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This paper deals with the determination of the wake-function, impedance and energy loss due to
surrounding accelerator components of two countermoving beams, i.e., two beams moving in opposite
directions. Differently from the classical case, the distance between source and test charges cannot be
considered constant. The paper defines a generalized wake-function, independent of the source and test
particle’s direction of motion. From this generalized wake-function a wake-potential is derived. The paper
focuses in particular on the longitudinal direction. The expression of the energy dissipated by two beams
transiting in the same vacuum chamber is obtained. This expression is valid both in the comoving and
countermoving beam scenario. Subsequently, the proposed model is benchmarked by calculating the
longitudinal co and countermoving wake-functions, the corresponding impedances and wake-potentials for
two simple geometries (a circular pipe and a pillbox cavity) traversed by two countermoving beams, and by
comparing the results with the ones of the electromagnetic code CST Studio Suite. Finally, for the pillbox
geometry, the energy loss of the two countermoving beams and their rf-heating are investigated.
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I. INTRODUCTION

The particles of a beam traversing a vacuum chamber
interact electromagnetically with it generating the so-called
wakefields. These wakefields dissipate heat on the vacuum
chamber materials (rf-heating) and act back on the beam
particles potentially triggering instabilities. In the case of a
single beam traversing the vacuum chamber all the particles
move in the same direction. Using the nomenclature
proposed by Wang [1], this paper names this scenario
comoving wakefield or simply wakefield (in Fig. 1(a) two
comoving particles are reported, most of the quantities used
in the paper are also presented).
The physical model for quantifying the effects of the

comoving wakefield has been the object of many studies,
and the works of Chao [2], Ng [3], Zotter and Kheifets [4]
and Bane et al. [5] are examples of the basis of the current
understanding on the topic.
However, in some devices of circular colliders there

is an extra complication due to the presence of two

counterrotating particle beams. Usually, for large modern
circular colliders, the two beams pass in two separate
vacuum chambers. However, in the collision regions and,
sometimes in other components, they transit in the same
vacuum chamber. In this case, the particles of one beam
move in opposite direction with respect to the particles of the
other beam. Each beam generates its own wakefield that acts
on itself and on the counterrotating beam. This scenario is
relevant also in the collision chamber of linear colliders.
Once again, using the nomenclature introduced byWang [1],
one refers to the latter case as countermoving wakefields (in
Fig. 1(b) two countermoving particles are reported).
In the Large Hadron Collider (LHC) [6] at the labo-

ratories of the European Council for Nuclear Research
(CERN) two counterrotating beams circulate. They transit
in the same vacuum chamber in the collision chambers, at
the four interaction points, and in other components such as
the Target Dump Injection or TDI [7] (the LHC injection
absorber), and the Target Dump Injection Segmented
(TDIS) [8], the upgrade of the TDI to be installed in 2020.
In 2011, theTDI hadmajor issues due to unexpected severe

rf-heating [9]. A possible explanation could be linked to the
rf-heating resulting from the interaction of the two counter-
rotating beams. To avoid these issues with the TDIS, CERN
allocated resources to investigate the power losses to sur-
rounding components of two countermoving beams. This
paper reports the results of this study, showing that comoving
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and countermoving beams, transiting into a vacuumchamber,
can lead to additional resonance conditions that should be
considered to mitigate rf-heating.
In the past, few studies have investigated the interaction

between two countermoving beams via their wakefield:
Pellegrini [10] and Wang [1] studied longitudinal and trans-
verse countermoving twobeam instabilities linked to resonant
modes for the Large Electron Positron storage ring (LEP)
[11]. They modeled the resonant modes as if they were
generated by circular cavities. The latter were thought of as
thin lenses, symmetric along their longitudinal axis. Further,
their model focuses on the interaction of a beam with the
wakefield remaining in the cavity after the other beam has left
the cavity. It does not describe what happens when both the
countermoving beams are inside the cavity. Zimmerman [12]
discussed the transverse resistive wall wakefield problem for
twocountermoving beams.Zannini et al. [13,14] andGrudiev
[15] presented models to compute the rf-heating induced in a
vacuum chamber traversed by the countermoving beams, and
recently Giordano et al. [16] have presented a benchmark of
these models against simulation results.
In this context, this paper focuses on the computation of

the countermoving beams induced heating. It is not the aimof
the paper to discuss beam instabilities. The paper proposes
and benchmark a comprehensive formal physical model to
obtain the comoving and countermoving wake-function and
wake-potential and, from them, the beam energy loss.
Contrary to the models of Wang [1] and Pellegrini [10],

the proposed model can take into account also the wake-
field effects generated when both the beams are still inside
the vacuum chamber. Regarding the power computation,
the proposed model can reobtain results that are similar
to the ones of Grudiev and Zannini [13,15]. Differently
from these works, it is able to take into account also the
transient wakefield rf-heating effects that are generated
when both beams transit inside the vacuum chamber.

The paper has the following structure:
In section II, it defines a generalized wake-function for

two point charges, a source charge S, that generates the
wakefields and a test charge T that experiences the wake-
fields. The generalized wake-function is independent of the
fact that the charges are countermoving or comoving and
can describe what happens when the two beams are passing
into the device at the same time. The section also introduces
the generalized wake-potential and uses it to calculate an
expression of the energy and the power dissipated by two
countermoving beams transiting in a vacuum chamber, both
in terms of wake-functions and in terms of impedances.
In Sec. III, the proposed model is benchmarked in the

longitudinal plane, since this study focuses on beam energy
loss and rf-heating. In particular, in Sec. III A, the longi-
tudinal comoving and countermoving wake-function,
wake-potential and impedance, computed analytically,
are compared against the ones obtained by simulations.
This is done for two geometries: a resistive wall pipe and a
pillbox cavity. For both the examples, first the methodology
and the results are shown (in Sec. III A 1 for the resistive
wall pipe and in Sec. III A 2 for the pillbox cavity).
Subsequently, the physical meaning of the results and their
implication are discussed in the discussion Sec. III A 3
both for the resistive wall pipe and for the pillbox cavity.
Section III A shows that there is good agreement between
the proposed model results and the simulation ones.
In Sec. III B, the problem of the energy dissipated by two

countermoving beams exciting and interacting with a pillbox
cavity mode is tackled using both simulations and the
proposed model. This subsection is divided in two parts.
In the first part (Sec. III B 1), the methodology is described
and the results are presented. In the second part (Sec. III B 2),
the physical meaning of the results is discussed. Also Sec. III
B finds analytic and simulation results in good agreement.

(a) (b)

FIG. 1. Source (qS) and Test (qT) charge transiting inside a vacuum chamber. The figure shows the instantaneous longitudinal
positions of the two charges zqSðtÞ and zqT ðtÞ, their speeds vqS and vqT , their longitudinal distance sSTðtÞ and the transverse position of
their trajectories with respect to the main reference frame uT and uS. The fixed reference system O has origin in the entrance section of
the test particle and the ẑ axis is aligned with the test particle velocity vector. The length of the vacuum chamber L is also indicated.
(a) Comoving case, S and T move in the same direction. (b) Countermoving case, S and T move in opposite direction.
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Finally, conclusions and future works are reported
in Sec. IV.

II. THE PHYSICAL MODEL

A. Main approximations

The approximations on which the wakefield model is
based are two-fold [3]:

(i) Rigid beam approximation. The trajectories of S and
T are fixed, they are straight and parallel to each
other. Furthermore, the speed modulus of T and S is
equal and constant vqS ¼ βqSc ¼ vqT ¼ βqT c ¼ v
while the two particles traverse the vacuum chamber.

(ii) Kick approximation. The effects of the electromag-
netic force, continuously acting on S and T all along
the vacuum chamber, are represented as a lumped
single change in particle properties acting after the
particles passage.

Often in the literature the first hypothesis is reformulated
as follows: the trajectories of S and T are fixed, they are
straight and parallel to each other and the longitudinal
relative position of T with respect to S (represented as sST
in Fig. 1(a)) during the particle transit through the vacuum
chamber is constant, i.e., time-independent.
The authors want to stress that the previous sentence is not

the rigid beam approximation but only one of its conse-
quences. The time independence of the relative position of T
with respect to S can be derived from the rigid beam
approximation adding the extra hypothesis that T and S
move in the same direction, that is the comoving case. The
rigid beam approximation, as stated in this paper, remains
valid also if the relative positions between the particles is
changing inside the vacuum chamber. This is the case for the
countermoving wakefield scenario, where the particle dis-
tance sST changes while T and S are traversing the vacuum
chamber, i.e., sST is time dependent [refer to Fig. 1(b)].
In addition to the classical rigid beam and kick approx-

imations, other two approximations are considered in this
work.
It is assumed that all the interactions happen in the

vacuum chamber. Electromagnetic fields generated by the
beams outside of the vacuum chamber that reach the vacuum
chamber and deposit energy on its wall are neglected.
Furthermore, when two countermoving beams are tran-

siting in the same vacuum chamber at the same time, direct
electromagnetic forces between the two beams develop. This
interaction, known as beam-beam effects [17], is crucial to
study beam dynamics and instabilities during collisions.
However, it has negligible effects on the rf-heating of the
vacuum chamber and it is not taken into account in this
paper. As a consequence, the motion of the beams is
considered not perturbed by the direct interactions between
the beams and the rigid beam approximation can be applied.
The formal physical model that describes quantitatively

the effects of the wakefield is well know and tested for the

comoving case. However, this model relies on the time
independence of the longitudinal test-source distance sST .
In the countermoving case, since sST is not constant, the

current model is not applicable as it is. However, it can be
adapted to describe both the comoving and countermoving
cases, as is explained in the following.

