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Abstract To all orders of perturbation theory, the renor-
malization of the topological charge density in dimension-
ally regularized QCD is shown to require no more than an
additive renormalization proportional to the divergence of
the flavour-singlet axial current. The proof is based on the
standard BRS analysis of the QCD vertex functional in the
background gauge and exploits the special algebraic proper-
ties of the charge density through the Stora–Zumino chain of
descent equations.

1 Introduction

All known consistent forms of dimensional regularization of
QCD break chiral symmetry and the symmetry is then only
recovered after renormalization and removal of the regular-
ization. In the flavour-singlet channel, the situation is further
complicated by the chiral anomaly, a term proportional to
the topological charge density in the axial-current conserva-
tion equation, which requires renormalization as do the other
terms in that equation.

Parity-odd fields are in general not easy to deal with in
dimensional regularization, because the fifth Dirac matrix γ5

and the Levi-Civita symbol εμνρσ are not naturally defined in
dimensions other than four. In QCD this technical difficulty
can however be bypassed by representing such fields through
totally antisymmetric tensor fields [1,2]. Using this represen-
tation, the renormalization of the axial quark densities, the
axial currents and the chiral anomaly has been worked out to
high order in the gauge coupling [2–5].

In these computations, a multiplicative renormalization
of the topological charge density turned out to be unneces-
sary, thus suggesting that the density is finite to all orders up
to additive renormalizations [5]. The absence of a divergent
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multiplicative renormalization is perhaps not unexpected in
view of the Adler–Bardeen theorem [6] or simply because
the topological charge of classical fields assumes integer val-
ues. Many years ago, Breitenlohner, Maison and Stelle [7]
attempted to trace back the finiteness of the charge density
to its algebraic properties, but their argumentation remained
incomplete and was partially incorrect to the extent of being
inconclusive. To date a rigorous all-order discussion of the
situation in dimensionally regularized QCD appears to be
missing and the principal goal here is to fill this gap, using
the standard BRS analysis of the QCD vertex functional [8–
10], the background gauge [11–14] and the Stora–Zumino
descent equations [15–17].

After going through some definitions and preliminary
material in Sect. 2, the rather special algebraic properties
of the topological charge density, as expressed through the
descent equations, are exposed in Sect. 3. The symmetries
of the QCD vertex functional in presence of a background
gauge field and the sources for the descendants of the charge
density are then discussed. These strongly constrain the form
of the divergent parts of the vertex functional and, as shown in
Sect. 5, eventually exclude a multiplicative renormalization
of the charge density. The paper ends with some comments
on the axial anomaly and a few concluding remarks.

2 Preliminaries

2.1 Background field technique

The theory is set up in Euclidean space in the standard man-
ner with any number Nf ≥ 0 of quarks in the fundamental
representation of the gauge group SU(N ) (see Appendix A
for any unexplained notation).

In the background field formalism, the fundamental gauge
potential Aμ(x) is normalized such that the associated field
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tensor Fμν(x) and the gauge-covariant derivatives do not
involve the gauge coupling. The QCD action in D dimen-
sions is then given by

S =
∫

dDx

{
− 1

2g2
0

tr{FμνFμν} +
Nf∑
r=1

ψr ( /D + m0,r )ψr

}
,

(2.1)

where the index r of the quark fields ψr and ψr labels the
quark flavours, g0 is the bare coupling andm0,r the bare mass
of the quark number r .

The background field technique permits the theory to be
probed with greater respect for the gauge symmetry than
is the case when probed in conventional ways [11–14]. Let
Bμ(x) be a smooth classical gauge potential and consider the
decomposition

Aμ(x) = Bμ(x) + g0qμ(x) (2.2)

of the fundamental gauge potential Aμ in the background
field Bμ and the quantum field qμ, which is now the field
integrated over in the functional integral. A possible choice
of the gauge-fixing and associated ghost action is then

Sgf = −λ0

∫
dDx tr

{
DμqμDνqν

}
, Dμ = ∂μ + Ad Bμ,

(2.3)

Sgh = −2
∫

dDx tr
{
Dμc̄

(
Dμ + g0Ad qμ

)
c
}
, (2.4)

c and c̄ being the ghost and antighost fields. As is quite clear
from these expressions, and further discussed in Sect. 3.2, this
way of fixing the gauge preserves a classical gauge symmetry.

The theory with total action

Stot = S + Sgf + Sgh (2.5)

has a regular perturbation expansion in Feynman diagrams,
if the background field is treated as an additional source field,
i.e. if the functional integral is expanded in a powers series
in this field. In particular, at vanishing background field, the
theory in the standard Lorentz-covariant gauge is recovered.
All-important is then the fact that the theory renormalizes in
the same way with and without background field, the latter
requiring no renormalization.

An introduction to the subject and a proof of the renormal-
izability of the dimensionally regularized theory in presence
of the background field is provided in the first few sections of
Ref. [18]. Some of the strategies described there will again
be used here, but the presentation in the following is intended
to be self-contained.

