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Our Mission

e A cross-experiment effort aiming to streamline computing operations:

o Improve resource utilization by reducing the time needed to address operational
issues

o Minimize human effort for repetitive tasks by increasing the level of automation

o Build a community of technical experts: critical mass to have impact on concrete
and common issues while setting up sustainable tools.

e Our mission:
o Identify common projects
o Leverage common tools/infrastructure
o Collaborate, share expertise,tools & approaches

o Across experiments

o Acrossteams (operations, monitoring, developers)


https://operational-intelligence.web.cern.ch/

Can we do better?

e LHC experiments built a successful computing ecosystem for LHC Run-1/2
o At which depth do we fully “understand” it?
m Can we perform precise modelling of the workflows and our services and use
this modelling to make predictions?
o Uptonow we monitored to debugin near-time.
m Can we analyse and learn from the past to design and build tools that will help

with operations?

e However: computing operations (meta-)data is all archived.
o We have logs for transfers, job submissions, site performances, infrastructure and
services behaviours, storage accesses, ..

o All this knowledge should be exploited!



Operations Today

Visualization / Monitoring

ATLAS/CMS: A lot of people involved in
Computing Operations
In 1year:

> 1k GGUS tickets for ATLAS, > 2k for CMS
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Ongoing Efforts

What we are doing:

e Develop tools to automate computing operations exploiting state-of-the-art
technology and tools
e Run an experiment-agnostic technical forum to:
o bring people together
o discussideas,brainstorm,share experience and code

We identified areas where shared development can occur:
e Computing facilities
e Workflow Management
e Data Management

And we provide some shared infrastructure: \\\‘
e A common k8s cluster for services to be deployed. -~ r

e A framework which can be used to develop new tools o
; 7]
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We leverage open-source products for
Monitoring and Operational Intelligence
tasks
The Kubernetes infrastructure is the de-facto
standard for deploying and scaling services
HTTP and AMQ are the main protocols for
data injection
Prometheus and ElasticSearch are main
platforms for managing metrics and
meta-data
Clear separation of Data, Infrastructure,
Visualization simplify operations
Data standardization,common naming
convention, data validation plays an important
role
Operations become easy with robust
infrastructure and solid CLI tools
Automation is a key to success

o Data annotation,alerting, notifications,

tagging, etc.

Infrastructure

- elasticsearch
kubernetes
~aing
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For more details see:

The Evolution of CMS
Monitoring Infrastructure talk
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Intelligent Alert system

e CMSdeveloped an intelligent layer in their infrastructure to detect, analyze and predict
abnormal system behaviors using the alerts produced by the infrastructure.

e Using open source tools makes this effort experiment-agnostic

External Systems
(SSB, GGUS)
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SSB and GGUS are integrated into the Alert
Manager.

The alert manager fetches the existing alerts,
filters them, and annotates Grafana
dashboards based on the alert tag.

Users can add annotations directly from the
dashboard.

Provides useful insights about when outages
happen and how they affect the productivity
reported by various systems in CMS
dashboards.

http://cern.ch/go/cxg8
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The shared k8s cluster

e Havinga common space to deploy our applications is in line with our cross-experiment

goals. ‘

[ Authentication

Authorisation Service A }
Service 7\

[ Data fetchers
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Jobs Buster 7
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HammerCloud JobShaping

. . . Jop Shaping Actions and Job Evolution plots
e HC checks functionality of each compute sites for

A.TLAS & CMS in WLCG 839 841 883 1013 952 957

Job Shaping actions - 2020-11-19

for tpl 957 on site -

e ATLASruns an auto-exclusion mechanism 6
o setssites “offline” with failing functional tests
o re-includes succeeding sites automatically

e JobShapingaims to speed up the automatic ;
exclusion and recovery decisions
o  Problem: test jobs might get stuck or run \ \[\