B. Generalized wake-function and wake-potential

In this subsection the expression of the generalized
wake-function and wake-potential are introduced.
Generalized means that they can be used both for the
comoving and countermoving cases.
Primarily, one notes that there is a time delay for the

entrance in the vacuum chamber of the test charge T with
respect to the source charge S. In this paper, this is called
time entrance delay and it is defined as:

ΔtST ¼ tTi − tSi; ð1Þ
where tTi is the entrance time of the test particle into the
vacuum chamber and tSi is the entrance time of the source
particle. For the sake of clarity, the test particle enters into
the vacuum chamber when it crosses the test entrance
section. The source particle enters into the vacuum chamber
when it crosses the source entrance section, refer to Fig. 2.
One also defines the space entrance delay as the distance
that T has to cover to enter into the vacuum chamber at the
time at which S is entering into the vacuum chamber:

ΔsST ¼ vΔtST: ð2Þ
In the comoving case the space entrance delay is coincident
with the longitudinal distance between T and S and the
concepts of time entrance delay, space entrance delay and
longitudinal particle distance can be used indifferently. This
is not the case in the countermoving scenario.
Subsequently, to formally define the wake-function,

one has to recall its physical meaning: the wake-function
represents the integrated effect (change of energy in the
longitudinal direction and change of transverse momentum
in the transverse plane) that the electromagnetic field
excited by the transit of the source charge S in the vacuum
chamber has on the test charge T that enters the vacuum
chamber with a time delay ΔtST with respect to S.
Thus, a generalized wake-function can be defined as:

wðuT;uS;ΔtSTÞ ¼
1

qSqT

Z
tTo

tTi

FðuT;uS;ΔtST; tÞvdt; ð3Þ

where, F is the instantaneous Lorentz force acting on T
and tTo is the exit time of the test particle from the
vacuum chamber. The vectors uT;uS define the transverse
positions of test and source particle trajectory (they are
shown in Fig. 1).
The generalized wake-function w defined by Eq. (3) is a

vector of three components. The longitudinal wake-func-
tion depends on the longitudinal electric field Ez as:
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wzðuT;uS;ΔtSTÞ¼
1

qS

Z
tTo

tTi

EzðuT;uS;ΔtST;tÞvdt: ð4Þ

Equation (4) will be used in this paper to give examples of
countermoving wake-functions.
From Eq. (3) it is possible to obtain the generalized

wake-potential. If one considers as a source a longi-
tudinal charge distribution λSðtÞ, normalized such thatR∞
−∞ λSðtÞdt ¼ 1, each infinitesimal elements of the charge
distribution can be thought of as a point charge that
enters into the vacuum chamber at a time tdQSi and has
a different entrance delay with respect to the test charge T,
given by the equationΔtST ¼ tTi − tdQSi. The charge of this
infinitesimal element can be expressed as dQSðtdQSiÞ ¼
qSλSðtdQSiÞdtdQSi. It is also useful to define ΔtQST , the time
entrance delay between the source distribution QS and the
test charge T as the entrance delay between the test charge
and a reference point charge in the distribution, dQSr (for
instance the infinitesimal element with the maximum
charge). The space entrance delay between the source
distribution QS and the test charge T, ΔsQST , follows from
the time entrance delay as ΔsQST ¼ vΔtQST .
A visualization of these quantities is given in Fig. 3. The

figure represents the sliced charge distribution QS and
the test charge qT as a function of their entrance times into
the vacuum chamber ti.
Every charge dQS excites the vacuum chamber and

acts on T with its own wakefield. The sum of all these
contribution is the wake-potential. Thus, the generalized
wake-potential can be defined as the convolution between
the generalized wake-function w and the normalized
charged distribution λS:

WðuS;uT; tTiÞ ¼
Z

∞

−∞
λSðtdQSiÞwðuT;uS; tTi − tdQSiÞdtdQSi:

ð5Þ
In section III examples of longitudinal countermoving

wake-functions and wake-potentials are reported.

C. Energy and power

The longitudinal component of the generalized wake-
function, wz expressed in Eq. (4), represents the energy
variation of the test point charge because of the wake-
field induced by the source point charge, normalized
with respect to the two charges qS, qT . The longitudinal
component of the generalized wake-potential, Wz Eq. (5),
represents the energy variation of the test point charge
because of the wakefield induced by the source charge
distribution, normalized with respect to the two total
charges qS, qT .
If also the test charge is a distribution, it can be described

as an ensemble of point charges, each one centered at its
entrance time in the vacuum chamber tdQTi with width
dtdQTi and charge dQTðtdQTiÞ ¼ qTλTðtdQTiÞdtdQTi.
The energy variation of the test distribution because of

the wakefield induced by the source distribution, ΔUQTQS
,

is the sum of the energy variations of all the infinitesimal
charges dQT , each one characterized by a different entrance
time tdQTi:

FIG. 3. Representation of the charge distribution QS and of the
test charge qT as a function of their entrance time into the vacuum
chamber ti. In the picture, tdQSi

is the entrance time of dQS, the
generic infinitesimal charge composing the distribution QS, tdQSri

is the entrance time of dQSr, the reference infinitesimal charge of
the distribution QS. The entrance time delay of the test charge qT
with respect to this two charges, ΔtST and ΔtQST , is also shown.

(a) (b)

FIG. 2. Representation of the positions of S and T at the time at which the source is entering into the vacuum chamber, tSi. Test and
source entrance section are highlighted, in the comoving case they are coincident. The space entrance delayΔsST is also represented, it is
the distance that T has to cover to enter into the vacuum chamber starting from the time when S is entering. Note that, in the comoving
case the space entrance delay is also the distance between the source and the test particle. (a) Comoving case. (b) Countermoving case.
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ΔUQTQS
¼ qSqT

Z
∞

−∞
λTðtdQTiÞWzðuT;uS; tdQTiÞdtdQTi:

ð6Þ

Considering a characteristic frequency f0, as, for exam-
ple, the beam revolution frequency in the accelerator (and a
related characteristic time T0 ¼ 1=f0), one can define the
average power gain or loss of the test distribution transiting
into the vacuum chamber as:

P ¼ ΔUQTQS
f0 ¼

ΔUQTQS

T0

: ð7Þ

D. Energy dissipation due to two beams traversing
a vacuum chamber

In this section the longitudinal generalized wake-
function and wake-potential presented earlier are used to
obtain the expressions of the beam energy and power
variation, in the case of two beams traversing the same
vacuum chamber. These expressions are valid both for
comoving and countermoving beams.
When two beams traverse the same vacuum chamber,

they act as sources and tests at the same time: they both
generate wakefields (source behavior) that act back on
themselves and on the other beam (test behavior).
To model this situation, with reference to Fig. 4, beam

one and beam two are introduced. They have a total charge
q1 and q2 and longitudinal distributions λ∘1ðtÞ and λ∘2ðtÞ.
If one distribution is thought of as source, the linked

quantities have the subscript S instead of “∘,” as example
QS1ðtÞ instead ofQ∘1ðtÞ. If one distribution is thought of as
test, the linked quantities have the subscript T.
The rigid beam approximation is still valid, i.e., the two

beams are moving on straight and parallel trajectories and
the speed of the particles is preserved during the traversal.
The time at which beam one and beam two enter in the

vacuum chamber, t1i and t2i respectively, is defined as
the time at which the center of the distribution crosses the
relative beam entrance section. The beam entrance sections

for two countermoving beams are reported in Fig. 4. In the
case of comoving beams, the beam entrance sections would
be coincident and located at one side of thevacuumchamber.
Thus, the time entrance delay between the beams can be

defined as:

Δtb1b2 ¼ t2i − t1i; ð8Þ

for a positive value of Δtb1b2 beam two is delayed with
respect to beam one, and vice versa for a negative value.