2.2 Tensor fields and the topological charge density

In D = 4 dimensions, the topological charge density is given
by

qtop(x) = − 1

32π2 εμνρσ tr{Fμν(x)Fρσ (x)}. (2.6)

Since the Levi-Civita symbol εμνρσ is not a well defined
object in dimensions other than four, the use of Eq. (2.6) in
any dimension would require the first four dimensions to be
distinguished from the −2ε extra dimensions.

Following Refs. [1–5], such a distinction can be avoided
by noting that the totally antisymmetric tensor field

(FF)μνρσ (x) = Fa
μν(x)F

a
ρσ (x)

+ Fa
νρ(x)Fa

μσ (x) + Fa
νσ (x)Fa

ρμ(x) (2.7)

is, in four dimensions, proportional to εμνρσ times the charge
density. This tensor field is well defined in any dimension and
thus provides a possible representation of the charge density
in the framework of dimensional regularization.

In the case of the axial quark densities and currents, the
totally antisymmetric tensor fields

Prs
μνρσ (x) = ψr (x)γ[μγνγργσ ]ψs(x), (2.8)

Ars
μνρ(x) = ψr (x)γ[μγνγρ]ψs(x), (2.9)

may similarly be taken as a possible representation of these
fields in arbitrary dimensions (following common practice,
an antisymmetrization over the indices enclosed in square
brackets is implied). It may be worth mentioning in passing
that the fields (2.8), (2.9) satisfy an exact PCAC relation, in
any dimension, involving an evanescent further field, which
renormalizes the other fields in the equation and gives rise to
the axial anomaly at D = 4.

Correlation functions of tensor fields and the fundamen-
tal fields can be worked out in perturbation theory in the
standard manner. Covariance under the full Lorentz group,
including parity, is exactly preserved in these calculations
and the required counterterms are Lorentz-covariant polyno-
mials in the external momenta, Kronecker deltas and prod-
ucts of Dirac matrices (if some external Dirac indices are
uncontracted). In particular, tensor fields renormalize among
themselves.

3 Algebraic properties of the topological charge density

Totally antisymmetric tensors like (FF)μνρσ are naturally
associated with differential forms. In this particular case, the
form is, in any dimension, proportional to the second Chern
character and thus has some special algebraic properties.
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3.1 BRS variation [8,9]

In presence of the background gauge potential Bμ, the BRS
variation of the quantum field qμ, the ghost fields c, c̄ and
the quark fields ψ,ψ is given by

δBRSqμ = (
Dμ + g0Ad qμ

)
c, (3.1)

δBRSc = −g0c
2, (3.2)

δBRSc̄ = λ0Dμqμ, (3.3)

δBRSψ = −g0cψ, δBRSψ = −g0ψc. (3.4)

Since the background field is not transformed, Eq. (3.1)
implies

δBRSAμ = g0
(
∂μ + Ad Aμ

)
c, (3.5)

which shows that the BRS transformation of the gauge poten-
tial Aμ is an infinitesimal gauge transformation.

The BRS variation is an antiderivative with respect to the
grading defined by the fermion (ghost plus quark) number,
i.e.

δBRS( f g) = δBRS f g + (−1)n f δBRSg (3.6)

if f has fermion numbern. When acting on differential forms,
the rank of the form is often included in the grading and the
exterior differential d then anticommutes with δBRS. In the
present context, where the BRS variation eventually acts on
tensor fields, this convention however tends to be confusing
and is not applied.

3.2 Background gauge variation

Background gauge transformations are generated by classical
fields ω(x) with values in the Lie algebra of SU(N ). The
associated gauge variation includes the background field

δωBμ = Dμω (3.7)

and acts on the quantum fields according to

δωqμ = [qμ, ω], (3.8)

δωc = [c, ω], δωc̄ = [c̄, ω], (3.9)

δωψ = −ωψ, δωψ = ψω. (3.10)

Gauge and BRS transformations both preserve the total
action (2.5) and their commutator [δBRS, δω] vanishes.

3.3 Descent equations

The Stora–Zumino chain of equations [15–17], which
descends from the second Chern character, make the special
algebraic properties of the latter explicit (for an introduction

to the subject see Ref. [19], for example). It is now helpful
to introduce the differential forms

A = Aμdxμ, F = 1

2
Fμνdxμdxν = dA + A2, (3.11)

and similarly the forms B and q. Starting from the 4-form

tr{F2} = − 1

4! (FF)μνρσ dxμdxνdxρdxσ , (3.12)

a sequence φ3, φ2, φ1, φ0 of differential forms of decreasing
rank may then be constructed satisfying the descent equations

tr{F2} = dφ3, (3.13)

δBRSφk = dφk−1, k = 3, 2, 1, (3.14)

δBRSφ0 = 0. (3.15)

The particular solution of these equations chosen here,

φ3 = tr

{
AdA + 2

3
A3

}
− g0d(tr{qB}), (3.16)

φ2 = g0 tr{cdA} − g0δBRS(tr{qB}) + g0d(tr{cB}), (3.17)

φ1 = g2
0 tr{c2A} + g0δBRS(tr{cB}), (3.18)

φ0 = g3
0

1

3
tr{c3}, (3.19)

includes several terms proportional to the background field
B, which serve to ensure a simple transformation behaviour,

δωφ3 = tr{dωdB}, (3.20)

δωφk = 0, k = 0, 1, 2, (3.21)

under background gauge transformations.

