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Abstract
This paper reports on the second “Throughput” phase of the Tracking Machine Learning (TrackML) challenge on the Codalab 
platform. As in the first “Accuracy” phase, the participants had to solve a difficult experimental problem linked to tracking 
accurately the trajectory of particles as e.g. created at the Large Hadron Collider (LHC): given O(105) points, the participants 
had to connect them into O(104) individual groups that represent the particle trajectories which are approximated helical. 
While in the first phase only the accuracy mattered, the goal of this second phase was a compromise between the accuracy and 
the speed of inference. Both were measured on the Codalab platform where the participants had to upload their software. The 
best three participants had solutions with good accuracy and speed an order of magnitude faster than the state of the art when 
the challenge was designed. Although the core algorithms were less diverse than in the first phase, a diversity of techniques 
have been used and are described in this paper. The performance of the algorithms is analysed in depth and lessons derived.

Keywords  Tracking · LHC · Data science · Optimisation · 
Competition

Introduction

The Tracking Machine Learning (TrackML) challenge took 
place in two phases, an Accuracy phase [1] in 2018 on the 
Kaggle platform,1 and a Throughput phase in 2018–2019 on 
Codalab,2 preceded by a limited scope 2D prototype compe-
tition  [2]. This paper is documenting in detail the Through-
put phase, which combined accuracy and inference speed, 
while only the minimal summary of the Accuracy phase is 

given (see  [1] for details). The goal of these competitions 
was to reach out to a wider community to stimulate various 
approaches to tracking on a uniform setup, as it has been 
done in the past on various HEP issues [3].

The LHC is a unique particle accelerator complex collid-
ing protons at unprecedented energies. It allowed the Higgs 
boson discovery [4, 5] in 2012, as acknowledged by the 2013 
Nobel prize in physics. It will collect data of increasing com-
plexity and at an increasing rate with a significant upgrade, 
the so-called High Luminosity LHC (HL-LHC) [6] currently 
planned for 2027. The analysis pipelines of the proton colli-
sions (or events) rely as an essential step on the reconstruc-
tion of the trajectories of the particles within the innermost 
parts of the detector. The time to reconstruct the trajecto-
ries—in a constant magnetic field, these would follow a heli-
cal path—from the measurements (3D points) is expected 
to increase faster than the projected computing resources. 
New approaches to pattern recognition are thus necessary 
to fully exploit the discovery potential of the HL-LHC. A 
typical event of this challenge would have about 100.000 
points to be associated into about 10.000 trajectories. State 
of the art was of order 10 s per event on a single CPU core 
when the challenge was designed [7, 8]. Given that 10 to 
100 billion such collisions need to be processed each year, 
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the importance of increasing the reconstruction throughput 
becomes evident.

A dataset consisting of a relatively detailed simulation 
[9] of an LHC-like experiment has been created, listing for 
each event the measured 3D points and the list of 3D points 
associated with a true track. The dataset is large enough to 
allow for the training of data-intensive Machine Learning 
methods; the order of magnitude estimates are: ten thousand 
events, one billion measurement points, and one hundred 
million trajectories (“tracks”) to be found. In practice, the 
task is to build the list of 3D points belonging to each track. 
As usual, the solutions proposed by the participants were 
evaluated on a test set stripped of the ground truth. The final 
step of track reconstruction, i.e. the inference of the particle 
properties (track parameters) at the particle’s origin, was not 
a goal of the challenge, given that the estimation of track 
parameters by applying fitting or other inference techniques 
is believed to be well understood and does not significantly 
drive the computing requirements.

For the Accuracy phase, participants had to upload a solu-
tion file (in csv format) indicating how the points are clus-
tered (like for a typical competition on the Kaggle platform). 
In contrast, for the Throughput phase, participants had to 
upload their software to the Codalab platform, on which it 
was executed in a controlled environment. In doing so, the 
resource usage was measured in a standardised way, and the 
Throughput score was then derived from a combination of 
the accuracy and the inference speed.

This paper is organised as follows. Section 3 details the 
setup of the competition, the changes to the dataset with 
regards to the Accuracy phase and accuracy score evalu-
ation, the score and the details of the implementation on 
the Codalab platform. Section 4 narrates the competition 
as it happened. Section 5 details the performance of the 
algorithms submitted. The top three algorithms are then 
detailed each in Sects.  6,  7 and  8, respectively, and 9 is 
the Conclusion.

Throughput Phase Setup

This section details the setup of the competition, building on 
the Accuracy competition description in [1].

Dataset Update

The dataset [10] for this Throughput phase is slightly dif-
ferent from the one  [11] for the Accuracy phase. It was 
produced with the fast detector simulation that is part of 
the ACTS project [9]. The detector setup, as pictured in 
Fig. 1, was unchanged with respect to the Accuracy phase 
and mimicked a typical LHC general purpose experiment. 
The overall detector setup is as follows: A central silicon 

pixel detector with the 50�m square pixels is enclosed by 
a silicon short strip detector and an outermost long strip 
detector and embedded in a solenoidal magnetic field with 
a central field strength of 2 T. The response of the silicon 
detectors to the passage of a charged particle is accurately 
simulated: neighbouring pixels or strips that measure a 
charge deposit from the charged particle above a thresh-
old are clustered together to provide a 3D position meas-
urement; there is one simplification which is that clusters 
from neighbouring tracks are not merged, as it would only 
affect less than 0.5% of the tracks. The layout is such that 
a charged track has, on average, 10 measurement points.

Minor adaptions to the dataset have been made for the 
Throughput phase, predominantly to correct issues iden-
tified with the Accuracy dataset (those issues, however, 
were checked not to have any impact on the outcome of the 
Accuracy phase results). These changes were:

–	 Correction of electron scattering: due to an incor-
rect unit setting in the multiple scattering module, the 
strength of multiple Coulomb scattering had been over-
estimated in the Accuracy phase dataset. This affected 
a maximum of 0.5 % of all particles in the first phase.

–	 Correction of the virtual thickness of the strip mod-
ules: in the cluster size calculation of strip clusters, the 
wrong silicon thickness was initially used.

–	 Correction of the beam spot size: the longitudinal beam 
spot size, i.e. the luminous regions where proton-proton 
interactions could occur, was corrected from 5.5 mm 
to 55 mm, which corresponds more accurately to the 
expected parameters of HL-LHC conditions. This cor-
rection only concerned the size of the luminous region: 
in particular, the particle multiplicity is unchanged with 
an additional 200 soft QCD interactions overlaid to the 
main event to simulate the expected pile-up conditions 
at the HL-LHC

Fig. 1   Sketch of the TrackML detector as used in both the ”Accu-
racy” and ”Throughput” phase. Vertical lines indicate disks, while 
horizontal lines indicate cylinders, all with the z axis as the axis of 
revolution. Three different sub-detectors build the overall detector 
setup: a central pixel system (blue), enclosed by first a short strip 
(red) and then a long strip detector (green)
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The format of the dataset remained unchanged: the output 
was organised in a set of comma-separated text files organ-
ised per event containing both simulated data and ground 
truth. The ground truth was only available to the contestants 
for the training dataset.