1. Energy variation in time domain

The total energy variation of the two beam system, ΔU,
is the sum of the energy lost or gained by beam one, ΔU1,
plus the energy lost or gained by beam two, ΔU2:

ΔU ¼ ΔU1 þ ΔU2: ð9Þ

The energy variation of beam one is due to the effects of its
own wakefield plus the effect of the wakefield generated
by beam two. Beam two also experiences the wakefield
generated by beam one plus its own wakefield, thus, one
can further split the terms in Eq. (9) as:

ΔU1 ¼ ΔUQS1QT1
þ ΔUQS2QT1

; ð10Þ

ΔU2 ¼ ΔUQS1QT2
þ ΔUQS2QT2

: ð11Þ

In Eqs. (10) and (11), ΔUQSnQTm
, is the energy variation

of beam m because of the wakefield generated by beam n.
The case of two countermoving beams, with n ¼ m, can be
treated as a comoving wakefield scenario. If n ≠ m, it can
be treated as a countermoving wakefield scenario. The case
of two comoving beams, independently of n and m, can be
treated as a comoving wakefield scenario.
A case of interest is the one where the two beams have

the same structure, i.e., they are described by the same
distribution λ (this is the scenario in the LHC for proton-
proton and ion-ion collision [6]). With this hypothesis,
let us consider a time reference frame in which the origin is

FIG. 4. A vacuum chamber and two countermoving beam distributions, Q∘1 and Q∘2, are represented in space as two Gaussian
bunches. Both the distributions, divided in infinitesimal charges dQ∘1 and dQ∘2, are moving to enter inside the vacuum chamber. The
beam entrance times in the vacuum chamber t1i and t2i as well as the generic entrance time of the generic infinitesimal charge, tdQ∘1i and
tdQ∘2i are also shown.
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set such that t1i ¼ 0, i.e., the time origin is set at the
moment in which beam one is entering into the vacuum
chamber. Since there is a delay Δtb1b2 between the two
beams, in this time reference frame one has:

λT1ðtdQT1iÞ ¼ λðtdQT1iÞ;
λS1ðtdQS1iÞ ¼ λðtdQS1iÞ;
λS2ðtdQS2iÞ ¼ λðtdQS2i − Δtb1b2Þ: ð12Þ

Similar equations can be obtained considering a time
reference frame which origin is set such that tS2i ¼ 0, i.e.,
the time origin is set at the moment in which beam two is
entering into the vacuum chamber.

They are:

λT2ðtdQT2iÞ ¼ λðtdQT2iÞ;
λS2ðtdQS2iÞ ¼ λðtdQS2iÞ;
λS1ðtdQS1iÞ ¼ λðtdQS1i þ Δtb1b2Þ: ð13Þ

It is more convenient to compute the energy variation of
beam one, ΔU1, in the reference frame with t1i ¼ 0 and the
energy variation of beam two, ΔU2, in the reference frame
with t2i ¼ 0. Thus, substituting Eqs. (12) and (13) into the
energy variation expressions, Eq. (6), where also Eq. (5)
has been considered, one obtains:

ΔUQS1QT1
¼ q21

Z
∞

−∞
λðtdQT1iÞ

Z
∞

−∞
λðtdQS1iÞwz11ðtdQT1i − tdQS1iÞdtdQS1idtdQT1i; ð14Þ

ΔUQS2QT1
¼ q2q1

Z
∞

−∞
λðtdQT1iÞ

Z
∞

−∞
λðtdQS2i − Δtb1b2Þwz21ðtdQT1i − tdQS2iÞdtdQS2idtdQT1i; ð15Þ

ΔU1 ¼ q21

Z
∞

−∞
λðtdQT1iÞ

�Z
∞

−∞
λðtdQS1iÞwz11ðtdQT1i − tdQS1iÞdtdQS1i

þ q2
q1

Z
∞

−∞
λðtdQS2i − Δtb1b2Þwz21ðtdQT1i − tdQS2iÞdtdQS2i

�
dtdQT1i; ð16Þ

ΔUQS2QT2
¼ q22

Z
∞

−∞
λðtdQT2iÞ

Z
∞

−∞
λðtdQS2iÞwz22ðtdQT2i − tdQS2iÞdtdQS2idtdQT2i; ð17Þ

ΔUQS1QT2
¼ q1q2

Z
∞

−∞
λðtdQT2iÞ

Z
∞

−∞
λðtdQS1i þ Δtb1b2Þwz12ðtdQT2i − tdQS1iÞdtdQS1idtdQT2i; ð18Þ

ΔU2 ¼ q22

Z
∞

−∞
λðtdQT2iÞ

�Z
∞

−∞
λðtdQS2iÞwz22ðtdQT2i − tdQS2iÞdtdQS2i

þ q1
q2

Z
∞

−∞
λðtdQS1i þ Δtb1b2Þwz12ðtdQT2i − tdQS1iÞdtdQS1i

�
dtdQT2i: ð19Þ

In Eqs. (14)–(19), the terms wznm represent the longi-
tudinal wake-function of the beam n seen as source on the
beam m seen as test.
Considering Eq. (9), to get the total energy loss by the

two beams, ΔU, one has to sum the contributions of beam
one and beam two, ΔU1 and ΔU2. It is important to stress
that this energy variation is independent of the origin of the
time reference frame. Indeed, it represents the work done
by the electric field in the vacuum chamber (the wakefield)
on the beams. Thus, it is irrelevant if ΔU1 has been
computed in a different time frame than ΔU2.
A quantity that is used in the following, directly linked

to the energy variation, is the beam loss factor k.
It quantifies the energy variation of a beam normalized

by the square of the beam charge. In the case of two
beams one has:

k1 ¼
ΔU1

q21
; k2 ¼

ΔU2

q22
; ð20Þ

for beam one and beam two respectively.

2. Energy variation in the frequency domain

If a Fourier transform is applied to Eq. (16) and Eq. (19)
one obtains the expressions of the energy variation of
each beam in the frequency domain. From Eq. (9), the
expression of the total energy variation of the two beam
system in the frequency domain is computed. Thus,
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one has:

ΔU ¼ 1

π

Z
∞

0

jΛðωÞj2fq21Re½Z11� þ q22Re½Z22� þ q1q2Re½Z12� cosðωΔtb1b2Þ

þ q1q2Re½Z21� cos ðωΔtb1b2Þ þ q1q2Im½Z12� sin ðωΔtb1b2Þ − q1q2Im½Z21� sin ðωΔtb1b2Þgdω; ð21Þ

ΔU1 ¼
q21
π

Z
∞

0

jΛðωÞj2
�
Re½Z11� þ

q2
q1

Re½Z21� cos ðωΔtb1b2Þ −
q2
q1

Im½Z21� sin ðωΔtb1b2Þ
�
dω; ð22Þ

ΔU2 ¼
q22
π

Z
∞

0

jΛðωÞj2
�
Re½Z22� þ

q1
q2

Re½Z12� cos ðωΔtb1b2Þ þ
q1
q2

Im½Z12� sin ðωΔtb1b2Þ
�
dω; ð23Þ

where Λ is the Fourier transform of the time charge distribution λ, Znm is the longitudinal impedance, Fourier transform of
the longitudinal wake-functions wznm, Re½·� and Im½·� are the real and imaginary part operators, ω ¼ 2πf with f the generic
frequency.
A case of interest is when the two beams enter and traverse the vacuum chamber repeatedly with a characteristic

frequency f0 (in a collider this is the beam revolution frequency).
In this case, applying the procedure described in the work of Rumolo [18] to Eqs. (21)–(23), one can write:

ΔU ¼ f0
π

X∞
p¼−∞

jΛðpω0Þj2fq21Re½Z11� þ q22Re½Z22� þ q1q2Re½Z12ðpω0Þ� cos ðpω0Δtb1b2Þ

þ q1q2Re½Z21ðpω0Þ� cos ðpω0Δtb1b2Þ þ q1q2Im½Z12ðpω0Þ� sin ðpω0Δtb1b2Þ
− q1q2Im½Z21ðpω0Þ� sin ðpω0Δtb1b2Þg; ð24Þ

ΔU1 ¼
f0q21
π

X∞
p¼−∞

jΛðpω0Þj2
�
Re½Z11ðpω0Þ� þ

q2
q1

Re½Z21ðpω0Þ� cos ðpω0Δtb1b2Þ −
q2
q1

Im½Z21ðpω0Þ� sin ðpω0Δtb1b2Þ
�
;