4 Definition and symmetries of the bare vertex
functional

The renormalization of the theory with insertions of compos-
ite fields will be studied by adding sources for all relevant
fields and by discussing the possible structure of the diver-
gent parts of the associated vertex functional. Since the quark
fields give rise to only minor complications in this analysis,
the pure gauge theory will now first be considered, the mod-
ifications required in full QCD being discussed in Sect. 5.6.

4.1 Source terms for the basic fields

Following standard practice, the basic source terms included
in the QCD functional integral are

(J, q) + (η̄, c) + (c̄, η) + (K , δBRSq) − (L , δBRSc), (4.1)

where Jμ, η̄, η, Kμ and L are classical source fields with
values in the Lie algebra of SU(N ). Scalar products of such
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coloured fields like

(J, q) =
∫

dDx Jaμ(x)qaμ(x) (4.2)

are defined in the obvious way and it is understood that η̄, η

and Kμ are fermion fields that anticommute with the ghost
fields.

The source terms (4.1) are such that the application of the
BRS variation to the sum of terms is equivalent to a change of
the source fields. This property is shared by the further source
terms introduced below and eventually ensures that the BRS
symmetry turns into a symmetry of the vertex functional.

4.2 Sources for the descendants of the charge density

Appropriate source fields for the totally antisymmetric coef-
ficients (φk)μ1...μk of the differential forms (3.16)–(3.19) are
classical tensor fields (Hk)μ1...μk of the same type. The cor-
responding source terms,

(Hk, φk) =
∫

dDx (Hk)μ1...μk (x)(φk)μ1...μk (x), (4.3)

transform under the BRS variation according to1

δBRS(H0, φ0) = 0, (4.4)

δBRS(Hk, φk) = (−1)k−3(d∗Hk, φk−1), k = 1, 2, 3, (4.5)

where

(d∗Hk)μ1...μk−1(x) = −∂μ(Hk)μμ1...μk−1(x). (4.6)

As will become clear in Sect. 5, source terms for two further
fields,

sμ = tr{cqμ} and δBRSsμ, (4.7)

must be included together with the terms (4.3) to be able
to renormalize the correlation functions with insertions of
(φ1)μ and (φ2)μν .

The fields s, δBRSs and φk are such that the short-distance
singularities generated by their insertion in correlation func-
tions of the basic fields q, . . . , δBRSc are integrable at D = 4.
Additional poles in 1/ε are therefore excluded when off-shell
correlation functions are considered and there is no difference
in these cases between off- and on-shell renormalization.

1 Algebraic consistency requires that source fields with odd fermion
number anticommute with the BRS variation of the quantum fields.

Table 1 Properties of the source fields

Field Dimension Ghost no

Jaμ 3 0

η̄a 3 −1

ηa 3 1

Ka
μ 2 −1

La 2 −2

Eμ 2 −1

Fμ 1 −2

H0 1 −3

(H1)μ 1 −2

(H2)μν 1 −1

(H3)μνρ 1 0

4.3 Definition of the vertex functional

The complete list of source terms included in the functional
integral is thus

(J, q) + (η̄, c) + (c̄, η) + (K , δBRSq) − (L , δBRSc)

+ (E, s) − (F, δBRSs) +
3∑

k=0

(Hk, φk), (4.8)

some relevant properties of the source fields being listed in
Table 1.

From the partition function Z [B, J, . . . , H3] of the theory
in presence of the background gauge field and the source
terms, the generating functional for the connected correlation
functions of the fields q, . . . , φ3,

W [B, J, . . . , H3] = ln(Z [B, J, . . . , H3]), (4.9)

is obtained as usual. The Legendre transform

�[B, Q, . . . , H3]=W [B, J, . . . , H3]−(J, Q)−(η̄,C) − (C, η),

(4.10)

Qa
μ(x) = δW

δ Jaμ(x)
, (4.11)

Ca(x) = δW

δη̄a(x)
, C

a
(x) = − δW

δηa(x)
, (4.12)

in the source fields for q, c and c̄ then leads to the vertex
functional �[B, . . . , H3] of the theory, all other source fields
E, . . . , H3 and the background field being spectators in this
transformation.
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4.4 BRS symmetry

A little algebra now shows that the BRS symmetry implies
[10]

∫
dDx

{
δ�

δQa
μ

δ�

δKa
μ

− δ�

δCa

δ�

δLa
+ λ0(DμQμ)a

δ�

δC
a

− Eμ

δ�

δFμ

− (d∗H1)
δ�

δH0
+ (d∗H2)μ

δ�

δ(H1)μ

− (d∗H3)μν

δ�

δ(H2)μν

}
= 0. (4.13)

The first three terms in this equation are the usual ones deriv-
ing from the BRS variation of the basic fields, while all further
terms reflect the transformation behaviour of the added fields
s, . . . , φ3.