0

Values

much longer than expected -> lacking fresh SEFLEEPES PSSO S S S PO EE SO EESSE PSSP P S
info for decision ST T F T T »& HCR xBQ\Qb‘\\/QQQ><me\ R b
o  Solution: adjusting the number of parallel sbnited ~Familng @ lchateely, Wit sags
running jobs per site and test type
dynamically Prototype view of jobShaping web interface

e next steps: add specialised debug tests only sent to sites with failing test jobs
o  help problem solving and identifying failure source
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Data Management - Analysis of error messages

e Every day operation teams must deal with multiple data transfer errors.

e The monitoring systems help users to detect anomalies, to identify duplicated issues, to
diagnose failures and to analyze failures retrospectively.

e Clustering of error messages is a possible way to simplify the analysis:
o messages having the similar text pattern and error conditions are grouped,

o groups of similar messages are described by the common text pattern(s) and
keywords,

o messages encountered only once or several times are considered as anomalies

e There are currently multiple efforts trying to analyze the error messages and simplify
operations

17



ClusterLogs

e ClusterLogsisone of the frameworks that was developed within OI to cluster error

messages.
https://github.com/maria-grigorieva/ClusterLog

OUTPUT:
Word2vec DataFrame with

Model Patterns, Key Phrases
and Indices

INPUT:
DataFrame with
Error Messages

Data Trimming Vectorization Machine Learning Clusters Description
Clustering
Tokenization Vectorization of tokens Common Patterns
(word2vec) Clustering algorithms: Extraction
Regex Cleaning |:> :> - DBSCAN Q
— - HDBSCAN
Vectorization of - Optics Key Phrases Extraction
Regroup by Equal messages - Hierarchical
Patterns - K-means
18



https://github.com/maria-grigorieva/ClusterLog

Data Management: FTS log analysis

© Biggest clusters over the time
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Data Management: FTS log Analysis

e Similar effort to clusterize FTS error messages, and validate the results using GGUS tickets

Preliminary results:
e The modellearnsto abstract message parameters as IPs, URLs, file paths, ...
e Testingagainst GGUS tickets gives promising results:
o most problems recognized — exact match between cluster and GGUS ticket
o undetected/unreported issues — hints of real problems that were not reported on GGUS (under study)
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Anomaly detection on FTS transfers

e Google showed interest in trying to help us develop a recommendation system to help

operation teams to prioritise transfer errors

e FTSlogsanalysis showed that we can study errors evolution not only over time but also

over the interconnection between nodes (site endpoints).
e Given the observed changesin error distribution across time, connection graph and
content (as represented by the error categories), Google engineers investigated graph

anomaly detection algorithms as a possible way to identify patterns in the logs.

21



Anomaly detection on FTS transfers

MIDAS (MIcrocluster-based Detector of
Anomalies in Streams):

- finds anomalies in dynamic graphs (such as
those generated by file transfers, but also
intrusions)

- detects micro-clusters (sudden “burst” of
connections between nodes, such as those that
may occur with multiple retrials, but also
denials of service)

- Memory usage is constant and independent
of graph size

- Update time in streaming scenarios is also
constant

22 https://arxiv.org/pdf/1911.04464.pdf
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Anomaly detection on transfers

e Next steps:

o Include text features in anomaly detection. We must consider not only the number,
timing and location of links between nodes, but also the messages. Other metadata
such as user, file size etc... may play a role too.

o Include data from GGUS tickets to validate the results.

o Build an interface for shifters to explore the results of this analysis.

e Thiseffortis now a pilot project in the EU CloudBAnk.
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Cloud anomaly detection ':E

e A CERN based project to reliably detect anomalies in the CERN Cloud and help service
managers to:
o Identify operational issues

o Getacomprehensive understanding of the cloud performance.

e A grafanaannotations enhancement has alsobeen developed in parallel to:
o Allow experts easily give feedback on the results, directly from Grafana.

o Addthe dashboard template variables as tags

e Don't miss the vCHEP talk “#20, Anomaly detection in the CERN cloud infrastructure”

26 http://cern.ch/go/grf9
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Cloud anomaly detection

/', A pgthon f . Domain Expert
; docker fluentd -

;:;): £2 — Feedback
; Individual Methods '\ elasticsearch
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Data Unsupervised Anomaly EQ Monitoring
source Detection Methods — g Dashboards
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Cloud anomaly detection