ð25Þ

ΔU2 ¼
f0q22
π

X∞
p¼−∞

jΛðpω0Þj2
�
Re½Z22� þ

q1
q2

Re½Z12ðpω0Þ� cosðpω0Δtb1b2Þ þ
q1
q2

Im½Z12ðpω0Þ� sin ðpω0Δtb1b2Þ
�
; ð26Þ

where ω0 ¼ 2πf0. Finally, using Eq. (7), one can transform
Eqs. (14)–(26) from energy variation to power variation.
It is important to notice that Eqs. (14)–(19) and (21)–(26)

are valid both for countermoving and comoving beams.
Indeed, no restrictive assumption on the propagation
direction of the single beam is made in the derivation of
the equations, since the information on the beam direction
is provided by the wake-functions and the corresponding
impedances.
In this paper, Z11 and Z22 are labeled comoving

impedances and Z12 and Z21 countermoving ones.
Equations (21)–(26) show that the total energy lost by

two beams in a vacuum chamber, ΔU, and the energy
variation of each beam, ΔU1 and ΔU2, depend on the real
part of the beam comoving impedances, Z11 and Z22, as
expected, and on both the real and imaginary parts of the
countermoving impedances, Z12 and Z21. Furthermore,

the dependency of the energy variations with the entrance
delay between the beams,Δtb1b2 , is isolated in a sine and a
cosine function multiplying the real and imaginary parts
of the countermoving impedances. This equation struc-
ture leads to an interference like behavior of the total
energy as a function of the entrance delay between the
beams. This is shown with an example in Sec. III B,
where Eqs. (21)–(23) are applied to compute the energy
variation of the single beams and the total energy
variation of the two beams. In the discussion part of that
section a possible explanation of the interference behav-
ior is provided.
Finally, the authors want to stress that Eqs. (21) and (24)

express the energy loss of the two beam system transiting
a vacuum chamber due to the wakefield generation.
Generally speaking, wakefields dissipate only a part of
their energy in the vacuum chamber as heat. Some
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wakefields can escape the vacuum chamber in the form of
untrapped electromagnetic modes.
However, in hadron machines, since the cutoff frequency

of the pipe is generally above the beam frequency content,
the wakefields generated by the beams during their passage
in the vacuum chamber remain trapped therein. The wake-
field energy is entirely dissipated on the vacuum chamber
as heat. Thus, for the majority of the hadron machines,
one can also say that Eqs. (21) and (24) provide the energy
dissipated as heat on the vacuum chamber due to the
passage of two beams. Analogously, Eq. (7) express the
heating source power of the vacuum chamber due to
the passage of two beams.

E. Effects of the entrance delay
on the total energy losses

It is evident from Eq. (21) or (24) that the total energy lost
by the two beams in the vacuum chamber is dependent on
the entrance delay between the beams, i.e., Δtb1b2 . It is
interesting to understand the values of Δtb1b2 for which the
energy lost by the two beams has a maximum or a minimum.
This is done by differentiating Eq. (21) or (24) with respect
to Δtb1b2 , imposing the result equal to zero and solving the
resultant equation. For Eq. (21) this leads to:

Δtb1b2 ¼
1

ω
atan

�
Im½Z21ðωÞ� − Im½Z12ðωÞ�
Re½Z21ðωÞ� þ Re½Z12�ðωÞ

�
þ nπ

ω
ð27Þ

where n ∈ N and n ≥ 0.
For vacuum chambers that are longitudinally symmetric

(i.e., they have a symmetry plane perpendicular to the
propagation direction of the beams), if the beams trajecto-
ries are superimposed, the relation Z12 ¼ Z21 has to hold
because the two beams are completely interchangeable.
In this case Eq. (27) is reduced to:

Δtb1b2 ¼
nπ
ω

¼ n
2f

; ð28Þ

where ω ¼ 2πf has been used, with f the generic
frequency.
In Sec. III B, Eq. (28) is used to compute the entrance

delay between two countermoving beams that leads to the
maximum and the minimum value of the energy dissipated
in a pillbox cavity.

III. RESULTS

A. Model benchmark for the calculation of longitudinal
countermoving wake-functions and wake-potentials

In this subsection the formalism developed in the
previous section is benchmarked. The comoving and
countermoving longitudinal wake-potentials obtained
using the previously outlined model are compared to the
ones obtained by simulations. This is done for two example
geometries: a resistive wall pipe and a pillbox cavity.

The general formalism developed in the previous section
is applied, first to obtain again the well-known results for
the comoving wake-potential, then to obtain the counter-
moving wake-potential. The wake-potentials are computed
starting from the expression of the longitudinal electric
field in the studied structures. Then, they are compared
against the results of the CST Studio Suite 2018 commer-
cial software [19]. In the countermoving wakefield case,
with this benchmark the authors want to validate the
capability of the proposed model and of the CST software
to describe the effects of two countermoving beams in one
vacuum chamber. A further test on the CST software is
illustrated in the Appendix where the Panofsky-Wenzel
theorem [20] was verified for two countermoving beams.
When possible, the results of the proposed formalism

and the numerical ones are compared also with other
analytic expressions of the wake-potential available in
the literature. All the examples shown in this paper consider
relativistic particles, i.e., v ¼ c with c the speed of light.
For the wake-potential computation, a beam distribution

λS composed by one bunch with a Gaussian shape was
considered. This is the default excitation signal for CSTand
it made benchmarking analytic results against numerical
ones easier.
Using Eq. (1) and setting the origin of the time reference

frame such that tSi ¼ 0, one has:

ΔtST ¼ tTi; ð29Þ
and consequently,

tTo ¼ tTi þ
L
v
¼ ΔtST þ

L
v
: ð30Þ

Finally, with reference to Fig. 1, for the comoving case
one has:

zqSðtÞ ¼ vt; zqT ðtÞ ¼ vt − vΔtST; ð31Þ
and, for the countermoving case:

zqSðtÞ ¼ L − vt; zqT ðtÞ ¼ vt − vΔtST: ð32Þ

1. The resistive wall pipe, methodology and results

The case of the resistive cylindrical pipe is shown in
Fig. 5. The problem is extensively discussed by Chao [2],
with a longitudinal electric field induced by an ultra-
relativistic disk charge traversing an infinitely long pipe
given by (for the classic thick wall regime):

EzðzqT ðtÞ; zqSðtÞÞ ¼ −
4qS
πϵ0b2

�
1

3
eu cosð

ffiffiffi
3

p
uÞ

−
ffiffiffi
2

p

π

Z
∞

0

dx
x2eux

2

x6 þ 8

�
; ð33Þ

where, b is the radius of the pipe and
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u ¼ −ψ
sSTðtÞ
bð2χÞ13 ¼ −ψ

zqSðtÞ − zqT ðtÞ
bð2χÞ13 ð34Þ

χ ¼ cε0
σb

ð35Þ

are two adimensional coefficients, sST is the distance
between S and T, σ is the conductivity of the pipe material
and ε0 is the dielectric vacuum constant. The term ψ is not
present in the work of Chao [2], it has been introduced to
extend the validity of Eq. (33) also to the countermoving
case. Its value is 1 for the comoving case scenario, while it
is −1 for the countermoving case scenario. Furthermore, u
is defined with a minus sign with respect to Chao work [2]
because of the different definition of distance between S
and T. Equation (33) holds for an infinitely long pipe,
however, one can consider a pipe with finite length as a
segment of this infinitely long pipe and compute the wake-
function on that part of the pipe. Using this approach, one
has to be particularly careful on what happens at the
boundaries, i.e., at the entrance and at the exit of the pipe.
This point, and its implication on the results, will be
discussed in Sec. III A 3.
For the comoving scenario, one substitutes Eq. (31) into

Eq. (34), obtaining:

u ¼ −
vΔtST
bð2χÞ13 : ð36Þ

Using Eq. (36) and Eq. (33), one obtains Ez, the longi-
tudinal electric field experienced by the test charge as a
function of the time entrance delay between source and test
charge in the comoving case. Knowing Ez, the longitudinal
wake-function is found by its definition, Eq. (4). Thus, also
the wake-potential can be computed using Eq. (5).
For the countermoving scenario, one substitutes Eq. (32)

into Eq. (34), obtaining:

u ¼ vðΔtST − 2tÞ þ L

bð2χÞ13 : ð37Þ

As for the comoving case, Eq. (37) is substituted into
Eq. (33) to obtain the longitudinal electric field Ez.
Subsequently, using Eq. (4), the longitudinal wake-function
can be obtained.

When using Eq. (4), since the particles are relativistic,
attention has to be paid to the fact that there is no electro-
magnetic field in front of the particles and they do not
interact before the meeting time tm. The meeting time is
defined as the time at which the longitudinal distance
between the particles is null, i.e., zqSðtmÞ − zqT ðtmÞ ¼ 0, so
that tm ¼ L=2vþ ΔtST=2. Thus, in the case of two counter-
moving relativistic particles Eq. (4) needs to bemodified into:

wz ¼
8<
:

v
qS

R tTo
tTi EzðΔtST; tÞdt if tTi ≥ tm

v
qS

R tTo
tm EzðΔtST; tÞdt if tTi < tm

: ð38Þ

Once the longitudinal wake-function is known the wake-
potential can also be computed using Eq. (5).
Both in the comoving and in the countermoving

case, Eqs. (38) and (5) were integrated numerically. In
particular, the longitudinal wake-potential wz as a function
of the time entrance delay ΔtST was obtained integrating
Eq. (38) in t for different values ofΔtST . This could be done
since tTo and tTi are expressed as a function of ΔtST by
Eqs. (29) and (30).
A comparison between the comoving and countermov-

ing wake-function is shown in Fig. 6 for a pipe with
the following parameters: pipe length L ¼ 0.3 m, radius
b ¼ 0.05 m, electric conductivity σ ¼ 3.5 × 103 Sm−1.
A low value of σ was imposed in order to obtain a large
wakefield, so that the wake-potential estimation by simu-
lations, presented later in this section, was less sensitive to
numerical noise. The shape of the countermoving wake-
function is discussed in greater depth in Sec. III A 3.
In Fig. 7(a) the resistive pipe comoving wake-potentials,

obtained by the previous formalism (indicated as semi-
analytic), by analytic formula [21,22] (indicated as
Bane-Piwinski), and by CST Wakefield simulations (indi-
cated as CST) are compared.
In Fig. 7(b) the resistive pipe countermoving wake-

potentials obtained by the formalism developed in this

FIG. 5. Test and source charges traversing the resistive wall
pipe at constant speed v. Countermoving case. The trajectory of
both charges is coincident with the pipe axis.