4.5 Background gauge transformations

If the coloured source fields are transformed according to

δωQμ = [Qμ, ω], (4.14)

δωC = [C, ω], δωC = [C, ω], (4.15)

δωKμ = Kμ, ω], (4.16)

δωL = [L , ω], (4.17)

the vertex functional is invariant under background gauge
transformations up to an inhomogeneous term,

δω�[B, . . . , H3]
=

∫
dDx (H3)μνρ tr{∂μω∂νBρ}, (4.18)

that derives from the non-invariance of φ3 [cf. Eq. (3.20)].
In particular, the vertex functional is gauge invariant beyond
the tree level of perturbation theory.

4.6 Shift symmetry

In the background gauge, the QCD action (2.1) is a function
of the gauge potential Aμ, while the gauge-fixing and the
ghost action depend on both the background and the quantum
field. Under an infinitesimal shift

δsBμ(x) = g0υμ(x),

δsqμ(x) = −υμ(x), (4.19)

of these fields by an arbitrary classical field υμ, the total
action transforms like

δsStot = δBRS

{∫
dDx υa

μ[(Dμ + g0Ad qμ)c̄]a
}

. (4.20)

An identity used later, which derives from this property, is

δ

δBa
μ

W [B, 0, . . . , 0, d∗H4] = 0, (4.21)

where (H4)μνρσ is any totally antisymmetric tensor source
field of rank 4.

5 Renormalization

In the following, the focus will be on the vertex functions
with either no or a single insertion of the fields s, . . . , φ3.
The corresponding parts of the vertex functional are denoted
by �(0) and �(1). Clearly,

�(0)[B, . . . , L] = �[B, . . . , L , 0, . . . , 0], (5.1)

while �(1)[B, . . . , H3] coincides with the part of the ver-
tex functional that depends linearly on the source fields
E, . . . , H3. The discussion in this section largely fol-
lows the one in Ref. [18], where the renormalizability of
�(0)[B, . . . , L] was proved. Here the goal is to extend this
result to �(1)[B, . . . , H3].

5.1 Renormalized vertex functional

The vertex functional is tentatively renormalized by scaling
the source fields,

�R[B, Q,C,C, K , L , E, . . . , H3]
= �[B, Z1/2

3 Q, Z̃1/2
3 C, Z̃1/2

3 C, Z̃1/2
3 K , Z1/2

3 L ,

ZE (E + XEd∗H2), ZF (F − XE H1),

ZH0 H0, . . . , ZH3 H3], (5.2)

and by expressing the bare coupling and gauge parameter
through the renormalized coupling g and gauge parameter λ

according to

g0 = μεZ1Z
−3/2
3 g, μ : normalization mass, (5.3)

λ0 = Z−1
3 λ. (5.4)

In these equations, Z1, Z3 and Z̃3 are the renormalization
constants already required for the renormalization of the the-
ory without insertions of the fields s, . . . , φ3. Some of the
other renormalization constants are not independent and sat-
isfy

ZF = ZE (Z3 Z̃3)
1/2, (5.5)

ZHk = ZH (Z3 Z̃3)
(3−k)/2, k = 0, . . . , 3. (5.6)

The additive renormalizations proportional to XE are
included in Eq. (5.2), because the field φ1 mixes with δBRSs
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and φ2 with ds. A non-zero mixing actually already occurs
at one-loop order of perturbation theory. In the following,
minimal subtraction (i.e. the MS scheme) is assumed for all
renormalization constants.

Equations (5.2)–(5.6) are such that the renormalization
preserves the form of the BRS identity (4.13), viz.

∫
dDx

{
δ�R

δQa
μ

δ�R

δKa
μ

− δ�R

δCa

δ�R

δLa
+ λ(DμQμ)a

δ�R

δC
a

− Eμ

δ�R

δFμ

− (d∗H1)
δ�R

δH0
+ (d∗H2)μ

δ�R

δ(H1)μ

− (d∗H3)μν

δ�R

δ(H2)μν

}
= 0. (5.7)

Moreover, the shift-symmetry identity (4.21) continues to
hold when W [B, . . . , H3] is replaced by the generating func-
tional WR[B, . . . , H3] of the renormalized connected corre-
lation functions. In the case of the background gauge sym-
metry, the transformation law for the renormalized vertex
functional,

δω�R[B, . . . , H3] = ZH

∫
dDx (H3)μνρ tr{∂μω∂νBρ},(5.8)

however involves the renormalization constant ZH , which
already shows that ZH cannot diverge in the limit D → 4 if
�

(1)
R [B, . . . , H3] is finite.