Throughput Score

The goal of this competition was to combine high accu-
racy and high speed. Therefore a score combining both was 
required. The experience of the first Accuracy competition 
has shown that the accuracy score defined as the weighted 
fraction of points correctly assigned (see [1] Eq. 1) was very 
effective, as the best algorithms in terms of the accuracy 
score were still the best in terms of the more detailed analy-
sis. A random algorithm has a score of 0, and a perfect algo-
rithm has a score of 1; the top algorithms in the Accuracy 
phase reached a score just above 0.9. One slight modification 
was introduced, which was to remove from the computation 
of the score trajectories stemming from secondary particles, 
i.e. particles that do not originate from the primary beam-
beam interaction but from either subsequent particle decay 
or interaction of primary particles with the detector material. 
These secondary tracks are not originating close to the origin 
and are essentially less attractive from the point of view of 
physics. Not considering them somewhat eases the task of 
the algorithms and reduces their complexity.

The speed is defined as t the average time per event (in 
seconds) measured on the test dataset, on the allocated 
resources in the docker environment as detailed in Sect. 3.3.

The accuracy, S, and speed, t, were measured on a test 
dataset of 50 events (instead of 100 for the Accuracy phase) 
to limit the resource usage on the platform and also because, 
from preliminary tests, the variance of the two quantities 
appeared to be limited.

In addition, the resource usage in terms of the maximum 
allowed time was set to tmax = 600 s per event. To exclude 
possible extremely fast algorithms with mediocre accuracy 
(which would be useless from the point of view of physics), 
a minimum accuracy of Smin = 0.5 is required.

The formula gives the overall score:

The score is an unbounded dimensionless positive number; 
the higher, the better. A particular score value can be reached 
by different combinations of speed and accuracy; these lines 
of equal score can be seen on Fig. 3. The challenge’s goal 
was to encourage participants to reach the best compromise 
between accuracy and time, leading toward values in the bot-
tom right corner of the chart. The formula was defined based 

(1)
√

log
(
1 +

tmax

t

)
× (S − Smin)

2

on the finding of the Accuracy phase and a poll on the infer-
ence speed of their algorithms (which then was not a ranking 
criterion), which ranged between 100 s per event and a full 
day. The target expectation for solutions to the Throughput 
challenge was to yield algorithms with a throughput execu-
tion time of 10 s per event. Nevertheless, as it will be shown, 
the formula also behaved well with sub-second algorithms 
submitted.

Codalab Implementation

The first Accuracy phase of the TrackML competition was 
hosted by Kaggle, the well-known competition platform. For 
the Throughput phase, the algorithm had to be run within a 
fully controlled environment to measure the execution speed. 
This requirement was not possible on the Kaggle platform 
at the time. The Throughput phase was implemented on 
Codalab, a platform popular for scientific competitions, 
which allows for a more customised setup.

Participants had to develop their algorithms on the train-
ing dataset (including the ground truth) provided. As for 
the Accuracy phase, a library [12] was available to them to 
evaluate their score. Then they had to prepare and upload 
the inference part of their algorithm to the platform. The 
platform then runs the algorithm on the public test data-
set, statistically identical to the training dataset, but with-
out the ground truth. The execution time and accuracy 
score, together with the overall score obtained with Eq. 1, 
are measured and reported on the public leaderboard (see 
Table 1). It should be noted that in this Throughput phase, 
contrary to the Accuracy phase, the public test dataset is 
undisclosed to the participants, it is “public” only because 
it is used for the public leaderboard. As commonly done in 
such competitions, to avoid that participants overtrain on the 
public leaderboard score, the overall score was reevaluated 
after the end of the competition on a private test dataset, 
statistically identical to the public one.

The overarching goal of the competition was to foster 
algorithms and ideas from a broader community than the 
high energy physics community. In the years the competition 

Table 1   TrackML Throughput competition leaderboard

Participant Score Accuracy (%) Speed (s/event)

Sgorbuno 1.17 94.4 0.56
Fastrack 1.11 94.4 1.11
Cloudkitchen 0.90 92.8 7.28
Cubus 0.77 89.5 13.5
Taka 0.59 87.5 53.4
Vicennial 0.56 81.5 25.4
Sharad 0.29 67.4 38.0
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was designed then run, the workhorse for large scale pro-
cessing of LHC experimental data has been single cores 
CPU with 2GB RAM. In practice, the single cores are 
made available as virtual machines instantiated on a vari-
ety of physical hardware in world-wide distributed comput-
ing centres. Meanwhile, the community has been moving 
towards multi-core computing, and GPUs are increasingly 
used in specific contexts. As a compromise between current 
and future HEP computing landscape, the resources used 
to evaluate an algorithm were 2 CPU cores with 4GB of 
RAM. A participant using a traditional single thread algo-
rithm would lose a factor of 2 in speed, which would be a 
small handicap given the logarithmic dependency in speed in 
Eq. 1. We deliberately did not choose to favour a higher level 
of parallelism in order not to skew the competition towards 
a parallel-computing coding competition.

Two physical machines have been dedicated to the chal-
lenge, each having two Intel Xeon Processor E5-2650 v4 
@2.20 GHz with hyper-threading, each processor having 
12 physical cores. This is a typical processor used on the 
LHC Computing Grid; it has been benchmarked to 10.26 
HS06 unit [13], a benchmark routinely used for High Energy 
Physics computing.

Each participant had to implement their algorithm within 
a provided skeleton. The skeleton is a small Python class 
Model for which C/C++, Python and R bindings examples 
were given in the starting-kit. The code is then run by the 
platform within a docker [14] environment limited to 2 CPU 
and 4 GB of memory. The C/C++ code could be compiled 
at home and shipped with the binaries since the docker was 
publicly available (which was the method used for almost 
all submissions). Before being evaluated, the participant’s 
Model could be initialised by compiling source code, load-
ing data, etc.

The skeleton loops over the input data one event at a time, 
call the participant’s code and writes out the solution found. 
The time measured is the wall clock time spent in the par-
ticipant’s code (so that all the overhead, in particular in I/O, 
is not included). To avoid extremely slow submissions using 
up resources, a pre-test was first done on one single event 
with a time limit at 600 s. If this pre-test was successful, the 
measurement was made on the 50 events public test dataset.

Thorough tests prior to the competition determined that 
the time evaluation was reproducible to within 2%, which 
was independent on possible other evaluations running con-
currently on the same physical machine. This small vari-
ance could have, in principle, impacted the ranking of the 
participants. Hence, it was decided, and participants were 
warned about it, that the final measurement of the time of a 
submission would be done after the end of the competition 
with a repetition of 10 runs on the final private test dataset. 
When this was done, no unexpected discrepancies were seen, 

even though the diversity of code tested was larger than in 
the tests run prior to the competition.

A standard docker environment was provided, including 
typical libraries. Participants could also install on-the-fly 
libraries from internet, which access remained open to the 
worker node. However, in practice, participants preferred to 
directly ship additional libraries with their own software. 
Execution logs were not made available to the participants, 
as they could have been used to obtain insights on the undis-
closed test dataset. Otherwise, there was no thorough attempt 
to eliminate all possible methods of hacking. Hacking was 
obviously forbidden in the competition rules participants had 
to agree to. In addition, the prizes were conditioned to a full 
release of the source code which was scrutinised (for the top 
participants) at the end of the competition.