FIG. 6. Semi-analytic wake-functions of a point charge travers-
ing a beam pipe. Pipe parameters: b¼0.05m, σ¼3.5×103 Sm−1,
L ¼ 0.3 m. For both particles v ¼ c. Colors refer to different
scales.
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paper (indicated as semi-analytic), and by CST Wakefield
simulations (indicated as CST) are compared.
In both the comoving and countermoving case there is an

excellent agreement between the formalism and the sim-
ulation results.

2. The pillbox cavity, methodology, and results

This subsection obtains the longitudinal comoving and
countermoving wake-function, impedance and wakepoten-
tial of a perfect electric conductor (PEC) pillbox cavity
without incoming pipes. Contrary to the case of the pillbox
with incoming pipes, an analytic expression of the electric
field generated by a charge traveling inside a cavity without
incoming pipes is known. Since this expression is crucial to
obtain analytic results and a proper benchmark of simulation
results the geometry without the incoming pipes was used.

In the pillbox cavity without incoming pipes only
trapped modes can exist. This makes the example more
representative for machines that have most of the beam
power spectrum below the cutoff frequency of the beam
pipe, as the majority of the hadron machines (like the LHC,
which is the case of interest of this work). In these
machines, a beam crossing a vacuum chamber excites only
modes with frequencies in its power spectrum, that is below
the cutoff frequency of the machine pipes. This means
that, virtually all the excited modes remain trapped in the
vacuum chamber, as it is the case for the proposed example.
The analytic expression of the transient longitudinal

electric field generated by a disc of electrons moving from
one side of a lossless pillbox cavity (radius a and length L)
to the other side at a speed vS ¼ βSc, as shown in Figs. 8(a)
and 8(b), was found by Faust [23] as:

E0
zðrqT 0; zqT 0; tÞ ¼ −

eN
ϵ0

�
βS
L

�
ctUðctÞ −

�
ct −

L
βS

�
U

�
ct −

L
βS

��
− U

�
ct −

z0qT
βS

�

−
2aβS
L

Xm¼∞

m¼1

J0ðr0qTρm=aÞ
J1ðρmÞρ2m

�
sin

�
ρm

ct
a

�
− sin

�
ρm

ct − L=βS
a

�
U
�
ct −

L
βS

��

−
4aβS
L

Xm¼∞

m¼1

Xn¼∞

n¼1

J0ðr0qTρm=aÞ
J1ðρmÞ

ρm
sinðγ1ct=aÞ − ð−1Þn sinðγ1 ct−L

βSa
ÞUðct − L

βS
Þ

γ1γ
2
2

cos

�
nπz0qT
L

�

þ 2

π

Xn¼∞

n¼1

I0ðr0qTnπγS=LÞ
nI0ðanπγS=LÞ

�
sin

�
nπβS

ct
L

�
− ð−1Þn sin

�
nπβS

ct − L=βS
L

�
U

�
ct −

L
βS

��
cos

�
nπz0qT
L

��
;

ð39Þ

(a) (b)

FIG. 7. Wakepotential of a Gaussian bunch profile traversing a beam pipe, comparison between semianalytic method and CST
Wakefield solver. Pipe parameters: b ¼ 0.05 m, σ ¼ 3.5 × 103 Sm−1, L ¼ 0.3 m. Bunch parameters: σb ¼ 0.05 m, v ¼ c. The beam
signal is in arbitrary units for representational purposes. (a) Comoving wakepotential. (b) Countermoving wakepotential.
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where, N is the number of electrons per square meter, J0ðxÞ
is the Bessel function of order zero, ρm are the roots of the
Bessel function J0, I0ðxÞ is the modified Bessel function of
zero order, UðtÞ is the unit function, γS ¼ 1 − β2S, γ

2
1 ¼

ρ2m þ ðnπa=LÞ2 and γ22 ¼ ρ2m þ ðnπaÞ2ð1 − β2SÞ=L2. Fur-
thermore, rqT ðtÞ0 and zqT ðtÞ0 are the generic radial and
longitudinal positions of a test particle T in a reference
frameO0 which has origin in the electron emission face and
ẑ0 is oriented in the direction of motion of the electrons. The
electric field E0

z given by Eq. (39) is also expressed in the
O0 reference frame. Finally, t is the generic time.
This section aims at expressing the longitudinal wake-

function in a reference frame O, for which the z axis is
directed in the test charge direction of motion and its origin
is fixed at the test entrance section. For the comoving
scenario O and O0 are coincident, however this is not true
for the countermoving scenario. In the following the
quantities with the superscript 0 are considered to be
expressed in O0 frame, the quantities without 0 are
considered to be expresses in the O frame.
In the comoving scenario, the reference framesO andO0

are coincident, thus, one can write [considering also
Eq. (31)]:

r0qT ¼ rqT
z0qT ¼ zqT ¼ vt − vΔtST
E0
z ¼ Ez: ð40Þ

Equations (40) are substituted into Eq. (39) to obtain the
longitudinal electric field Ez. Subsequently, using Eq. (4),
the longitudinal comoving wake-function can be obtained.
In the counterrotating wakefield case, the quantities inO0

are linked to the quantities in O by the following equations
[considering also Eq. (32)]:

r0qT ¼ rqT
z0qT ¼ L − zqT ¼ L − vtþ vΔtST
E0
z ¼ −Ez: ð41Þ

The first two equations can be intuitively derived looking
at Fig. 8(b), where both reference frame O and O0 are

represented. The third relation comes from the fact that the
z axes of the two frames point in opposite directions.
Substituting Eqs. (41) into Eq. (39) the longitudinal

electric field is obtained in theO frame and the longitudinal
countermoving wake-function can be computed using
Eq. (4).
The co- and countermoving wake-functions were evalu-

ated integrating numerically the longitudinal electric field
Ez for the case in which both the electrons and the test
particle are ultrarelativistic, i.e., βS ¼ 1 and v ¼ c, and with
the test particle travelling on the pillbox axis, i.e.,
r0qT ¼ rqT ¼ 0. The wake-functions are reported in Fig. 9
as a function of the entrance delays. Their Fourier trans-
forms, the co- and countermoving impedance, in absolute
values, are reported in Fig. 10.
From the wake-function, the wakepotential was

numerically computed by convolution with a Gaussian
distribution.
To benchmark the validity of the calculations, simula-

tions of the wakepotential were performed. Using the
particle in cell (PIC) solver of CST, the excitation of a
lossless pillbox (length L ¼ 0.6 m and radius a ¼ 0.1 m)

(a) (b)

FIG. 8. Pillbox cavity excited by an electron burst emitted from one of the circular faces. It is important to stress that, for the
countermoving case the reference frame in which the wake-function is needed, O, and the reference frame in which Eq. (39) gives the
electric field, O0, are not coincident. (a) Comoving case. (b) Countermoving case.

FIG. 9. Comparison between the comoving and the counter-
moving wake-function of a pillbox cavity excited by a burst of
electrons emitted by one of the faces. The wake-functions have
been obtained with the Faust theory.
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by a burst of electrons emitted by one of the circular face
was simulated. The cavity material was set to be a perfect
electric conductor (PEC), so that the cavity was loss
free. The electrons were emitted uniformly from the face
with a Gaussian longitudinal distribution (σb ¼ 0.07 m).
One bunch of electrons with a total charge of 1 nC
(6.24 × 109 electrons) was emitted. The kinetic energy
of the electrons was set to an ultrarelativistic value
(γ ¼ 5 × 1010) to avoid space charge effects. Electric field
monitors were set to register and store the value of the
longitudinal electric field every 1.5 mm along the whole
cavity axis, that is every 5 × 10−3 ns. The position of the
test particle T is known at every time t as a function of
the entrance delay (zqT ðtÞ ¼ vt − ΔsST ¼ vt − vΔtST), i.e.,
fixing an entrance delay ΔsST or ΔtST, one knows T’s

longitudinal position zqT at the time t. If zqT at the time t is
known, one can obtain the value of the longitudinal electric
field acting on T at the time t from the fields monitors.
If this operation is repeated for every t one obtains the
longitudinal electric field experienced by T traversing the
cavity as a function of time (or equivalently as a function
of its longitudinal position). Integrating this longitudinal
electric field gives the wake-potential value for the set
entrance delay, and repeating the integration for different
entrance delays gives the whole wake-potential.
The counterrotating wake-potentials as a function of

the entrance delay between QS and T (ΔsQST and ΔtQST)
obtained from the formal model (indicated as semi-
analytic) and the CST PIC solver (indicated as CST) are
reported and compared in Fig. 11(b). The agreement
between the two methods is excellent.