5.2 Loop expansion of the renormalized vertex functional

The renormalized vertex functional may be expanded in a
series

�R =
∞∑
l=0

�R,l (5.9)

of terms of increasing loop order l, the lowest-order term
being

�R,0 = −Ŝtot + (K , δ̂BRSQ) − (L , δ̂BRSC) + (E, ŝ)

− (F, δ̂BRSŝ) +
3∑

k=0

(Hk, φ̂k). (5.10)

All hatted fields in this formula and the hatted total action are
obtained from the corresponding expressions in the quantum
fields by substituting qμ → Qμ, c → C , c̄ → C , g0 → μεg
and λ0 → λ. The BRS variation

δ̂BRSQμ = (Dμ + μεgAd Qμ)C, (5.11)

δ̂BRSC = −μεgC2, (5.12)

acting on the source fields must be distinguished from the
one acting on the quantum fields, but has identical algebraic
properties.

5.3 Proof of finiteness: first steps

The proof of finiteness of �
(1)
R [B, . . . , H3] and thus of ZH

proceeds by induction over the loop order l. At a given order
n, the induction hypothesis is that the divergences of �

(1)
R,l

can be canceled at all orders l < n by setting ZH = 1 and
by adjusting the l-loop coefficients of ZE and XE . The task
is then to show that the same is the case at loop order n.

First this requires the structure of the divergent part
��

(1)
R,n of �

(1)
R,n to be determined for vanishing n-loop terms

ZE,n, XE,n, ZH,n of ZE , XE and ZH , their contribution to
the vertex functional at this order,

ZE,n{(E, ŝ) − (F, δ̂BRSŝ)}

+ XE,n{(d∗H2, ŝ) + (H1, δ̂BRSŝ)} + ZH,n

3∑
k=0

(Hk, φ̂k),

(5.13)

being taken into account in Sect. 5.5.
General principles imply that

��
(1)
R,n =

∫
dDx p(x), (5.14)

where p(x) is a local polynomial in the source fields
B, Q, . . . , H3 and their derivatives, which must have dimen-
sion 4, ghost number 0 and be linear in E, . . . , H3. Partial
integration moreover allows any terms with derivatives of
these latter fields to be traded for terms in which they appear
without derivatives. The field p(x) then inherits the invari-
ance of ��

(1)
R,n under Lorentz and background gauge trans-

formations (since ZH,n is, at this point, set to zero).
All these properties already strongly constrain the form of

p(x). Recalling table 1, inspection shows that the field cannot
depend on the fields C , K or L . Moreover, the terms in p(x)
depending on the fields E and H0 must be proportional to
Eμ(x)ŝμ(x) and H0(x)φ̂0(x).

5.4 Consequences of the BRS symmetry

Further constraints on ��
(1)
R,n derive from the BRS identity

(5.7), which holds at all loop orders and all orders in the
source fields E, . . . , H3. At loop order n, and for the terms
linear in these fields, the identity together with the induction
hypothesis and the leading-order form (5.10) of the vertex
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functional implies

∫
dDx

{
δ̂BRSQ

a
μ

δ��
(1)
R,n

δQa
μ

+ δ̂BRSC
a
δ��

(1)
R,n

δCa

− Eμ

δ��
(1)
R,n

δFμ

− (d∗H1)
δ��

(1)
R,n

δH0

+ (d∗H2)μ
δ��

(1)
R,n

δ(H1)μ
− (d∗H3)μν

δ��
(1)
R,n

δ(H2)μν

}
= 0. (5.15)

If only the first two terms were present, the left-hand side of
this equation would coincide with δ̂BRS��

(1)
R,n . The equation

thus relates the BRS variation of the terms proportional to
E, H1, H2 and H3 to the terms proportional to F, H0, H1

and H2. As a consequence,

��
(1)
R,n = zE

{
(E, ŝ) − (F, δ̂BRSŝ)

} +
3∑

k=0

(Hk, f̂k), (5.16)

where zE is a (divergent) constant and f̂k , k = 0, . . . , 3,
some gauge-invariant forms of rank k, with dimension 3 and
ghost number 3 − k, satisfying

δ̂BRS f̂k = d f̂k−1 (5.17)

for all k = 1, 2, 3.
The discussion in appendix A of the descent equations

for quantum fields carries over literally to the case of the
descent equations (5.17) and shows that these equations have
only two linearly independent solutions with the required
properties. As a result,

��
(1)
R,n = (zE E + xEd∗H2, ŝ) − (zE F − xE H1, δ̂BRSŝ)

+zH

3∑
k=0

(Hk, φ̂k) − zH (H3, φ̂3)g=0, (5.18)

where xE and zH are further (divergent) coefficients.

