

B Physics Results at ATLAS

Iskander Ibragimov

UNIVERSITÄT SIEGEN

Center for Particle Physics

ΕΧΡΕΡΙΜΕΝΤ

on behalf of the ATLAS Collaboration

Moriond QCD 2021 27.03.- 03.04.2021

Run: 333181 Event: 1942573294 2017-08-16 07:27:32 CEST SPONSORED BY THE

Federal Ministry of Education and Research

- Introduction
- J/ ψ and ψ (2S) production at high p_T at 13 TeV [<u>ATLAS-CONF-2019-047</u>]
- J/ψ production associated with W[±] [JHEP 01 (2020) 095]
- B[±]_c / B[±] production cross-section [arXiv:1912.02672, submitted to PRD]
- Pentaquark search in $\Lambda^{0}_{b} \rightarrow J/\psi pK^{-}$ [ATLAS-CONF-2019-048]
- CP-Violation in $B^{0}_{s} \rightarrow J/\psi \phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$ [arXiv:2001.07115, accepted by EPJC]
- Summary

- ATLAS detects huge amount of B hadrons
- trigger is a challenge, most of B-physics data selected by low-pT dimuon triggers:

- resolution in $m_{\mu\mu}$: ~50 MeV at J/ ψ mass, ~150 MeV at Y(nS) masses
- ~10 µm impact parameter resolution
- time resolution* ~60 fs after installation of IBL in Run 2 (30% improvement w.r.t. Run 1) [* from proper decay time measurements of b-hadrons]

- studies of heavy quarkonia provide insight into QCD near boundary of perturbative and non-perturbative regimes
- inclusive cross section important for refining quarkonia production models
- previous ATLAS measurements used low-threshold dimuon triggers, limiting p_T range to ~ 100 GeV → use single muon trigger with high threshold (50 GeV)
- perform unbinned ML fit to mass and pseudo-proper decay time τ = m_{µµ}L_{xy}/(p_T c), in bins of y and p_T
- measure double differential J/ψ and ψ(2S) crosssections for prompt and non-prompt production

	p⊤ range, GeV	y range
J/ψ	60 <p⊤<360< th=""><th> y <2</th></p⊤<360<>	y <2
ψ(2S)	60 <p⊤<140< th=""><th> y <2</th></p⊤<140<>	y <2

[x1, x10 and x100 scaling applied to different rapidity ranges for visual clarity]

Moriond QCD 2021, 29-03-2021

[ATLAS-CONF-2019-047] ATLAS Preliminary 1.50 < |y| < 2.00 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ -0.75 < |y| < 1.50Non-prompt J/ψ Cross-Section $\oint 0.00 < |y| < 0.75$ FONLL / Data Theory / Data 3 0.5E 3 2.5 2 1.5 0.5 3Ē 2.5⊨ 2 1.5E 0.5⊨ 70 80 90 100 200 300 60 $p_{_{\mathrm{T}}}(\mu\mu)$ [GeV]

- comparison to FONLL prediction*
- good agreement at low p⊤
- at high p_T higher cross-sections are predicted

*FONLL Heavy Quark Production Matteo Cacciari,

http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html, accessed: 2019-09-03

- comparison to FONLL prediction*
- good agreement though somewhat higher cross-sections are predicted

*FONLL Heavy Quark Production Matteo Cacciari,

http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html, accessed: 2019-09-03

[ATLAS-CONF-2019-047]

Moriond QCD 2021, 29-03-2021

- fit CMS and ATLAS results with ~(b+p_T)⁻ⁿ
- good agreement in the overlap region

Moriond QCD 2021, 29-03-2021

[ATLAS-CONF-2019-047]

Non-prompt fraction ψ (2S) ATLAS Preliminary 0.9 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 0.8 0.7 0.6 0.5E ψ(2S) 0.4E 0.3E ↓ 1.50 < |y| < 2.00</p> 0.2 0.75 < |y| < 1.50-0.00 < |y| < 0.750.1E 0<u>□</u> 60 70 80 90100 200 300 $p_{\tau}(\mu\mu)$ [GeV] Non-prompt fraction of J/ ψ **ATLAS** Preliminary 0.9E J/w $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 0.8 0.7 0.6 0.5E 0.4⊟ 0.3E -1.50 < |y| < 2.000.2E 0.75 < |y| < 1.50-0.00 < |y| < 0.750.1E 0⊑ 60 70 80 90100 200 300 $p_{\tau}(\mu\mu)$ [GeV]

