
Studies of GEANT4 performance for different ATLAS
detector geometries and code compilation methods

CATERINA MARCON
E. ELEN, JESSICA R. MADEIRA, B. MORGAN, O. SMIRNOVA, D. SMITH

ON BEHALF OF THE ATLAS COLLABORATION

VCHEP 2021

1

Outline

The aim of this study is to investigate different methods to reduce the full simulation
execution time without sacrificing the quality of the simulated data and without altering the
existing source code:

– A broad range of build-time configurations has been tested in order to check the
independence of physics results from compiler-specific options;

– The impact on simulation execution time of different build types has been investigated;

– The effect of different primary particles on the simulation execution time has been studied.

2

Motivation

• During the High-Luminosity LHC phase, the goal is
approximately ten times the data of early runs.

• This will require a corresponding increase in the amount
of simulated data, which already accounts for 40% of
ATLAS' CPU usage. Many analyses are already limited by
the availability of MC events.

• An active R&D program to optimize the GEANT4 CPU
requirements is a priority in ATLAS.

3

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

0

10

20

30

40

50

60

70

80
=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2020 Computing Model - CPU
Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

LHCC common scenario
=200)µ(Conservative R&D,

ATLAS Preliminary

Motivati

Method
• Run standalone Geant4 simulations, disentangling them from other libraries that may affect performance.

• Compiled G4 (version 10.5) both statically and dynamically. The computations have been carried out on a
CERN standalone machine and on the Lund University cluster.

• Different versions of the GCC compiler, namely 6.2.0 and 8.2.0, Clang and ICC have been used for these
investigations.

• As a benchmark, a Geant4 simulation (from A. Dotti [1]) has been used.

• The studies have been carried out using both a GDML1-based ATLAS geometry (without EMEC2) as well as
the GeoModel representation of the full ATLAS geometry.

[1] https://gitlab.cern.ch/adotti/Geant4HepExpMTBenchmark
1 Geometry Description Markup Language: an XML-based, application-independent geometry description format
2 ElectroMagnetic EndCap calorimeter4

https://gitlab.cern.ch/adotti/Geant4HepExpMTBenchmark

Single dynamic library
• Three different build types, default dynamic multi-library,

dynamic single library and static library, have been used.

• The study is performed using 2500 initial events and 4
threads. The GDML ATLAS geometry has been considered.

• To build the single dynamic GEANT4 library the CMake
structure has been modified adding the new flag
BUILD_SINGLE_LIB.

• The dynamic single library approach, for both
GCC versions, increases the execution time up to 10%.

• This effect could be explained considering the trampoline
used by dynamic libraries to provide the calling functions
with the memory addresses of the called methods.

5

Impact of different primary particles using GDML geometry

• Several primary particles (protons and charged
pions) of different energies have been
considered;

• For all the primary particles analyzed, a
decrease in the simulation execution time is
observed for the static build;

• This improvement is increasingly pronounced
as the complexity of the interactions grows: the
speed-up exceeds 10% in case of 20 GeV
protons tested with this geometry.

6

Impact of different primary particles using full ATLAS geometry
• Also with the full ATLAS geometry, a substantial

decrease in the simulation execution time is
observed for the static build even though the
inclusion of the EMEC reduces by ∼3% the gain
of the static build.

• With both the geometries:
– the static build shows a tendency to be less

sensitive to the type of primary particles used;

– for protons with 20 and 50 GeV, computations
show a longer execution time: the proton
undergoes more ionization processes in the
medium it traverses and travels longer distances
before absorption;

– fluctuations between the pions are consistent
with the slightly larger interaction cross section
of the negative particle at the considered energy.

7

Conclusions & outlook
• Several factors can significantly affect the full GEANT4 simulations execution times:

– Tests with the single dynamic library resulted in a ∼ 10% increase in the execution time; the effect is ascribed to the
trampoline/lookup table mechanism of dynamic linking.

– All the investigations, performed with different primary particles, carried out with the static build type with the GDML
geometry (without EMEC), have shown a gain of about 10% with respect to the reference multi-library dynamic case.

– Evaluations of the GeoModel geometry, representing instead the full ATLAS detector (including EMEC), confirm a gain
with the static build type even if smaller (about 7%).

– Unsafe math optimizations as well as certain compilers, namely the Clang family and older GCC versions, may have a
negative impact on the quality of the physics results (e.g. a shift in the average energy deposition).

• As a future step, studies with static build could be integrated and tested in the environment of the Athena framework.

8

Overview of computational resources
Table 1: Computing resources

CERN standalone machine Compute node on Lund University cluster

CPU 2⇥ Intel Xeon E5-2630 v3 2.40GHz 2⇥ Intel Xeon E5-2650 v3 2.30GHz

Architecture 64 bit Haswell x86_64 64 bit Haswell x86_64

N. of cores 16 20

Threads per core 2 1

Cache 20 MB (L1: 64 KB, L2: 256 KB, L3: 20 MB) 25 MB (L1: 64 KB, L2: 256 KB, L3: 25 MB)

RAM 64 GB 128 GB

Filesystem XFS IBM General Parallel File System (GPFS)

Operating system CentOS 7 CentOS 7

3 Results and discussion

3.1 Physics validation

The analysis of the average energy deposition per event carried out with 5 di↵erent compilers
revealed that the results are not always compiler-independent, and the observed di↵erences
can be ascribed to the following cases (Fig. 2) [11]:

• use of unsafe math optimizations (-Ofast, ICC compiler or native architecture instruc-
tions);

• use of compilers from the Clang family or older versions of GCC (such as 4.9.4), resulting
in di↵erent energy depositions and di↵erent random numbers sequences, despite the fixed
random seed. The CLHEP implementation of the Mersenne Twister algorithm is used in
the benchmark simulation [12]. Further studies are ongoing to assess the reproducibility of
random sequences.

The observed deviations in energy deposition suggest the possibility to exclude the afore-
mentioned cases and to limit the rest of the studies presented to two GCC versions, namely
6.2.0 and 8.2.0, and to four optimization flags, -Os, -O1, -O2, -O3.

Figure 2: Energy depositions in two of the configurations resulting in di↵erences in the aver-
age energy deposition. GCC 4.9.4, Dynamic linking, -O2 is used as a reference configuration.
The average energy deposited per event is µE = 42.92(3) GeV (left, GCC 8.2.0, static link-
ing,-Ofast, native architecture instructions, and LTO) and µE = 43.03(3) GeV (right, Clang,
dynamic linking, -O2).