The Competition as it Happened

The TrackML Throughput competition opened on 3 Septem-
ber 2018, a few weeks after the end of the Accuracy compe-
tition on Kaggle on 10 August 2018. It was initially due to 
18 October 2018, but given the initial lack of competitors, it 
was extended until 15 March 2019.

The leaderboard is shown in Table 1. As detailed in 
Sec. 3.2, participants obtained a non zero score only if their 
submission could achieve more than 50% accuracy in less 
than 600 s per event. In the end, only seven contributors 
achieved non zero scores; their score evolution as a function 
of date of submission is summarized on Fig. 2 and on Fig. 3 
as a function of the accuracy and computation speed. From 
the shade of the blue curve, it can be seen that the competi-
tion winner, sgorbuno, made a late entry in the competi-
tion, with only four submissions that earned him the title.

The number of participants in the Throughput phase 
has been rather low, especially considering that there were 
648 teams participants in the Accuracy phase on Kaggle, 
which could, in principle, have carried on to the Throughput 
phase. In hindsight, this has been understood to come from 
a combination of factors:

–	 the lower popularity of Codalab compared to Kaggle, 
where people can earn points across competitions.

–	 the complexity of the problem.
–	 the perceived necessity to write optimised C++ code 

when a typical Kaggle participant is more familiar with 
python.

–	 the threshold of less than 600 s per event and more than 
50% efficiency, it was already non-trivial to have a non 
zero score
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Fig. 2   TrackML Throughput 
phase participants overall score 
evolution as a function of the 
date of submission. sgor-
buno is Sergey Gorbunov (see 
Sect. 6), fastrack is Dmitry 
Emeliyanov (see Sect. 7) and 
cloudkitchen is Marcel 
Kunze (see Sect. 8)

Fig. 3   TrackML Throughput 
phase participants score evolu-
tion. The horizontal axis is the 
mean accuracy over the 50 test 
events, and the vertical axis is 
the average computation speed 
per event. The total score, a 
function of both variables, is 
displayed in grey contours. Each 
colour/marker type corresponds 
to a contributor; the lines help 
to follow the score evolution. 
sharad only made a single 
contribution, identical to the 
first point from Vicennial 
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–	 despite all the efforts to document and streamline the 
procedure to submit a solution, it still required a larger 
commitment than for a typical Kaggle competition.

–	 the fact that we did not provide the log files made debug-
ging rather difficult to the participants.

Nevertheless, the fewer number of participants was more 
than compensated by the high quality of the top three partici-
pants (see Fig. 3), who all obtained better than 90% accuracy 
with an execution time up to 0.5 s, compared to an initial 
goal of better than 10 s per event. After the end of the com-
petition, all participants made their documented software 
available, which was scrutinised. The score was re-evaluated 
on the private test dataset, which confirmed the score from 
the online leaderboard. Hence the final rankings confirmed 
the online one.

The original idea was that the algorithms developed in 
the Accuracy phase would be optimised and adapted to 
the second phase, not necessarily by the same participants. 
This was not enforced in any way but it is largely what has 
happened:

–	 Sergey Gorbunov (pseudonym sgorbunov) rank 1 in 
the Throughput phase had obtained rank 3 in the Accu-
racy phase (with pseudonym Sergey Gorbunov)

–	 Dmitry Emeliyanov (pseudonym fastrack) rank 2 in 
the Throughput phase had obtained rank 4 in the Accu-
racy phase (with pseudonym demelian)

–	 Marcel Kunze (pseudonym cloudkitchen rank 3 in 
the Throughput phase ) used as a starting point the algo-
rithm of TopQuark, rank 1 in the Accuracy phase, and 
has largely augmented it

–	 the algorithm of outrunner, rank 2 in the Accuracy 
phase, was quite innovative but very slow, a full day per 
event so was not seen promising enough to be recycled 
in the Throughput phase.

Algorithmic Performances

In this section, a thorough investigation of the performance 
of the highest ranking algorithms is discussed, as was 
done for the Accuracy phase in [1]. The box plot on Fig. 4 
indicates the accuracy score on the 50 event test dataset. 
Interestingly, the accuracy follows the general ranking, indi-
cating that little compromise was made in optimising the 
algorithms. Only the first two candidates have very similar 
accuracy and differ in regards to the speed, as could be seen 
in Table 1.

Performance assessments of HEP detectors are typically 
several hundred pages in length, with many histograms 
assessing the performances from various angles. For prac-
ticality, algorithms evaluated in the TrackML challenge are 

ranked based on a single score, concerning accuracy and 
speed. In the TrackML Accuracy paper [1], it was demon-
strated that the Accuracy score was indeed selecting algo-
rithms which were indeed the best after a more thorough 
analysis. This analysis is repeated here for the TrackML 
Throughput competition, to ensure that the assertion still 
holds despite the strong speed incentive. Instead of using the 
Accuracy score, which is a hit-based efficiency (weighted 
fraction of points correctly assigned), we use the particle-
based efficiency, which is the fraction of particles correctly 
reconstructed; this quantity is more commonly used in par-
ticle physics. A particle is considered to be correctly recon-
structed if there is a track sharing more than 50% of the 
points with the original particle, as indicated by the ground 
truth. Contrary to the Accuracy score, this efficiency is not 
weighted to decrease the relative weight of the lower trans-
verse momentum (larger curvature) particles. This is the 
main reason why the particle efficiency is a few per cent 
less than the Accuracy score. The fake rate (the fraction of 
tracks that cannot be uniquely attributed to a truth particle, 
another quantity commonly used in particle physics) has not 
been studied in depth, because, given the requirement that 
one point can only be assigned to one track, the fake rate 
was found to be very much anti-correlated to the efficiency.

Figure 5 displays the efficiency for the 7 best participants 
as a function of several variables relevant for physical analy-
ses (these variables are obtained from the truth particle):

–	 z0 is the z coordinate of the vertex.
–	 r0 is the transverse distance to the beam axis, z, of the 

particle vertex (creation point)
–	 pT  (GeV), the transverse momentum, is the projec-

tion on the plane perpendicular to the beam axis of 
the momentum P, product of the particle speed by its 
relativistic mass; for particles of unit charge, it is pro-

Fig. 4   Box plot of the per-event accuracy score on test events for the 
top participants. The whiskers indicate the total range, the box the 
quartiles of the individual distributions
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portional to the radial component of the particle trajec-
tory.

–	 � (rad) is the azimuthal angle (around the beam axis)
–	 � , the pseudorapidity, is a dimensionless quantity describ-

ing the angle of the particle with respect to the beam axis 
and varying between −4 and 4 for this detector; with � the 
angle in radians, we have � ≡ ln(tan �∕2)

The efficiency curves for the seven participants are well sep-
arated. A striking feature is that fastrack’s efficiency is 
consistently better than sgorbuno’s, despite the two hav-
ing very close Accuracy score. This is because fastrack’s 
tracks are typically missing more points than sgorbuno’s, 
thus lowering its Accuracy score, which is a point-based 
efficiency.