5.5 Proof of finiteness: final steps

Now when the counterterms (5.13) are included in the ver-
tex functional, all terms on the right of Eq. (5.18) except
for the last one can be canceled by adjusting the n-loop
coefficients of ZE , XE and ZH . Since the uncanceled term
only depends on B and H3, it is a spectator in the Legendre
transform that leads from the renormalized vertex functional
to the generating functional WR[B, . . . , H3] of the renor-
malized correlation functions. The latter is therefore finite
too at n-loop order apart from this additive divergent term
and terms of higher than linear order in the source fields
E, . . . , H3.

Such a divergent term is however excluded by the
shift-symmetry relation (4.21) (with W → WR) and its
coefficient zH must hence be equal to zero. The terms

in Eq. (5.18) proportional to zH are thus absent and
all divergences at n-loop order can be canceled by set-
ting ZH = 1 and adjusting ZE and XE , as was to be
shown.

5.6 Inclusion of the quark fields

In presence of the quark fields, φ3 requires an additive renor-
malization proportional to the flavour-singlet axial current,
which is here represented by the tensor field

As
μνρ(x) =

Nf∑
r=1

ψr (x)γ[μγνγρ]ψr (x). (5.19)

After adding source terms for the quark and antiquark
fields, their BRS variation and the axial current (5.19),
the finiteness of �

(1)
R can then again be proved follow-

ing the steps taken in the case of the pure gauge the-
ory.

Since As is invariant under both the BRS and the back-
ground gauge symmetry, there is now a third solution, f̂k =
δk3 Âs , of the descent equations (5.17) with all the required
properties. The mixing of φ3 with As derives from the exis-
tence of this additional solution, but a multiplicative renor-
malization of φ3 remains excluded.

There is, on the other hand, no field that could mix
with the axial current. The results obtained in appendix
B in fact show that no BRS and gauge invariant 3-
form of dimension 3 can be built from the gauge and
ghost fields alone. The Lorentz and flavour symmetry
then imply that the current must renormalize multiplica-
tively.

6 Flavour-singlet axial Ward identity

Since the axial anomaly does not require multiplicative renor-
malization, the relation between the bare and the renormal-
ized fields that appear in the flavour-singlet axial-current con-
servation equation is slightly simplified. The structure of the
equation in the renormalized theory in four dimensions is
then easily determined, but there is little new here and the
section is included mainly for completeness. All statements
made in the following refer to standard QCD with vanishing
background field.

6.1 Renormalized fields

The renormalized fields participating in the Ward
identity are
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(F∗F)R = 1

2
εμνρσ

{
Fa[μνF

a
ρσ ] + 1

3
ZFA∂[μAs

νρσ ]
}

, (6.1)

(As
μ)R = 1

6
εμνρσ ZAA

s
νρσ , (6.2)

(mP)R = 1

24
εμνρσ Zm ZP

Nf∑
r=1

m0,r P
rr
μνρσ . (6.3)

In these equations, the renormalization constants Zm , ZA and
ZP are for the quark masses and for the flavour-singlet axial
current and density, while ZFA = O(g4) is a mixing coef-
ficient. Minimal subtraction is assumed, as before, and the
contraction with the Levi-Civita symbol is performed only
after passing to D = 4 dimensions.

The anomalous dimensions of (As
μ)R and (mP)R are

γA = (−εg + β)
∂ ln ZA

∂g
, (6.4)

γmP = (−εg + β)
∂ ln(Zm ZP )

∂g
= γm + γP , (6.5)

where β = −b0g3 − b1g5 + . . . denotes the β-function at
ε = 0. Since (F∗F)R mixes with ∂μ(As

μ)R, the associated
anomalous dimension is a 2 × 2 matrix,

γF =
(

0 γFA

0 γA

)
,

γFA = (−εg + β)
∂ZFA

∂g
Z−1
A , (6.6)

acting on these fields.

6.2 Renormalization-group-invariant (RGI) fields

RGI fields are related to the renormalized ones through
finite renormalization factors chosen such that the anoma-
lous dimensions vanish. In the case of a multiplet (Ok)R,
k = 1, . . . , n, of fields with anomalous-dimension matrix γ ,
the RGI fields are given by

(Ok)RGI =
n∑

l=1

Rkl(Ol)R, (6.7)

where R is an n × n matrix satisfying

β
∂R
∂g

+ Rγ = 0 (6.8)

plus some conventional boundary condition at g = 0. Apart
from having vanishing anomalous dimension, RGI fields are
independent of the renormalization scheme and any relations
among them are therefore universally valid.