3. Discussion

The model exposed in Sec. II is capable of reproducing
known results from the literature, i.e., the comoving wake-
potential of a resistive wall pipe [as shown in Fig. 7(a)].
Additionally, its results compare well with simulations
of simple geometries, i.e., the comoving wake-potentials
of a resistive wall pipe and a lossless pillbox cavity
[Figs. 7(a) and 11(a)].
Furthermore, the model provides a tool to estimate the

results of the interaction of the countermoving beams, i.e.,
countermoving wake-functions (Figs. 6 and 9) and wake-
potentials [refer to Figs. 7(b) and 11(b)].

FIG. 10. Comparison between the comoving and the counter-
moving impedance of a pillbox cavity excited by a burst of
electrons emitted by one of the faces.

(a) (b)

FIG. 11. Comoving (a) and countermoving (b) wake-potentials of a burst of ultrarelativistic electrons (1 nC or 6.24 × 109 electrons
and βS → 1 or γS ¼ 5 × 1010) traversing a pill box cavity (length L ¼ 0.6 m and radius a ¼ 0.1 m) computed by the proposed model
(using the Faust theory [23]) and the CST PIC solver [24]. The electrons are emitted uniformly from one of the circular faces of the
cavity. Their longitudinal distribution is a Gaussian bunch (σb ¼ 0.07 m). The cavity material is a perfect electric conductor (PEC), loss
free. Test particle speed is v ¼ c. (a) Comoving Wakepotential. (b) Countermoving Wakepotential.
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Finally, the countermoving wake-potentials are in good
agreement with numerical simulations results [Figs. 7(b)
and 11(b)].
The last consideration is important. It implies that, not

only the presented theoretical model is able to describe the
countermoving wakefield effects, but it also served as a
check of CST Studio Suite (version 2018, Wakefield and
PIC solvers) results supporting the use of the code in more
realistic and complex geometries.
There are also other points to discuss, relating to the

results of the proposed formalism in the two shown
examples.
For both the resistive wall pipe and the lossless pillbox

cavity, the comparison between comoving and counter-
moving functions shows that these two quantities are
different, and apparently, there is no trivial relation between
them. This is especially true for the transient region of
the wakefield, i.e., the interval in the entrance delay for
which the two beams are both transiting inside the vacuum
chamber.
For the resistive pipe, the countermoving wake-function is

reported in Fig. 6. Remarkably, the wake-function is
characterized by two peaks, one positive and one negative,
symmetrically arranged with respect to the axis origin with
space entrance delay equal to the length of the pipe. These
peaks are due to boundary conditions at the end and at the
beginning of the pipe. Indeed, Eq. (33), that holds for an
indefinitely long pipe, has been used to compute the wake-
function of a finite length pipe, considered as a segment of
this infinitely long pipe. In the longitudinal wake-function
definition, Eq. (4), it is assumed that outside of the structure,
the electric fields can be neglected. This cut is also
performed by the CST software when a pipe of length L
is simulated. The software is able to compute only the fields
inside the structure and it assumes null the field outside. This
means that both in the simulations and the model the
boundary conditions at the extremities are considered in
the same way, thus explaining the good agreement in the
countermoving wake-potentials shown in Fig. 7(b).
Regarding the pillbox cavity, a comparison between its

comoving and countermoving wake-function is reported in
Fig. 9. As one can see, the wake-functions present some
differences, especially in the transient region around 0
entrance delay, for ΔsST < L, with L ¼ 0.6 m as the length
of the cavity. While for ΔsST > L they seem to be similar
but translated. This can be explained by the fact that the
effects of the countermoving wakefields differ the most
from the comoving ones when the source and the test meet
inside the component they are transiting. If the test enters
into a pillbox cavity that has already been excited by a
source particle and if this source particle has already
escaped from the component, in principle the test particle
should not be able to distinguish if the source particle was
comoving or countermoving. This also means that, the
greater the cavity or beam length, the longer the transient

and the larger the differences between co and countermov-
ing wakefields effects.
With reference to Fig. 10, the comoving and counter-

moving impedance modulus compare very well. In par-
ticular the resonant mode frequencies shown by the
comoving impedance are the same as those shown by
the countermoving impedance. This result was expected
since the resonant frequency of a mode is a property of the
device, and it is independent of the excitation source.

B. Study of the energy dissipated by a two beam
system transiting a lossy pillbox cavity

In this subsection the energy losses of two countermov-
ing beams traversing a resonant cavity are discussed as a
function of the entrance delay between the beams.
The subsection aims at benchmarking Eqs. (21)–(26)

for computing the energy variations of a system of two
countermoving beams. Furthermore the real and imaginary
parts of the comoving and countermoving impedance of the
cavity are compared.
The subsection is divided in two parts, in the first part the

methodology to obtain longitudinal comoving and counter-
moving impedance, and the related energy variation is
described and all the results are presented. In the second
part the physical meaning of the results is discussed.

1. Methodology and results

Using the CST 2018 Wakefield solver [24] the passage
of two countermoving beams, both positioned exactly at the
center of the structure, was modeled for the pillbox cavity
shown in Fig. 12. Both beams were composed of a single
Gaussian bunch with a charge q ¼ 4.5 × 10−8 C and a root
mean square bunch length σb ¼ 70 mm. One of the beams
was simulated entering the structure at the time t1i ¼ 0.
This beam is labeled as beam one in the following. The
other beam (beam two) was simulated entering the structure
with an arbitrary delay Δtb1b2 with respect to beam one.

FIG. 12. Simulated cavity model with geometrical quantities:
rc ¼ 100 mm, rp ¼ 10 mm, L ¼ 60 mm, l ¼ 10 mm.
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The pillbox cavity shown in Fig. 12 was built such that
the beams were able to excite only the first longitudinal
resonant mode, a TM010 mode [25,26]. Furthermore, the
electrical conductivity of the cavity wall was set to
σ ¼ 500 Sm−1. This low value was used to force a quick
damping of the fields of the excited mode and to speed up
simulation time.
The CST Wakefield solver returns the wake loss factor

for each one of the two beams. Inverting Eqs. (20), the
beam loss factor can be used to obtain the energy variation
of the considered beam in transiting the device. Summing
the energy variation of the two beams, the total energy loss
of the two beam system while transiting the chamber is
computed. For each investigated value of Δtb1b2 one
simulation is required. In the following, the total energy
loss obtained directly by post-processing the CST loss
factors will be labeled as ΔUCST.
In checking the results of the CST code, the authors

found an issue. The CST 2018 Wakefield solver [24], used
for simulations, computed automatically the loss factor of a
beam. However, due to a problem in the software, when
two beams were simulated, for each, the loss factor of the
last defined beam was shown. Thus, to obtain the correct
value of the loss factor for the two beams, for each
considered Δtb1b2, two simulations had to be repeated
defining the two beams in different order. A ticket with the
software support team was opened and the issue was fixed
in the CST 2021 Wakefield solver.
The energy variations of the two beams as a function of

the entrance delay between them Δtb1b2 were obtained also
using Eqs. (21)–(23). To obtain the countermoving imped-
ances terms (Z12, Z21) and the comoving ones (Z11, Z22),
that are needed in Eqs. (21)–(23), two CST simulations
were run. In each simulation, a source beam with charge
qS ¼ 4.5 × 10−8 C, composed of a single Gaussian bunch
(σb ¼ 70 mm) was simulated directed along the ẑ axis
(with reference to Fig. 12). Additionally to the source
beam, two test beams, with the same characteristics, and
with a total charge of qT ¼ 4.5 × 10−11 C were simulated,
one directed in the positive ẑ axis (þẑ) and the other
directed in the negative ẑ axis (−ẑ). Since the test charges
are negligible with respect to the source beam charge, one
can reasonably make the approximation that the electro-
magnetic fields in the cavity are due only to the source
beam. In a first simulation the source beam was directed
along the positive ẑ axis. The impedance of the test beam
directed along þẑ has to be scaled by a factor qT=qS to
obtain Z11. On the other hand, the impedance of the test
beam in the −ẑ direction has to be scaled by the same factor
qT=qS to obtain Z12. The scaling factor qT=qS comes from
the fact that the source and test beams do not have the same
charge. In the second simulation, the source beam was
directed along the negative ẑ axis. Thus, the impedances of
the test beams directed along þẑ and along −ẑ had to be
scaled by qT=qS to obtain Z12 and Z22, respectively.