All algorithms have similar pT dependencies with a dip at 
low pT which correspond to particles with large curvature. 
Reconstructing these large curvature particles might require 
to enlarge the search window, at the risk of increasing the 
number of combinations and decreasing speed; it is also the 
case that these particles are more difficult to reconstruct 

because they suffer more material interactions. The best 
algorithms are able to mitigate this effect. After a plateau, 
the efficiency decreases slightly for pT above 8 GeV. This 
common feature has not been understood as these particles 
are almost straight and in principle easy to find. Although 
this concerns less than a per mil of all particles as can be 
seen Fig. 5 in [1], they can be of high interest from the point 
of view of physics. This feature was already seen, although 
less pronounced, in the Accuracy phase (Fig. 13 in  [1]). It 
is most likely a side effect of the speed optimisation, which 
was not noticed by the participants given the very small 
weight of this region of the phase space in the calculation 
of the accuracy.

Given the cylindrical symmetry of the detector (see Fig. 4 
in [1]), the efficiency is expected to be flat according to � . In 
general, this is observed. For fastrack and sgorbuno 
the efficiency for positively charged particles shows a dip 
just above � = −� , and another dip for negatively charged 
particles just below � = � . Due to the approximately sole-
noidal magnetic field pointing along the z axis, positively 
charged particles turn clockwise, so positive particles 

Fig. 5   Efficiency as a function of six physical variables ( log10 PT , � , 
� , vertex distance r0 from beam axis in mm, zoom on the latter, and 
vertex beam axis coordinate z0 , see text for details) for different par-
ticipants, each represented by a different colour. Only primary par-

ticles are included. Light-shaded curves are for positively charged 
particles, dark-shaded ones for negatively charged particles. The band 
shows the statistical uncertainty on the efficiency measurement
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starting with � just above −� are then crossing the � = � 
boundary into the region with � just below � (and the oppo-
site for negative particles). The � = � boundary does not 
correspond to any concrete geometric feature of the detector 
so the dips are likely due to a feature of the implementation. 
The � efficiency curve for cloudkitchen shows a dip 
at � = 0 , shifted between positive and negative particles, 
which is most likely due to a similar feature when handling 
the � = 0 boundary.

The efficiency curves as a function of � show the evolu-
tion of the efficiency as a function of the polar angle, for 
track close to −z direction ( � = −4 ), perpendicular to z 
( � = 0 ) and then track close to z direction ( � = 4 ). All the 
curves are symmetric, as expected, and showing a more or 
less deeper dip around |�| = 2 . In these regions, as can be 
seen Fig. 13 in  [1], tracks cross the first disks. The best 
algorithms manage to handle this transition much better than 
the others.

The efficiency curves as a function of r0 are as expected 
highest at r0 = 0 since most particles are originating very 
close to the origin because only primary particles are taken 
into account in the score and in the efficiency. The efficiency 
drops rapidly as r0 increases because assuming particles are 
coming from the origin is a strong constraint which increases 
the speed of the algorithms.

The z0 of the primary particles follow a centred Gauss-
ian distribution with a width of 55 mm (this was 5.5 mm for 
the Accuracy phase). Participants have successfully acco-
modated for this, and obtained a relatively flat efficiency, 
except for cubus.

To investigate deeper the quality of the algorithms, 
the efficiency as a function of the angular separation 
between tracks was studied. The typical separation variable 

(commonly used to analyse LHC proton collisions) is defined 
to be

(for small values of Δ� , ΔR is similar to the 3D angle in 
radian). For each particle, the nearest neighbouring ground 
truth particle as a function of ΔR is searched for. Figure 6 
shows the efficiency as a function of ΔR of the nearest neigh-
bour (few particles have a neighbour distant of more than 
0.025). The best three participants achieve a reconstruction 
efficiency independent of the distance to the nearest neigh-
bour, while the other participant algorithms achieve a slight 
drop of efficiency for low values of ΔR . Neighbours of the 
same charge stay close together for a longer distance as they 
move away from the origin since they are turning in the same 
direction. However, there is no visible effect on efficiency 
whether the nearest neighbour is of the same or of opposite 
charge, which is a sign of robustness.

Winner: Mikado by Sergey Gorbunov

The Mikado approach for the TrackML challenge is a com-
binatorial algorithm. Its strategy is to reconstruct data in 
small portions, trying not to damage the rest of the data each 
time. The idea resembles a Mikado game, where players 
need to remove carefully wooden sticks one by one from a 
pile without the pile collapsing.

The algorithm performs 60 reconstruction passes with 
different settings. During the first passes, it only looks for 
high-momentum (hence almost straight) tracks within very 
tight requirements. Found tracks are removed from the 

ΔR =
√
Δ�2 + Δ�2

Fig. 6   Efficiency as a function of the distance ΔR to the nearest 
neighbouring ground truth particle for different participants, each 
corresponding to a different colour. Particles having the same sign as 

the nearest neighbour are indicated by light-shaded, plain lines, and 
of the opposite sign with dark-shaded, dotted lines
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detector after each pass, thereby reducing combinatorics for 
the subsequent passes. The cuts are loosened, and the algo-
rithm runs again. The cuts are very loose for the last passes, 
allowing the algorithm to collect all the remaining tracks.

Despite the high combinatorial factor, the outcome of the 
first passes is very pure. There are almost no incorrect hit-
to-track associations. During the last passes, the algorithm 
accepts almost everything it finds. Therefore at the latest 
stage, it collects many wrong hit combinations in addition 
to the real tracks.

Performing 60 reconstruction passes within a reasonable 
time is only possible when data access is fast. To do that, 
the hits from every detector layer are arranged in a two-
dimensional grid. The algorithm accesses only those hits 
located within a current search window and the other hits 
are untouched.

The algorithm uses different fixed-size search windows 
for each detector layer and reconstruction pass. Therefore, 
tens of thousands of internal parameters need to be tuned. 
Optimal parameters are not calculated mathematically but 
are trained on the training dataset. The optimising routine 
is, unfortunately, not fully autonomous and requires manual 
intervention.

The Mikado tracker shows 94.4% accuracy and takes 
0.56 s per event. It uses 48 MB of memory run standalone, 
and the overall memory usage is 730 MB when run in the 
official TrackML docker container.

The Algorithm

The algorithm uses a local track reconstruction model. Each 
time it needs to estimate a particle trajectory, it creates a 
local helix through three nearby hits that belong to the parti-
cle. This three-hit helix is the most flexible trajectory model, 
which follows all local features of a real trajectory. Even 
though the model uses only a minimal amount of measure-
ments (contrary to classical algorithms, which will build a 
model from all the points already assigned to the track being 
built), it appears to be accurate enough to predict the particle 
position on neighbouring layers.

Detector layers consist of many detector elements and 
have different orientations in space. Each detector layer is 
represented as a two-dimensional surface for easy naviga-
tion to the next modules where to search for more hits. This 
surface has two coordinates: a polar angle � and the second 
coordinate t, which is equal to the z coordinate for cylinders 
and a radial r coordinate for disks. We project all the hits 
towards the origin onto their layer surfaces and use their 
(�, t) projections when searching for hits.

For fast data access, a regular two-dimensional grid is 
created at each layer that stores the hits in corresponding 
grid cells according to their (�, t) coordinates.

The algorithm consists of three parts. The first part is 
tracklet construction. It creates short tracklets on pre-
selected detector layers from the hits. The second part is 
tracklet prolongation. It creates track candidates by extend-
ing the tracklets to other layers and collecting their hits there. 
The third part is a final selection of good tracks among the 
track candidates. To make full use of the two available 
threads, the code is multithreaded; each thread processes all 
combinations with one hit on the first combinatorial layer.