In the case of the fields considered here, the boundary
condition limg→0 R = 1 can be imposed and the RGI fields

are then given by

(F∗F)RGI = (F∗F)R + XFA∂μ(As
μ)R, (6.9)

(As
μ)RGI = XA(As

μ)R, (6.10)

(mP)RGI = XmP (mP)R, (6.11)

where

XO = exp

{
−

∫ g

0
dh

γO(h)

β(h)

}
, O = A,mP, (6.12)

XFA = −XA

∫ g

0
dh

γFA(h)

β(h)XA(h)
(6.13)

(the integrals are all absolutely convergent, since the anoma-
lous dimensions γA, γmP and γFA are of order g4). The factor
XmP can, incidentally, also be determined by matching the
normalizations of the axial and scalar quark densities as in
Ref. [2], for example.

6.3 Ward identity

In terms of the RGI fields, and for any product O of fields at
non-zero distances from x , the flavour-singlet Ward identity
assumes the form

〈{∂μ(As
μ)RGI(x)

+k1(mP)RGI(x) + k2(F
∗F)RGI(x)}O

〉 = 0. (6.14)

Since the renormalization group excludes a dependence of
the coefficients k1 and k2 on the gauge coupling, their values

k1 = −2, k2 = Nf

16π2 , (6.15)

coincide with the ones obtained at 1-loop order of perturba-
tion theory.

If the Ward identity is written in terms of the minimally
subtracted field (F∗F)R instead of (F∗F)RGI, as in Refs. [2–
5], the equation becomes

〈{∂μ(As
μ)R′(x) + k1(mP)RGI(x) + k2(F

∗F)R(x)}O〉 = 0,

(6.16)

(As
μ)R′ = (XA + k2XFA)(As

μ)R. (6.17)

In this renormalization scheme, the anomalous dimensions
satisfy

γ ′
A = −k2γ

′
FA, (6.18)

as already noted in Ref. [5], and the finite renormalization
factor XA + k2XFA can be computed by requiring (6.16) to
hold in the massless theory [2].
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7 Concluding remarks

The fact that the topological charge density does not require
multiplicative renormalization derives from its algebraic
properties, namely that it coincides with the exterior differ-
ential of a gauge-variant local 3-form, the Chern–Simons
form. Eventually the normalization of the density is fixed by
the inhomogeneous gauge transformation behaviour of the
latter.

A straightforward argumentation along this line is how-
ever not possible in perturbation theory in view of the
required gauge fixing. Use had instead to be made of the
background gauge and the BRS symmetry, whose application
to the Chern–Simons form generates a chain of forms with
increasing ghost number. All these forms must be included
in the renormalization process and a multiplicative renormal-
ization of the Chern–Simons form (and thus of the charge
density) is then seen to be excluded by the symmetries of
the QCD vertex functional. The other forms however require
multiplicative renormalization and some additive renormal-
ization as well.

Specific renormalization properties like the one discussed
in this paper can depend on the chosen regularization of the
theory. Simple expressions for the topological charge den-
sity in lattice QCD, for example, need not be exactly rep-
resentable through a discrete version of the Chern–Simons
form and may consequently require multiplicative renormal-
ization. After renormalization and removal of the regulariza-
tion, the RGI form (6.14) of the flavour-singlet chiral Ward
identity however holds in these cases too.
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Appendix A: Notation

A.1 Gauge group

The Lie algebra of the gauge group SU(N ) may be identified
with the space of all complex antihermitian N × N matrices
with vanishing trace. If T a , a = 1, . . . , N 2 − 1, is a basis of
such matrices satisfying

tr{T aT b} = −1

2
δab, (A.1)

the general element X of the Lie algebra is given by X =
XaT a with real components Xa = −2tr{XT a} (repeated
indices are automatically summed over).

While the quark fields are assumed to be in the fundamen-
tal representation of the gauge group, the gauge and ghost
fields take values in its Lie algebra. The adjoint action of the
latter on itself is defined by

Ad X · Y = [X,Y ] = f abcXaY bT c, (A.2)

where f abc are the SU(N ) structure constants in the chosen
basis of group generators.

A.2 Dimensional regularization

The theory is defined in the standard manner in D = 4 − 2ε

Euclidean dimensions. Lorentz indices run from 0 to 3 in D =
4 dimensions and formally to D− 1 in arbitrary dimensions,
i.e. the trace of the Kronecker delta δμν is equal to D.

The Dirac matrices γμ in D dimensions are formal objects
satisfying

{γμ, γν} = 2δμν. (A.3)

By taking products and linear combinations, the Dirac matri-
ces generate an infinite dimensional linear space. The trace
tr{·} is a mapping from this space to the space of polyno-
mials in Kronecker deltas, which is implicitly defined by its
linearity and cyclicity, the normalization convention

tr{1} = 4, (A.4)

the Dirac algebra (A.3) and the rule that products of odd
numbers of Dirac matrices have vanishing trace.

In D = 4 dimensions, the Dirac matrices are assumed to
be Hermitian and the fifth Dirac matrix is taken to be

γ5 = γ0γ1γ2γ3, (A.5)

but no attempt is made to assign a meaning to γ5 in arbi-
trary dimensions. The same applies to the Levi-Civita symbol
εμνρσ , which is normalized such that ε0123 = 1.
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A.3 Differential forms

Differential forms f (x) of rank n are homogeneous polyno-
mials

f (x) = f (x)μ1...μndxμ1 . . . dxμn (A.6)

in the Grassmann algebra generated by the anticommuting
symbols dxμ. The coefficients f (x)μ1...μn may be real, com-
plex or take values in the Lie algebra of SU(N ), for example.