The real and imaginary parts of the impedances are
reported in Fig. 13.
Using the obtained values of comoving and counter-

moving impedances, and substituting them into Eq. (21),
one obtains the total energy dissipated by the two beam
system in the pillbox as a function of the beam entrance
delay in the device.
In Fig. 14, a comparison between the total energy lost by

the two beam system computed using Eq. (21) and by CST
is reported. The results agree very well.
In Fig. 15 the energy variation for each single beam and

the total energy losses of the two beams, computed using
Eqs. (21)–(23) as a function of the entrance delay between
the two beams, are reported. They are normalized by a
reference energy variation ΔUr, that is the energy that one
beam would lose transiting alone into the cavity.
Furthermore, given the symmetry of the simulated

cavity, Eq. (28) was used to find the values of the entrance
delay between the beams at which the maxima and the
minima of the total energy losses were corresponding.
Since the beams mainly exchange power with the resonant
cavity via the excited mode, and since the beams can
only excite the mode that resonates at a frequency
fr ¼ 1.1418 GHz, the power exchange happen mainly at
that frequency. Thus, fr ¼ 1.1418 was the frequency value
used in Eq. (28). Considering different values for n, the
values of Δtb1b2 that maximise or minimize the energy lost
by the beams were found. The energy dissipated in the
pillbox cavity as a function of Δtb1b2 is reported in Fig. 16

FIG. 13. Simulated comoving impedances (Z11, Z22), top,
and countermoving impedances (Z12, Z21), bottom, for the
pillbox cavity shown in Fig. 12. Some curves are not visible
because they completely overlap with others. The impedance
curves in this figure were obtained simulating a Gaussian
bunch with σb ¼ 20 mm to excite frequencies up to 5 GHz.
In the rest of the analysis presented in this section the value
σb ¼ 70 mm was used.

L. TEOFILI et al. PHYS. REV. ACCEL. BEAMS 24, 041001 (2021)

041001-14



where also the coordinate of the maxima and minima
obtained by Eq. (28) are highlighted.

2. Discussion

Regarding the impedances shown in Fig. 13, one can
notice immediately that Z11 ¼ Z22 and that Z12 ¼ Z21.
These relations were expected to hold because the

geometry of the problem is longitudinally and transversely
symmetric.
However, they are valid also under other conditions. If

the orbits of the two beams traversing the vacuum chamber
are superimposed, as in the proposed example, the relation

Z11 ¼ Z22 is a consequence of the reciprocity theorem [27]
and it is valid even if the vacuum chamber has no
symmetries.
Furthermore, preliminary simulation results show that,

for longitudinally symmetric devices, the relations
Z12 ¼ Z21 holds also if there is no transverse symmetry.
Contrarily, the relations Z12 ¼ Z21 seems not to be verified
when devices without longitudinal symmetry were simu-
lated. Detailed studies on the symmetry proprieties of the
countermoving impedance go beyond the scope of this
paper and will be the subject of future work.
Returning to the results shown in Fig. 13, both comoving

and countermoving impedances show the resonant modes
at the same frequencies, as in the example discussed in
Sec. III A 2. Furthermore, for the countermoving imped-
ance, some modes show positive real part impedance,
others negative.
Close to the resonances, the ratio between comoving and

countermoving shunt impedances assumes always the
values -1 or 1. Thus, the shunt impedance of the mode
seen by the comoving beam and the shunt impedance of
the mode seen by the countermoving beam have the same
absolute value.
This relations between comoving and countermoving

impedances for longitudinally symmetric objects was
already predicted by the Wang model [1]. For longitudinal
impedances, this behavior may be explained considering

FIG. 14. Comparison between the total energy variation of the two beams system obtained directly from CST and from Eq. (21). To
obtain a single value of the total energy variation from CST, two simulations had to be performed. Since these simulations were time
consuming, the resolution of the ΔU points obtained with CST was decreased moving from low to high values of the entrance delay.

FIG. 15. Normalized total energy losses and energy variation of beam 1 (the first beam to enter into the cavity) and beam 2 (the
delayed beam) as a function of the entrance delay between the two beams (Δtb1b2 ), for the cavity reported in Fig. 12.

FIG. 16. The energy dissipated in the pillbox cavity traversed
by two beams is reported, as a function of the entrance delay
between the beams, Δtb1b2 . The values of Δtb1b2 that correspond
to the maxima and minima of the energy losses, obtained by
Eq. (28), are highlighted.
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that the countermoving impedances, Z12 and Z21, take into
account the energy exchanged by the beams via the
resonant mode. Thus, a negative real part indicates that
one of the beams is gaining energy from the resonant mode
that was excited at the expense of the other beam, which
provided the energy. A positive real part indicates that one
of the beams is losing energy during its interaction with the
mode that has been excited by the other beam.
Regarding the energies, the total energy dissipation of

the two beam system obtained numerically and by Eq. (21)
agree well (as shown in Fig. 14). This is another benchmark
for both the CST software and the proposed formula.
Figure 14 clearly shows a damped oscillating behavior of

the total energy lost by the two beam system as a function
of the entrance delay between the beams. The physical
reasons of such a behavior can be better understood by
considering how the countermoving beams interact with the
TM010 mode.
A TM010 in a pillbox cavity is characterized by an

electric field parallel to the axis of the pillbox (ẑ), and its
local magnitude at an arbitrary time is independent of the
longitudinal coordinate (z).
Each of the two beams entering the cavity excites the

TM010 mode fields independently. The total field in the
cavity is the sum of the fields excited by each beam. This
leads to an interference-like behavior of the total field:
depending on the entrance delay between the two beams
Δtb1b2 , there could be constructive or destructive interfer-
ence. As an example, one can consider the case for which
the entrance delay between the two identical countermov-
ing beams is null. In this case, because of the field pattern of
the TM010 mode and because of the counterrotation, the
electromagnetic fields excited by one beam have the same
intensity and opposite direction of those excited by the
other beam, i.e., the fields are excited with an opposite
phase. This gives a null total field. Following this reason-
ing, if a beam enters into the cavity with a delay with
respect to the other one of half of the time period of the
TM010 resonant mode, i.e., Δtb1b2 ¼ 1=ð2frÞ, with fr the
mode resonant frequency, there is a constructive interfer-
ence. Indeed, the fields excited by the delayed beam (beam
two) when entering the cavity have the same instantaneous
intensity and direction of the fields excited by the previous
beam (beam one). Thus, they produce a constructive
interference. If beam two enters with a delay that is equal
to the mode resonant period, i.e., Δtb1b2 ¼ 1=fr, the mode
fields excited by each beam are again in phase opposition
and there is again a destructive interference.
The energy to excite the total electromagnetic fields in

the pillbox is provided by the whole two beam system.
Thus, one expects that values of Δtb1b2 that lead to
constructive interferences correspond to high energy losses
These reasoning is coherent with the results shown in
Fig. 16. In this figure, the total energy lost by the two beams
is shown and the time entrance delays that corresponds to

the energy loss maxima and minima, found with Eq. (28),
are highlighted. As expected, for a null value of the beam
entrance delay the total dissipated energy has a minimum.
Furthermore, the other energy maxima and minima are
located, according to Eq. (28), at half of the time period of
the resonant mode.
It is important to stress that the interference behavior, in

general, depends on the field pattern and frequency of the
mode, as well as the entrance delay between the two beams.
This may be a key aspect to consider for collision chamber,
in which, usually, the entrance delay between the beams
is null.
Additional information on the interaction of the counter-

moving beams among themselves and with the cavity mode
can be understood if one looks at the normalized energy
variations of the single beams that are reported in Fig. 15.
As anticipated, if the entrance delay between the two beams
is null, they both excite the mode inside the pillbox cavity
but with an opposite phase. The net result is that the mode
inside the cavity is not excited and so the only dissipated
energy is due to the resistive wall effects. If the delay
between the beams is different from zero but such that the
two beams meet each other inside the pillbox cavity
(transient time interval) there is a more complex scenario.
The first beam that entered (beam one) gains energy while
the delayed beam loses energy. The energy lost by beam
two is higher than the energy gained by beam one, the extra
energy is going to the vacuum chamber as heat. If the
entrance delay is increased, beam one no longer meets
beam two inside the pillbox cavity because the delay is
such that beam one has left the cavity before beam two
enters. This explains the fact that after about 1.5 ns
ΔU1=ΔUr stabilizes around the value of 1, i.e., the value
of the energy loss that one beam would have if it had
crossed the vacuum chamber alone. In the case in which
beam two enters in the cavity after the exit of beam one, it
finds a resonant mode that is already excited in the cavity.
Beam two interacts with the resonating mode, depending
on the entrance delay it can absorb energy from the mode or
excite it more, as it is visible from the oscillations of
ΔU2=ΔUr. The oscillation is damped by the fact that the
mode in the cavity dissipates energy heating the cavity
walls. Thus, the higher Δtb1b2 is, the lower the energy
available for exchanges with the beam is. As expected the
damped oscillations converge toward the value of 1 for
Δtb1b2 → ∞. Indeed, if the beam entrance delay is large
enough that the mode excited by the first beam is
completely decayed when the second beam arrives, the
latter is in the same situation of the first one: it arrives
finding an empty cavity and with its passage it excites the
mode. The normalized total energy variation of the two
beams ΔU=ΔUr has an oscillating behavior and it is
always positive: as energy conservation law dictates for
the system, energy is always dissipated in the cavity wall.
Its oscillations have a maximum of about 4, this means that
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in the worst case scenario, two countermoving beams can
dissipate on a resonant mode up to four times the energy
that would be dissipated by only one beam, when their
fields constructively add up in phases. This finding is in
agreement with the prediction of the models of Grudiev
[15] and Zannini et al. [13] and with the observation of
Giordano et al. [16]. On the other hand, for specific values
of the beams entrance delay Δtb1b2, the total energy
dissipated on the cavity approaches the zero value.
Finally, as shown in Fig. 16, the presented Eq. (28) was