The algorithm flow is as follows. 

1.	 Tracklet construction (see Fig. 7) It is performed on 
three (optionally, two) selected layers. 

(a)	 Every hit1 from the layer1 is considered. Option-
ally, the first hit can be the origin (0, 0, 0).

(b)	 A straight line which connects the origin and the 
hit1 is projected to the layer2 . Within a (�, t)-search 
window every hit2 is considered.

(c)	 A straight line, which connects hit1 and hit2 is pro-
jected to the next layer, layer3 . Again, within a 
(�, t)-search window every hit3 is considered.

(d)	 A helix of axis collinear to the z axis is constructed 
on hit1, hit2, hit3 . In the xy plane, the helix crosses 
all the three hits, in Z it goes through hit2 and hit3 , 
as shown in Fig. 12. Then a distance in z of the 
helix from the hit1 is examined. When it is too 
large, the hit combination is rejected. Otherwise, 
the set of three hits is accepted as a tracklet, and 
the prolongation step starts.

2.	 Tracklet prolongation (see Fig. 8) The tracklet is pro-
longed to the next detector layer along its trajectory and 
the closest hit on that layer is identified. 

Fig. 7   Combinatorial Layers

Fig. 8   Tracklet prolongation
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(a)	 If the hit is close enough, it is added to the track-
let and the trajectory is recreated using the new 
hit and two hits from the previous layers. Given 
that modules can overlap in the same layer, we 
perform a search for additional hits on the layer 
within a tiny window around the recreated trajec-
tory.

(b)	 When there is no good hit found on the layer, 
when the prolonged trajectory crosses the layer’s 
inner part far from edges, a hit on the layer is con-
sidered to be missing. When hits are missing on 
more than one layer, the prolongation stops.

(c)	 In certain cases a good closest hit is found, all 
the additional hits on the recreated trajectory are 
picked up, but some hits remain in the search 
area. In this case, the algorithm creates another 
search branch with a different hit on this layer. 
The branching is realised in an efficient way with 
almost no computational overhead.

	    Once the layer have been processed, the tracklet is 
extended further until hits on all the layers are collected. 
Then the tracklet is stored in a list of track candidates 
and the next tracklet is processed.

3.	 Selection of good tracks The selection of good tracks is 
performed by identifying the best one in the list of track 
candidates. The track should have more hits than the 
others or at least the same number of hits, but a smaller 
average deviation of its hits from its trajectory. The best 
candidate is stored as a “track”; its hits are removed from 
the detector. Then the search for the next best candidate 
is performed, and so on. The selection stops when the 
best candidate no longer have enough hits.

Once all tracks of the current pass have been found, the algo-
rithm repeats from step 1, performing the next pass of the 
reconstruction with a new set of base layers and new search 
parameters.

Fast Data Access: Regular 2D‑grid on Detector 
Layers

For a combinatorial algorithm, it is crucial to have fast 
access to data. For this purpose, hits on every detector layer 
are stored in cells of a regular two-dimensional grid.

The size of the grid cells is equal to the size of a prede-
fined search window, which is specific for each detector 
layer in each reconstruction pass. Search for hits inside 
the search window is simple. First, one calculates the cell 
index of the centre of the search area by doing a couple of 
modulo operations. Then one looks over the hits in four 
neighbouring cells overlapping with the search window, 
as it is illustrated in Fig. 9.

To avoid any special treatment of border regions, the 
grid is surrounded by layers of empty cells. Unfortunately, 
this technique does not work with the � border at ±� , as 
this border of the detector surface is purely virtual. To 
handle the ±� border, we let the grid overlap in � . For that 
purpose, the surrounding empty cells at ±� are filled with 
hits from the opposite � edge, as it is shown in Fig. 10. 
The overlap solves the border problem for � and covers 
the ±� region without introducing unnecessary conditional 
branches in the code. However a small inefficiency is left 
as reported in Sect. 5.

The implementation of the grid is presented in Fig. 11. 
The grid consists of two arrays: the array of hits A1 and the 
array of grid cells A2 . Each cell contains only two values: 
index of its first hit in the array A1 and the number of hits in 
the cell. The creation of the grid is extremely fast, created 

Tmin 

Tmax 

- +

X 

X 

Fig. 9   Grid structure for storing hits on a detector layer. To find hits 
in a blue area, one needs to examine four yellow cells around it
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Tmax 

-  +  
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X 

Fig. 10   The grid overlap in �

Fig. 11   Implementation of the grid
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by looping twice over the input hits and twice over the grid 
cells and performed as follows:

–	 initialize the number of cell hits in the A2 array to 0
–	 loop over the input hits and count number of hits in all 

the cells in A2

–	 loop over the cells in A2 and calculate their pointers to 
A1 according to the number of hits in cells

–	 loop again over the input hits and copy them to their 
places in the A1 array according to their cell number. 
This is done with a deep copy to avoid multiple reference 
look-up during the combinatorial search.

The efficient access to the data makes the algorithm fast and 
allows many reconstruction passes to be performed within a 
reasonable computing time.

Physical Trajectory Model and the Magnetic Field

The magnetic field changes significantly from layer to layer, 
which means that trajectories deviate from a mathematical 
helix. To account for this feature, the physical trajectory 
model (x, y, z, px, py, pz, q) is used. It is presented in Fig. 12. 
Here (x, y, z) is the spatial position of a trajectory point, 
(px, py, pz) are the three components of the particle momen-
tum, q = ±1 is the charge.

Even though a description of the magnetic field was not 
provided in the competition, an average field on each layer 
can be constructed using the “truth” data and approximating 
this field with a simple polynomial model. The polynomial 
field is calculated at initialization time for each detector layer 
and stored in a geometry file. At the beginning of the event 
reconstruction, the approximate field value is calculated for 
every hit using the above polynomials and stored directly 
in the hit data structure. Three different approximate field 
values are actually used: one for the construction of the local 
helix, one for the inward prolongation of the helix and one 
for the outward.

Parameter Tuning

To achieve the best result, one has to tune all thousands of 
algorithm parameters simultaneously, maximizing the over-
all score Eq. 1. But due to a lack of computing resources, a 
step-by-step optimization is performed instead. Each recon-
struction pass is adjusted individually, optimizing the result 
of the partial reconstruction after that pass.

The overall score Eq. 1 is inapplicable in this scheme. 
Therefore each pass uses its own optimization criterion, 
which is a compromise between the number of tracks 
found at that pass and the purity of these tracks. The pass 
optimization is performed several times with manually 
adjusted criteria, set depending on the results.

Within a reconstruction pass and the chosen optimiza-
tion criterion, the parameters are adjusted automatically 
using a primitive gradient following method. The recon-
struction time is monitored manually and not explicitly 
included in the optimization.

Outlook

As the Mikado tracker performs fast hit search within 
predefined search windows, it has tens of thousands 
of internal parameters to tune (e.g. size of the search 
windows). This situation is not typical for traditional 
track finders, where the search windows are estimated 
individually for each track using relatively involved tra-
jectory extrapolation with uncertainties. These internal 
parameters have been tuned semi-automatically on the 
training dataset.