The exterior differential d acts on such forms according
to

d f (x) = dxμ∂μ f (x). (A.7)

Clearly, d2 = 0 and

d( f (x)g(x)) = d f (x)g(x) + (−1)n f (x)dg(x) (A.8)

if f (x) has rank n.

Appendix B: Solution of the descent equations

The goal in this appendix is to find the general solution of
the descent equations

δBRS fk = d fk−1, k = 1, 2, 3, (B.1)

in the space of local gauge-invariant forms fk of rank k =
0, . . . , 3, with ghost number 3−k and dimension 3, which can
be composed from the fields Ba

μ, qaμ, ca and their derivatives.

B.1 Gauge-covariant exterior differential

Let f be any differential form of rank n with values in the
space of N×N matrices of elements of a complex Grassmann
algebra. The gauge-covariant exterior differential dB acts on
f according to

dB f = d f + B f + (−1)n+1 f B. (B.2)

If f is a gauge-covariant expression in the basic fields, i.e. if

δω f = [ f, ω], (B.3)

its differential dB f is gauge-covariant too. Moreover,

dB(dB f ) = [G, f ], G = dB + B2, (B.4)

dBG = 0, (B.5)

dB( f g) = dB f g + (−1)n f dBg, (B.6)

d (tr{ f }) = tr{dB f }. (B.7)

Using these rules, the differential of the trace of any gauge-
covariant polynomial in the basic fields can be worked out
and yields expressions of the same type.

B.2 Gauge-invariant forms

The dimension, ghost number and gauge invariance of the
differential forms fk implies that they are linear combinations
of terms of the form tr{O}, where O is a product of three
of the fields Bμ, qμ, c or of one of these fields and another
one with a derivative acting on it. Moreover, none of the
Lorentz indices of the fields may be contracted, i.e. O must
be a product of B, q, c, dB, dq and dc. The gauge-invariant
terms with ghost number 0, . . . , 3,

h1 = tr{q3}, h2 = tr{q dBq}, h3 = tr{qG}, (B.8)

h4 = tr{cq2}, h5 = tr{cdBq},
h6 = tr{dBcq}, h7 = tr{cG}, (B.9)

h8 = tr{c2q}, h9 = tr{cdBc}, (B.10)

h10 = tr{c3}, (B.11)

are then easily found by applying a gauge variation to the
general linear combination of all possible terms.

B.3 General solution of the descent equations

Recalling the discussion in Sect. 3.3, the sequence of forms

fk = φk − δk3φ3
∣∣
g0=0, k = 0, . . . , 3, (B.12)

is easily shown to satisfy the descent equations (B.1) and all
other requirements too. An obvious second solution is

fk = δk1δBRSs + δk2ds, s = tr{cq}, (B.13)

but there are no further linearly independent solutions.
The proof of this statement begins by noting that the forms

fk must be linear combinations

f3 =
3∑

k=1

ckhk, f2 =
7∑

k=4

ckhk, . . . (B.14)

of the forms h1, . . . , h10 with some coefficients c1, . . . , c10.
Since

φ3 − φ3
∣∣
g0=0 = 2

3
g3

0h1 + g2
0h2 + 2g0h3, (B.15)

ds = h5 + h6, (B.16)

the coefficients c3 and c5 can be nullified by subtracting a lin-
ear combination of the solutions (B.12), (B.13) and it remains
to be shown that the descent equations imply the vanishing
of all coefficients c1, . . . , c10 if c3 = c5 = 0.

Noting

δBRSq = dBc + g0[q, c], (B.17)

δBRSdBq = [G, c] + g0[dBq, c] − g0{dBc, q}, (B.18)
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some algebra yields

δBRSh1 = 3tr{dBcq2}, (B.19)

δBRSh2 = tr{dBcdBq − 2g0dBcq2 − [q, c]G}, (B.20)

for the forms with ghost number 0, while

dh4 = tr{dBcq2 + [q, c]dBq}, (B.21)

dh6 = −tr{dBcdBq + [q, c]G}, (B.22)

dh7 = tr{dBcG}. (B.23)

The matching of the independent terms on the two sides of
the equation δBRS f3 = d f2 then shows that c1 = c2 = c4 =
c6 = c7 = 0 and thus f2 = f3 = 0. Finally, since the forms

dh8 = tr{c2dBq − [q, c]dBc}, (B.24)

dh9 = tr{dBcdBc − 2c2G}, (B.25)

dh10 = 3tr{c2dBc}, (B.26)

are linearly independent, the remaining coefficients c8, c9, c10

must vanish too.
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