• non-prompt production fractions:

$$F_{\psi}^{\mathrm{NP}}(p_{\mathrm{T}}, y) = \frac{N_{\psi}^{\mathrm{NP}}}{N_{\psi}^{\mathrm{P}} + N_{\psi}^{\mathrm{NP}}}$$

plateau at ~ 70%

Moriond QCD 2021, 29-03-2021

Non-prompt fraction $\psi(\mathsf{2S})$

0.9E

0.8

0.7

0.6

0.5

0.4E

0.3

0.2

0.1E

0⊑ 60 ψ(2S)

70 80 90100

[ATLAS-CONF-2019-047]

ATLAS Preliminary

200

- 0.75 < lyl < 1.50 - 0.00 < lyl < 0.75

300

 $p_{\tau}(\mu\mu)$ [GeV]

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

• non-prompt production fractions:

$$F_{\psi}^{\mathrm{NP}}(p_{\mathrm{T}}, y) = \frac{N_{\psi}^{\mathrm{NP}}}{N_{\psi}^{\mathrm{P}} + N_{\psi}^{\mathrm{NP}}}$$

- plateau at ~ 70%
- complements previous measurements at low p_T:

[ATLAS-CONF-2015-030]

Moriond QCD 2021, 29-03-2021

J/w production associated with W[±]

[JHEP 01 (2020) 095]

- understand charmonium production mechanism in hadronic collisions
 - relative contribution of Color Singlet (CS) and Color Octet (CO)
 - contributions from Single (SPS) and Double Parton Scattering (DPS)
 - can be probed using $\Delta\phi$ distribution between J/ ψ and W^{\pm}
 - expect DPS to be flat, SPS to peak at $\Delta\phi$ ~ π

Moriond QCD 2021, 29-03-2021

J/ψ production associated with W[±]

[JHEP 01 (2020) 095]

- differential inclusive cross-section in 6 p_T bins in the range: 8.5 < p_T <150 GeV
- compare to two theoretical predictions
 - differ in σ_{eff} values used for estimation of DPS
 - SPS contribution modelled by CO model for both

- comparison suggests smaller σ_{eff} , but both values don't describe pT dependence
- possibly because CS model is not included

Moriond QCD 2021, 29-03-2021

B[±]_c / B[±] production cross-section

• use similar decay mode for B_{c}^{\pm} and B^{\pm} :

$$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psiK^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{\text{reco}}(B_c^{\pm})}{N^{\text{reco}}(B^{\pm})} \cdot \frac{\epsilon(B^{\pm})}{\epsilon(B_c^{\pm})}$$

- fiducial volume: p_T >13 GeV, |y|<2.3
- N(B[±]_c) ~ 800, N(B[±]) ~ 400k
- double differential measurement in 2 bins of y and p_T
- production ratio in fiducial region (horizontal line):
 - $(0.34 \pm 0.04_{\text{stat}} \pm \frac{+0.06}{-0.02}_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
 - update w.r.t. preliminary result additional systematic studies performed
 - complements CMS and LHCb results
- no evident rapidity dependence (upper plot)
- B[±]_c cross-section decreases faster with p_T than B[±] cross-section (lower plot)

Pentaquark search in $\Lambda^0_b \rightarrow J/\psi pK^-$

[ATLAS-CONF-2019-048]

- in total 4 structures observed in J/ψp mass spectrum by LHCb
- interpreted as pentaquark states
 - $P_c(4312)^+$, $P_c(4380)^+$, $P_c(4440)^+$ and $P_c(4457)^+$

- ATLAS search uses 4.9 fb⁻¹ (7 TeV) and 20.9 fb⁻¹ (8 TeV) data
- no PID \rightarrow consider all H_b \rightarrow J/ ψ h₁h₂ (h_{1,2} = p, K, π) candidates
- modelling these contributions with analytical matrix elements
- suppressing background from Λ*, K*, f, φ → m(Kπ) > 1.55 GeV
- performing sequence of iterative fits in Λ⁰_b signal region, B⁰(J/ψπK) and B⁰_s(J/ψKK) control regions and in full range of selected dataset