Runner Up: FASTrack by Dmitry Emeliyanov

The FASTrack (Filter and Automaton for Silicon Track-
ing) algorithm won second place in the throughput phase 
of the TrackML competition with an accuracy of 0.944, 
a processing time per event of 1.11 s and an overall score 
of 1.1145. After several post-competition improvements, 
the final accuracy of the algorithm was 0.948, and the 
projected time per event was about 0.8 s. The memory 
consumption of the algorithm itself was approximately 
0.6 GB, and when the algorithm was run in the TrackML 
docker environment, the overall memory consumption was 
1.4 GB.

Algorithm Summary

The FASTrack algorithm is based on the following key ideas 
and techniques:
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Fig. 12   Physical track model
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–	 hit clusters shape (numbers of cells in u- and v-directions 
on the module plane) are used to predict the intervals of 
track inclination angles and save CPU time by avoiding 
hit combinations with parameters incompatible with the 
prediction;

–	 the track segment-based track following network is used 
with an embedded Kalman filter for fast discovery of 
track candidates;

–	 limited usage of the Kalman filter-based combinatorial 
track following for missing hits search and track exten-
sion to areas not covered by the track following network, 
such as long strip in the outer volumes

The track finding is organised as a multi-stage process. 
There are three stages: the first finds higher momentum cen-
tral tracks (coming from the interaction region along z-axis), 
the second finds lower momentum central tracks, and the 
third stage targets the remaining tracks. Once all stages are 
completed, the output track collections are concatenated, and 
hit labels are generated. To create a unique ”hit-to-track” 
assignment, all reconstructed tracks are sorted following 
their quality and assigned increasing integer track indices 
(track Ids) so that the best track has the smallest track Id. 
Then a hit is assigned a track Id only if the hit is not already 
assigned to another track with a smaller track Id.

The Algorithm Description

The algorithm starts by arranging input hits into circular 
”bins” in all the detector layers. The bin widths are calcu-
lated following a uniform � binning to guarantee approxi-
mately the same number of hits per bin. The width of each 
�-bin is 0.2. All hits in the bins are sorted along increasing 
value of � (azimuthal angle). Next, the hits in each layer are 
clustered into nodes to group the hits that likely belong to 
the same track but are located in different modules on the 
same layer. The nodes are used for the actual track find-
ing, while hits are subsequently used for more precise track 
fitting. After the clustering, the nodes are pre-selected for 
subsequent track segment creation based on their cell param-
eters (number of cells along u- and v-directions). For each 
selected node an interval on � = cot � (where � is the track 
inclination angle w.r.t. z-axis) is obtained using a lookup 
table which relates the min/max values of � to the number 
of cells in v-direction. The nodes are connected, and track 
segments are formed following the layer linking scheme 
trained on data. For example, the following scheme record 
for a pair of layers:

8004, 8002, 0.876002
means that layer 2 of volume 8 is connected to layer 4 of 

volume 8 and the average amount (called ”flow”) of track 
score carried through this connection is 0.876002. By defini-
tion, the initial ”flow” emanating from the interaction region 

is 1.0. The ”flow” parameter characterises the importance of 
layer connections.

To facilitate parallel processing by OpenMP (needed to 
make full use of the two available cores), the track segments 
are created and stored in three separate arrays (Segment 
Banks). The segment-building algorithm operates on node 
collections from possible pairs of �-bins (rings in � ). The 
bin pairing was trained on data to achieve 0.99 efficiency of 
track segment finding. The output of the training procedure 
is a set of paired bins indices stored in a look-up table.

The next step of track finding connects track segments, 
which share the same nodes and creates the track following 
network. The network is a directed graph in which the verti-
ces are the nodes containing hits, and the edges are connec-
tions between the nodes, i.e. track segment. Each vertex has 
two collections of edges: incoming and outgoing. The sense 
of direction is determined towards the z-axis of the detector. 
The algorithm selects all the vertices with non-empty ”In” 
and ”Out” collections, and for each ”In” edge finds possibly 
connected ”Out” edges satisfying cuts on differences in azi-
muthal angle, pseudorapidity, and the track curvature. The 
maximum allowed number of connections is set to 6.

Once the network has been built, the segments interact 
with their neighbours in the ”Out” direction. The aim is to 
calculate the maximum number (called level) of connec-
tions which can be traced from the segment and identify 
the segments which are likely to be the starting points of 
long tracks. The implementation of this algorithm employs 
a cellular automaton (CA) [15]. The CA is parallelised using 
OpenMP and operates in synchronous mode. First, the pro-
posal for the new level is calculated for all segments (e.g. 
if a segment with level = 1 has a neighbour with the same 
level, then the proposal for the next CA iteration is 1+1 = 
2). Finally, all segments with proposals which differ from 
their current states are updated.

The network evolution stops once no more segment-level 
updates can be made throughout the whole network. The 
algorithm then proceeds with the extraction of track can-
didates from the track following network. The track extrac-
tion starts with the segments with level values equal to the 
maximum level observed during the CA iterations. The algo-
rithm continues track extraction until the maximum level 
of remaining segments drops below the stage-dependent 
threshold (4 for the first stage, 3 and 2 for the second and 
third, respectively).

The track extraction is basically a segment-by-segment 
track following process, which is implemented as a recursive 
”depth-first” graph traversal. A simplified Kalman track fit is 
embedded in the recursion to reduce the number of traversed 
combinations quickly. The track fit estimates the track cot � 
in the rz-projection and track � and d�∕dr or d�∕dz in the 
rΦ-projection. The track fit does not use any magnetic field 
description to speed up the calculations. Instead, it models 
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the track evolution in r − z as a random walk (caused by 
the detector material effects) and as the Ornstein-Uhlenbeck 
(AR(1)) process [16] in the rΦ projection, which emulates 
gradual, trend-like, change in the track azimuthal direction 
under the influence of the magnetic field.

The more precise track fit of the extracted track candi-
dates is performed using the Kalman filter algorithm, which 
employs the 3rd order Runge–Kutta track parameter, a Jaco-
bian extrapolator and a fast approximation for the non-ideal 
solenoidal magnetic field [17]. The parameters of the sole-
noid (field in the centre, half-length, and the aspect ratio = 
radius/half-length) were learned from the data by the track-
ing efficiency maximisation during a hyper-parameter scan.

As many track candidates share the same hits, some 
tracks are merged and removed in a clone removal pro-
cedure. All tracks are sorted according to their fit likeli-
hood (the weighed number of layers with associated hits 
minus penalty on the �2 contributions of hits). Then hits are 
labelled by the track index starting from the best track. In 
this way, the shared hits are identified and depending on the 
fraction of shared hits and the number of competing tracks, 
and a decision is made whether to merge a track with a better 
one or to delete it.

The merged tracks are refitted and extended towards the 
interaction region and towards the outer long-strip volumes, 
as they were not used in the segment creation and network-
building process. The track extension procedure consists of 
predicting the track trajectory by extrapolation from the first 
(last) hit on the track and collecting the hits around the tra-
jectory crossing points on detector layers and track update. 
Any ambiguity in the ”hit-to-track” assignment is resolved 
via the branching track propagation, which also employs the 
Kalman track fit. The number of simultaneously propagated 
”best” branches is one for the ”inside” track extension and 
three for the ”outside” propagation. The track extension pro-
cedure can add up to three new hits per layer to account for 
situations when more than one hit per layer is produced in 
the overlapping detector modules.