able to identify maxima and minima of the total energy lost
by the two beams system.
This last result may be crucial during the design phase of

a device traversed by two beams. In standard operations of
a collider, the time entrance delay between the two beams is
fixed. For instance in a longitudinally symmetric interac-
tion chamber the beams have to enter with Δtb1b2 ¼ 0 to
properly collide, while in another component the entrance
delay depends only from its position with respect to the
collision points in the accelerator. Thus, Eqs. (27)–(28)
could be used during the design phase of a device to
understand if, for that entrance delay, the beams will
interact with the device modes in a constructive or
destructive way. The former case can be dangerous because
the device can experience large energy deposition. If this
happens, the device geometry or its materials should be
modified to move the resonant frequency of the dangerous
modes. Also repositioning the device to a different accel-
erator location could help. Indeed this would change the
beam entrance delay Δtb1b2, so avoiding the constructive
resonance of modes.

IV. CONCLUSIONS AND FUTURE WORK

This paper has introduced a model to describe both the
comoving and the countermoving wakefield effects via the
introduction of the concepts of space and time entrance
delay. Furthermore, it has presented a way to simulate the
longitudinal countermoving wakefield effects and it has
successfully benchmarked the proposed model against
simulations data from the commercial software CST
Studio Suite 2018. The benchmark allowed the authors
to check that both the model and the CST software can
estimate the longitudinal countermoving beams effects.
The reported results have shown that the model could

retrieve literature results for the comoving beams and could
estimate the longitudinal wake-function (and so the imped-
ance) and the longitudinal wake-potential of two counter-
moving beams for two common geometries. In the
computation for the countermoving wakefields case, the
effects of the beams on each other at the transient time in
which they are both transiting inside the same vacuum
chamber has been taken into account. Comparing the
obtained comoving and countermoving wake-functions
and wake-potentials for the same geometry it was shown
that there are differences. The behavior of comoving and

countermoving wake-potential is involved and the largest
differences are concentrated on the timespan in which the
beams transit simultaneously inside the device.
In addition, the expression of the energy and the power

dissipated in a device by two countermoving beams was
given. As expected from other literature results, it was
shown that the beams interact with a mode with an
interference like behavior. The energy (or power) dissipated
in a device by two countermoving beams can vary from 0 to
4 times the energy dissipated by a single beam, depending
on the entrance delay of the two beams into the vacuum
chamber. Using the physical model developed in the paper
it was also possible to localize the beam entrance delay that
gives the maxima and the minima of the dissipated energy
and power. It was discussed how this can be a crucial
parameter in the early design phase of the device.
Future work should study the symmetry proprieties of

the countermoving wake-functions and impedances and
should investigate the physical reasons behind them. It
should also benchmark Eq. (27) to estimate the dissipated
power maxima and minima for a longitudinally nonsym-
metric object and the case in which several modes are
excited at the same time.
Finally, the model proposed in this paper could be used

to further investigate the effects on the beam dynamics
of the longitudinal and the transverse countermoving
wakefield.
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APPENDIX: BENCHMARK OF THE
PANOFSKY-WENZEL THEOREM IN

SIMULATIONS FOR TWO
COUNTERMOVING BEAMS

In this Appendix the Panofsky-Wenzel theorem is
verified in the two beams scenario by using CST. This
is a further benchmark for the software.
The simulated geometry is the resonant cavity reported

in Fig. 17, which includes also the in/out pipes (only one is
visible in the image). The reference system O is also
represented in the left hand side of the figure: the origin is at
the center of the pipe and ẑ defines the longitudinal
direction.
Two countermoving bunches (bunch one and bunch two)

with Gaussian shape, with the same bunch length, σb ¼
15 mm and the same total charge, q ¼ 1 nC, were simu-
lated. For each bunch, the trajectory of the source charges
(the trajectory of the excitation source) and of the test
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charges (the trajectory where the impedance is calculated)
had to be defined. These trajectories were set parallel to the
ẑ axis. Thus, they are identified only by their transverse
coordinates, i.e., xSb1 ; ySb1 ; xSb2 ; ySb2 for the source trajec-
tories, and xTb1 ; yTb1 ; xTb2 ; yTb2 for the test trajectories. The
subscripts b1 and b2 refer to bunch one and bunch two,
respectively. For the sake of simplicity, the source trajec-
tories of bunch one and bunch two were considered
coincident and the same was done for the test trajectories.
Thus, the following equations hold:

xSb1 ¼ xSb2 ¼ xS

ySb1 ¼ ySb2 ¼ yS

xTb1 ¼ xTb2 ¼ xT

yTb1 ¼ yTb2 ¼ yT ðA1Þ

An entrance delay Δtb1b2 ¼ 0 between the bunches was
considered, i.e., the bunches entered into the cavity at the
same time.
The CST software returns the impedances of the cavity

excited by the counterrotating bunches as a function of
frequency for the three axes: Zx, Zy and Zz.
According to the Panofsky-Wenzel theorem in its

impedance form [28], the following relations have to hold:

ZxðxS; yS; xT; yTÞ ¼ −
c
ω

∂ZzðxS; yS; xT; yTÞ
∂xS ;

ZyðxS; yS; xT; yTÞ ¼ −
c
ω

∂ZzðxS; yS; xT; yTÞ
∂yS : ðA2Þ

In Eqs. (A2), the dependence of Zx, Zy, and Zz on the test
and source trajectories ðxS; yS; xT; yTÞ have been explicitly
indicated, c is the speed of light and ω ¼ 2πf, where f is
the general frequency.
To verify Eqs. (A2) five simulations were required. For

all the simulations the impedance was computed setting the
test trajectory position at the value xT ¼ yT ¼ 0, i.e., along
the in/out pipe axis.
One simulations was done considering source and test

trajectories coincident, i.e., xS ¼ yS ¼ 0, this provided the
terms Zx, Zy of Eqs. (A2).
Subsequently, to compute ∂Zz=∂xS the source trajectory

was moved around the test trajectory along the x̂ axis, in the
positions xS0 ¼ −1 mm and xS1 ¼ 1 mm, keeping yS ¼ 0.
In both positions the longitudinal impedance was computed
at xT ¼ yT ¼ 0 and its derivative with respect to x was
obtained using the finite difference formula:

∂Zz

∂xS ¼ ZzðxS1Þ − ZzðxS0Þ
xS1 − xS0

: ðA3Þ

To compute ∂Zz=∂yS the source trajectory was moved
around the test trajectory along the ŷ axis, in the positions
yS0 ¼ −1 mm and yS1 ¼ 1 mm, keeping xS ¼ 0. In both
positions the longitudinal impedance was computed at
xT ¼ yT ¼ 0 and its derivative with respect to y was
obtained using the finite difference formula:

∂Zz

∂yS ¼ ZzðyS1Þ − ZzðyS0Þ
yS1 − yS0

: ðA4Þ

FIG. 17. Simulated cavity for the benchmark of the Panofsky-
Wenzel theorem. The dimensions are in millimiters.

FIG. 18. Benchmark of the Panofsky-Wenzel theorem in a CST simulation. The simulated geometry is the cavity shown in Fig. 17,
traversed by two countermoving bunches with delay Δtb1b2 ¼ 0. Some curves are not visible because they completely overlap with
others.
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Once the terms Zx; Zy; ∂Zz=∂x, and ∂Zz=∂y were
computed, Eqs. (A2) could be verified. In Fig. 18 the real
and imaginary parts of the right and the left terms of
Eqs. (A2) are plotted as a function of frequency, showing an
excellent agreement. Thus, this analysis shows that the CST
software results in the countermoving beams’ case satisfy
the Panofsky-Wenzel theorem.
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