gligorov@cern.ch

	 Tobias Golling
	 Tobias.Golling@unige.ch

	 Sergey Gorbunov
	 sergey.gorbunov@fias.uni-frankfurt.de

	 Heather Gray
	 heather.gray@berkeley.edu

	 Isabelle Guyon
	 guyon@chalearn.org

	 Mikhail Hushchyn
	 hushchyn.mikhail@gmail.com

	 Vincenzo Innocente
	 vincenzo.innocente@gmail.com

	 Moritz Kiehn
	 Moritz.Kiehn@cern.ch

	 Marcel Kunze
	 Marcel.Kunze@uni-heidelberg.de

	 Edward Moyse
	 Edward.Moyse@cern.ch

	 David Rousseau
	 rousseau@lal.in2p3.fr

	 Andrey Ustyuzhanin
	 andrey.u@gmail.com

	 Jean‑Roch Vlimant
	 jvlimant@caltech.edu

1	 University of California, Berkeley, CA, USA
2	 Physics Division, Lawrence Berkeley National Laboratory,

Berkeley, USA
3	 California Institute of Technology, Pasadena, CA, USA
4	 CERN, Geneva, Switzerland
5	 Particle Physics Department, Rutherford Appleton

Laboratory, Didcot, UK
6	 Goethe University Frankfurt, Frankfurt, Germany
7	 Heidelberg University, Heidelberg, Germany
8	 Département de Physique Nucléaire et Corpusculaire,

Université de Genève, Genève, Switzerland
9	 Department of Physics, University of Massachusetts,

Amherst, MA, USA

https://doi.org/10.1051/epjconf/202024509013
http://arxiv.org/abs/2003.08126
http://arxiv.org/abs/2003.08126
http://arxiv.org/abs/2012.01379
http://arxiv.org/abs/2007.06868
https://doi.org/10.1051/epjconf/202125103065
https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1140/epjc/s10052-021-09675-8
http://arxiv.org/abs/2103.06995
https://doi.org/10.1051/epjconf/202125101007
http://orcid.org/0000-0001-7613-8063

Computing and Software for Big Science (2023) 7:1 	

1 3

Page 19 of 19  1

10	 LRI/TAU, Univ. Paris‑Sud/INRIA/CNRS, Université
Paris-Saclay, Gif‑sur‑Yvette, France

11	 UPSud/INRIA Université Paris-Saclay, Orsay, France
12	 ChaLearn, Berkeley, CA, USA
13	 Université Paris‑Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay,

France

14	 National Research University Higher School of Economics
and Yandex School of Data Analysis, Moscow, Russia

15	 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris
Cité, CNRS/IN2P3, Paris, France

	The Tracking Machine Learning Challenge: Throughput Phase
	Abstract
	Introduction
	Throughput Phase Setup
	Dataset Update
	Throughput Score
	Codalab Implementation

	The Competition as it Happened
	Algorithmic Performances
	Winner: Mikado by Sergey Gorbunov
	The Algorithm
	Fast Data Access: Regular 2D-grid on Detector Layers
	Physical Trajectory Model and the Magnetic Field
	Parameter Tuning
	Outlook

	Runner Up: FASTrack by Dmitry Emeliyanov
	Algorithm Summary
	The Algorithm Description
	Outlook

	Runner Up: Marcel Kunze
	High-Level Description
	Scientific Details
	Interesting Findings
	Outlook

	Conclusion
	Acknowledgements
	References