Since the track extension can cause additional hit shar-
ing, the clone removal procedure is called again. Next, the 
extended and possibly merged tracks are refitted, and the 
”hit-to-track” assignments are reviewed. Any missing hits 
found in the vicinity of estimated track positions on the 
detector layers are added to a track. The hit addition algo-
rithm applies the constraint that a track can have at most one 
hit per module.

Finally, all reconstructed tracks are checked for the 
number of shared hits. If this number exceeds the stage-
dependent threshold (e.g. seven for the first stage), the track 
is discarded. Otherwise, the track is accepted, and all the hits 
on it are marked as assigned so that they cannot be used in 
subsequent stages of the track finding.

Outlook

The execution time of the algorithm can be improved by 
massive parallelisation on General Purpose Graphics Pro-
cessing Units (GPGPUs). Several parts of the algorithm are 
already implemented in a thread-safe manner and acceler-
ated using OpenMP directives. By exploiting the track-level 
parallelism, the track fitting parts of the algorithm can be 
efficiently executed on a GPU since the fast and compact 
magnetic field model can be implemented as a GPGPU 
device code. Currently, the ”In ”and ”Out ”collections of 
track segments are created independently. It might make 
sense to group detector layer pairs in such a way that, firstly, 
all ”In ”collections are formed for a particular layer. Then 
these collections can be analysed to make predictions for the 
”Out ”track segments. For example, these predictions can be 
expressed as an interval of track inclination angle in rz-plane 
compatible with the track segments in the ”In ”collection. 
Using this approach, one can avoid creating segments that 
cannot be connected at their common nodes.

Runner Up: Marcel Kunze

The algorithm uses artificial neural networks for pattern 
recognition based on spatial coordinates together with sim-
ple geometrical information such as directional cosines or a 
helix score calculation. Typical patterns to be investigated 
are hit pairs and triplets that could seed candidate tracks. The 
training of the networks was accomplished by presentation 
of typically 5 million ground truth patterns over 500 epochs. 
The hit data are sorted into voxels organized in directed acy-
clic graphs (DAG) to enable fast track propagation. In addi-
tion to the spatial hit data, the DAGs hold information about 
the network model to apply, and a z vertex estimate derived 
from the ground truth. As they combine the data with the 
corresponding methods the DAGs form a nice foundation 
to define tasks that can be run in parallel very efficiently in 
a multi threaded environment. There are two sets of graphs: 
one set covers detector slices along the z-axis, the other cov-
ers a grid transverse to the z-axis. Each set could be used 
independently, but a clever combination of the two yields 
the best overall score: The first set is used to seed the pair 
finder while the second drives the triplet finder. Prior to the 
execution of the model the DAGs were trained with track-
ing ground truth of typically 15-25 sample events, yielding 
a good balance between graph traversal time and accuracy. 
The path and track finding is based on inward and outward 
triplet prolongation in combination with outlier density esti-
mation, as proposed by J.S. Wind (a.k.a TopQuark) in the 
Accuracy phase [1]. With two threads the execution time 
is on average about 7 s per event at 93% accuracy in the 
Codalab docker environment.



	 Computing and Software for Big Science             (2023) 7:1 

1 3

    1   Page 14 of 19

High‑Level Description

The tracking model has been designed and implemented as a 
standard C++11 shared library. It may be run using the main 
C++ driver program, or it may be loaded into the python 
runtime environment using ctypes. The architecture com-
prises a Tracker class for data housekeeping and steering, as 
well as a Reconstruction class to implement the algorithms. 
The data are organized in the Graph class that has been 
designed as a STL-like header file. The neural networks are 
handled by the XMLP class. The Trainer class inherits from 
Tracker: it takes care of neural network training. While the 
training is based on the Neural Network Objects  [18] and 
the ROOT toolkit [19] there is no dependency of the tracking 
shared library to external packages. Persistence of graphs 
and neural networks has been achieved by streaming of the 
objects to corresponding text files. The program consists of 
five parts: setup, pair finder, triplet finder, path finder, and 
track assignment. The setup stage reads all configuration 
data and initializes the neural networks and graphs prior 
to processing the first event. The subsequent parts run as 
threads in parallel for each event, followed by a final serial 
track assignment to join the partial results into a common 
solution. The program implements multi-threading by 
instantiating corresponding reconstruction objects and man-
aging a set of tasks using a thread-safe stack. The tasks cor-
respond to graphs that hold the corresponding hit data and 
a set of neural networks to classify the data. While an event 
is being processed, each thread pops a task from the stack 
and executes it. Once the stack is empty and all tasks are 
finished, the first thread continues and combines the partial 
results into the final assignment of hits to tracks. The track 
assignment is written to a result file and handed over to the 
Python frame that delivers it to the CodaLab platform.

Scientific Details

The model is based on a cylindrical coordinate system 
( rt,�, z ) to describe the hit data. A library of track patterns 
has been organized utilizing direct acyclic graphs of space 
elements such that any element has following elements. In 
principle, the resolution could be chosen on a very fine-
granular detector cell level. Although this would yield very 
accurate results, the resulting graphs tend to grow very large 
and graph traversal becomes slow. For this reason, a two-
dimensional graphHash function has been defined to iden-
tify a �/� segment for any hit:

i1 = (int)(�1 ∗ 0.15 ∗ (� + �));

i2 = (int)(�1 ∗ 0.1 ∗ (5 − �));

where � corresponds to asinh(z∕rt) to flatten the distribu-
tion. The constants �1 and �1 define the granularity of the 

spatial tessellation. It turned out by tuning that a setting 
of 12 tiles in � and 14 tiles in � yielded the best com-
promise of accuracy vs. speed (i.e. highest overall score). 
To improve execution speed, each tile is bound to a dedi-
cated graph (168 in total). The graphs have been trained by 
presenting ground truth tracks of typically 15-25 events, 
which takes about a minute in total for all graphs. In addi-
tion, a voxel hash function has been defined to identify a 
hit and its correspondence to a spatial segment:

index = i1 << 32 | i2 << 24 | l << 16 | m;

where i1 and i2 are the corresponding graphHash values 
and l and m are the layer and module numbers of the hit, 
respectively. The use of the shift operator << in combina-
tion with the or | operator allows for very fast construc-
tion of the index bit pattern. There are two sets of graphs: 
One set covers the two detector slices along the z-axis, 
the other covers the angular grid (tiles). The first set is 
used to seed the pair finder, the other is used to drive the 
triplet finder. Each set would work perfectly well by itself, 
but a clever combination of the two yields the best over-
all score. The pair finder utilizes two neural networks, 
XMLP1 and XMLP2 to classify pair candidates. XMLP1 
is an 8-15-5-1 multi-layer perceptron that has been trained 
with the ground truth cylindrical coordinates of the two 
hits in addition with the two directional cosines of the 
hits along the trajectory. XMLP2 is a 9-15-5-1 multi-layer 
perceptron that, in addition, takes the helix score as an 
input as calculated in  [1], assuming the origin in addition 
to the pair. Both networks perform very well in any direc-
tion. As it consists of fewer nodes and does not require a 
vertex calculation, XMLP1 executes a slightly faster than 
XMLP2 at the expense of a few per cent lower accuracy in 
the central region of the detector system. The final setup 
therefore combines XMLP1 for the forward/backward sec-
tion (“disks”) with XMLP2 for the central section (“cylin-
ders”). In average there are about 500,000 pair combina-
tions accepted with a cut of 0.15 on the output of (XMLP1) 
and a cut of 0.55 on the output of (XMLP2) yielding an 
overall tracking score of 99.4%. The list of pairs is then 
submitted to the triplet finder. The triplet finder uses a 
10-15-5-1 multi-layer perceptron that has been trained 
with the coordinates of 3 hits plus an additional helix score 
(XMLP3). On average it accepts approximately 320,000 
combinations per event with a tracking score around 97%. 
The error rate presenting 100,000 validation patterns 
reaches about 6–8% for XMLP1/XMLP2 and around 2% 
for XMLP3, respectively. Figure 13 shows the signal effi-
ciency vs. background rejection of XMLP3 after training 
350 epochs of 3.5 million patterns each.