=

G

@ Every algorithm models a scoring function that assigns SPIVEE ind hoaigreup
to each sample an anomaly score indicating its degree Q @ Q Q
0.01 0.01 0.01

Problem Formulation: Scoring Function

of anomalousness

— Wi is the matrix of metrics x time (see next slides) .
Window Length = 8 hours

@ Then a step function is applied to make the prediction v f—

bmary = CPU load time series
of 200 servers, same
hostgroup

* 0 ==Normal, 1 == Anomalous
Q' Together is
AD(Wf,(h)) : R*" — {0,1})

WE () = (iR, i1 (), oy 1 ()

@ Re-iterate, sliding on non-overlapping time windows

28 http://cern.ch/qgo/grf9
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Cloud anomaly detection

AlgOrith mS’ COmpariSOI’] ” “Batch” category

&  The AUC-ROC is measured for every algorithm on several, independent v

08

weeks. The average performance (and std) is reported in the charts

07

06

@ “Batch” category
— Largest AUC achieved: 90%

05

KNN
ForecastVAR
AECnnTF2
ocsvM
AELstmTF2
LOF
AEDenseTF2
PCA
ForecastCNN
IForest
ENS-MIN
ENS-LINREG
ENS-AVERAGE
ENS-MAX
ENS-MEDIAN

ENS-CUMSUM

— |Forest, PCA (traditional methods) perform as good as Deep methods

“Shared” category

B Deep Learning M Ensamble
0s{ M Traditional | ! !

&X  “Shared” category

— More difficult scenario: no method scores >80% AUC

08

— Deep methods score slightly better, LSTM is the best one

07

& Ensemble methods underperform individual methods 06

— Probably due to the strong correlation between some of the input algorithms.
Need more investigation

258
g

ENS-MIN
ENS-MEDIAN

ENS-MAX

AEDenseTF2
ForecastCNN
ForecastVAR
KNN

IForest
AECNNTF2
AELStmTF2
[ENS-AVERAGE
ENS-CUMSUM
ENS-UNREG
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Sites Optimisation ':E

30

We are also keeping an eye into what big companies from the industry do to
automate their computing centers and reduce operational costs and

environmental impact.

Of course in a diversified environment like WLCG these holistic strategies may not

always apply.

The past years we have moved into a more unified processing pipeline in our sites,

something which creates possibilities for collaborative efforts.



Industry examples

=

e Alotofinteresting hardware related work:

(@)

31

Building sensors throughout their networks so that they can redirect workload to offload

overloaded nodes

Using SMART (Self-Monitoring, Analysis and Data ” | Data Cleansing
Collection and Storage
Reporting Technology) to derive disk failure

predictions and replace hardware proactively ’

Using Al to manage the cooling and power

management of the data center (advertising up to 5 D;”ta
Control Processing

5% gains in performance)

In general: predictive maintenance based on

sensors and computing logs 4

Data Analytics




INFN Bologna - Predictive maintenance

e INFN Bologna has started a very interesting project trying to switch from reactive maintenance to predictive
maintenance.

e They are using the logs of the various services and through a pipeline of analysis they try to diagnose, or even
better predict, errors.

pmmmm—————— o iSaiasassnsssarsassasaiasars (3) Software solution t 1 Work done
' d H Input - Raw log data i1 Nextstep

I Log Data 1 : (online) Template :

| > P i Il outputs [ Future work
'

Pre-processing

Classification

Log Sequence Log Sentiment Cross-file Anomaly
Pattern Processing Analysis Tracking
o N A4
: 2 . ®
Unstructured/Semi- > (online) Anomaly ! 1 Parameter !
structured log data 1 identification : 1 Extraction :
J I\ ’ . ’

Diagnosis

Prediction

32
http://cern.ch/go/B9KR
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e We have in the past 2 years gathered expertise
and an understanding of the various efforts.

e We can see there isroom for improvement and
there was already some progress done.

e We will continue trying to span new
collaborations.

e Your feedback and your ideas are vital and always
welcome.

operational-intelligence(@cern.ch

Conclusions
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