Moriond QCD 2021, 29-03-2021

[ATLAS-CONF-2019-048]

fit with 2 pentaquark hypothesis with spin parity of 3/2⁻ (light) and 5/2⁺ (heavy) fit with 4 pentaquark hypothesis: masses, widths and relative yields of narrow states fixed to LHCb values fit without pentaquarks

- hypotheses with 2 and 4 pentaquarks consistent with data
- hypothesis without pentaquarks cannot be excluded

Moriond QCD 2021, 29-03-2021

CP-Violation in $B^{0}_{s} \rightarrow J/\psi \phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$

16

- measure CP-violating phase ϕ_s sensitive to New Physics processes
- in SM, ϕ_s is related to the CKM matrix elements:
 - $\phi_{s} \approx -2\beta_{s} = -2\arg \left[-V_{ts}V_{tb}^{*}/V_{cs}V_{cb}^{*}\right] = -0.03696^{+0.00072}_{-0.00082}$ rad [CKMfitter]
- other $\overline{B}{}^{0}{}_{s}$ -B ${}^{0}{}_{s}$ mixing quantities: width difference between B ${}^{0}{}_{s}$ mass eigenstates $\Delta\Gamma_{s} = \Gamma_{s}{}^{H}$ - $\Gamma_{s}{}^{L}$, average decay width $\Gamma_{s} = (\Gamma_{s}{}^{H}+\Gamma_{s}{}^{L})/2$
- tag whether B meson contains b or b quark at time of production using
 opposite side tagging (by computing weighted sum of charge of tracks in cone ΔR around direction of either μ, e or b-tagged jet)
- final state is admixture of CP-even(L=0,2) and CP-odd(L=1) states
 - distinguishable through time-dependent angular analysis
- 80.5 fb⁻¹ (13 TeV) partial Run 2 data (2015-2017)
- unbinned maximum likelihood (LH) fit to extract signal and S-wave parameters

 ^{*10³}
 ^{*10³}

Moriond QCD 2021, 29-03-2021

 B_s

 $B_{u,d,s}$

ΔR

CP-Violation in $B^{0}_{s} \rightarrow J/\psi \phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$

Iskander Ibragimov, University of Siegen

Moriond QCD 2021, 29-03-2021

17

- ATLAS has a rich B-Physics program
- selection of results has been presented:
 - J/ ψ and ψ (2S) production at high p_T
 - J/ψ + W associated production
 - B_{t_c} / B_{t} production cross-section
 - Pentaquark search
 - CP-Violation
- statistical precision of many analyses can still be improved (data available)
- more analyses in the pipeline
- stay tuned for the new results!

BACKUP

Moriond QCD 2021, 29-03-2021

CP-Violation in $B^{0}_{s} \rightarrow J/\psi \phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$

[arXiv:2001.07115, accepted by EPJC]

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ rad}]$
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Acceptance	0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
Time efficiency	0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
Best candidate selection	0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass window	9.3	3.3	< 0.1	0.4	0.8	0.4	17	8.6	1.8
Choice of sidebands intervals	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B^0_d	2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Tatal	22	4.2	2.2	2.2	2.0	16	55	00	20
	LL	4.3	2.2	2.3	3.8	4.0	33	88	39

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

$\mathbf{I} = \mathbf{B}^{0}(\mathbf{s}) \longrightarrow \mu^{+}\mu^{-} \text{ LHC Combination 2011-2016}$

[CMS-PAS-BPH-20-003 ; LHCb-CONF-2020-002 ; ATLAS-CONF-2020-049]

- data collected by each LHC experiment during LHC Run 1 (2011-2012) and first part of LHC Run 2 (2015-2016)
- using the binned two-dimensional profile likelihoods obtained by each experiment
 - fitted by analytical function (variable-width Gaussian) and summed up

ATLAS, CMS, LHCb and combination: likelihood contours correspond to the values of $-2\Delta lnL = 2.3$, 6.2, 11.8

Combination: likelihood contours correspond to the values of $-2\Delta lnL = 2.3$, 6.2, 11.8, 19.3, and 30.2

- BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}) = (2.69^{+0.37}_{-0.35})x10^{-9}$
- BR(B⁰ $\rightarrow \mu^{+}\mu^{-}) < 1.9 \text{ x10}^{-10} \text{ at } 95\% \text{ CL}$
- compatible with SM at $\sim 2.1\sigma$

Moriond QCD 2021, 29-03-2021