The track finding and assignment is based on inward/out-
ward triplet prolongation in combination with outlier density 
estimation from [1]. It takes care of joining the graph results 
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and yields an accuracy of about 93%. The track assignment 
is necessarily executed as a serial task.

Interesting Findings

The following interesting findings have emerged during the 
work for the contest:

–	 The training of the neural networks was initially based 
on pure cylindrical coordinates. It was observed that the 
input features could be folded in each coordinate due 
to the detector and event symmetry, thus considerably 
speeding up the training and reducing the number of pat-
terns. Technically, this octagonal folding is most simply 
realized by use of the abs-function in combination with 
a �∕2 shift, e.g. � is replaced by abs(abs(�)-�∕2).

–	 Conventional cuts on the vertex constraint considerably 
reduce the number of patterns to be processed. Through 
a simple geometrical estimate of the xy and the z verti-
ces by straight line propagation in the inner layers, the 
number of patterns to be classified by the neural networks 
decreases from more than 2,000,000 to about 1,200,000 
combinations per event. In principle, the vertex determi-
nation could be made using a neural network: a prelimi-
nary version of the solution integrated a neural network 
vertex estimate. However, despite achieving a better 
accuracy, the relatively long inference time yielded a 
reduced overall score.

–	 The training of the graphs happens once prior to the 
model evaluation and needs only O(15-25) events to 
yield optimum results. The graphs are persisted as part 
of the model. If more events are used during training, 
more accurate results may be achieved as the track library 

contains more voxels, however at cost of a longer execu-
tion time (and hence a lower overall score).

–	 The accuracy improves by 0.2% if the graph tasks are 
organized such that subsequent threads work on neigh-
bouring graphs. This is due to the fact that a track pre-
assembly already happens on the thread level prior to 
the merging of the partial results at the end. In that way, 
overlapping paths are already being merged on the paral-
lel thread level thus relieving the serial task.

Outlook

Great care has been taken to avoid using any low-level detec-
tor specific information in the core tracking algorithms to 
keep the algorithm as generic as possible. The neural net-
works are mainly trained with spatial information. As such 
the algorithms could be easily transferred to other environ-
ments or detectors.

The graph implementation furthermore offers a serial-
ization function that allows a list of tracks to be quickly 
obtained from the triplets stored in a DAG by recursive 
graph traversal. This already works surprisingly well in an 
environment with a lower track density (up to a few hundred 
tracks).

Conclusion

The TrackML challenge has been a long-running competi-
tion series to gather new algorithmic ideas to speed up track-
ing in the LHC experiments. After the first round of initial 
discussions, a prototype challenge [2] was organised during 
the Connecting The Dots workshop3 (an annual workshop 
for experts in pattern recognition) held at IJCLab in Orsay 
in March 2017. The problem was essentially the same as 
the one exposed here but significantly simplified to be a 2D 
problem with just 20 tracks per event (instead of 10.000 
in 3D). There was no speed constraint. The same accuracy 
score formula was used for the first time. This 2D challenge 
has already yielded a variety of algorithms (not applicable 
in 3D, though) and demonstrated that the accuracy score was 
indeed selecting the best algorithms.

The first Accuracy phase of the TrackML challenge 
proper was run on Kaggle [1]. It identified a variety of 3D 
algorithms, and a thorough investigation has shown that the 
Accuracy score was indeed selecting the best algorithms 
when their performance was evaluated using standard 
metrics.

The second, Throughput, phase had significantly lower par-
ticipation, but it yielded a few very high-quality and very fast 

Fig. 13   Receiver operation characteristics of triplet finder perceptron 
XMLP3 

3  https://​ctdwi​t2017.​lal.​in2p3.​fr.

https://ctdwit2017.lal.in2p3.fr
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algorithms. It is not currently possible to compare directly to 
in-house algorithms, which would need to be adapted to this 
specific dataset. Also, in-house algorithms in common use usu-
ally ignore the numerous tracks with pT less than 400 MeV 
(the tracks with the highest curvature). In contrast, the algo-
rithms presented here can reconstruct tracks down to 150 MeV. 
So it can be estimated that in-house algorithms are at most of 
order 10 s per event on one CPU core, so one order of magni-
tude slower than Mikado from Sergey Gorbunov (a.k.a sgor-
buno), 0.5 s on two CPU cores. On the other hand, the dataset 
was significantly simplified (in particular neglecting sharing 
of points between tracks), so it remains to be seen whether the 
new algorithms can live up to expectations when used in the 
full ATLAS and CMS experiment context. The community is 
now in the process of doing this exercise.

In the end, what role can be expected for Machine Learning 
in tracking in light of the TrackML challenges? It does not 
appear that a clustering algorithm can find the track directly 
(as was done with DBScan-based algorithms in the Accu-
racy phase, which are much too slow). Of course, the field of 
machine learning is growing so rapidly that new algorithms 
might appear, which would change this statement.

Nevertheless, after extended discussions between the 
three winners and experts in the field, a consensus appears 
that there are two likely avenues for the use of Machine 
Learning in such problems (i) combine ML with discrete 
optimisation, for example, using a classifier to select early 
and quickly the best seed candidates as done by Marcel 
Kunze a.k.a cloudkitchen (with a simple dense NN, but 
Graph NN seem promising) (ii) use ML to automatise the 
lengthy tuning of the internal parameters of the algorithms 
on the training dataset (circa 10.000 in the case of Mikado 
by Sergey Gorbunov a.k.a sgorbuno).

Separately, the availability of the TrackML datasets ( [11] 
for the Accuracy phase and  [10] for this Throughput phase) 
has been extremely useful in facilitating the collaboration of 
experts which are usually working within their own experi-
mental team. It is being used for further studies like track 
seeds finding with similarity hashing [20] or classification 
with deep learning [21], investigating the use of cluster 
shape to help seeding [22], investigating tracking with graph 
networks [23–28] (including with GPU [29] and FPGA [30, 
31] ), investigating surface prediction [32] and automatic 
optimisation of tracking algorithm parameters [33], investi-
gating tracking with simulated annealing on a D-Wave quan-
tum computer [34, 35] or Quantum Edge Network [36–39], 
building a complete generic tracking pipeline [40] or for 
data flow optimisation studies [41]. Finally, it is also used to 
develop complex data visualisation tools [42, 43].
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