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Abstract

We present an alternative implementation of the Kalman filter employed for track
fitting within the LHCb experiment. It uses simple parametrizations for the ex-
trapolation of particle trajectories in the field of the LHCb dipole magnet and
for the effects of multiple scattering in the detector material. A speedup of more
than a factor of four is achieved while maintaining the quality of the estimated
track quantities. This Kalman filter implementation could be used in the purely
software-based trigger of the LHCb upgrade.
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1 Introduction

The LHCb experiment is a dedicated heavy flavour physics experiment at the LHC focusing
on the study of hadrons containing b and c quarks [1]. Due to the high luminosity at the
LHC and the high proton-proton interaction cross section, a sophisticated trigger system
is needed to reduce the rate of collisions saved for offline analysis. During Runs 1 and
2 of the LHC, this trigger system consisted of a hardware stage, reducing the rate from
40 MHz to 1 MHz, followed by a two-stage software trigger. In the latter, the full tracking
system was read out and a partial (first stage) and full (second stage) event reconstruction
were performed [2]. Both software stages included a fit of selected track candidates using
a Kalman filter to extract their parameters and to reject fake tracks. In addition, the
software trigger allowed an online calibration and alignment of the detector [3].

During Run 3 of the LHC, LHCb will be provided with a factor five higher luminosity
compared to Run 2. In this scope, most of the subdetectors are currently being replaced
or upgraded [4–7] and a new trigger strategy has been developed [8]. The hardware
trigger will be removed and a two-stage, fully software-based trigger will process the
full 30 MHz1 of bunch-crossing rate. In the first stage, tracks with a high transverse
momentum (pT) and primary vertices will be reconstructed. These objects are used to
select events with displaced topologies typical for b-hadron and c-hadron decays, and to
select high-pT objects from decays of heavy vector bosons. In the second stage, a full
event reconstruction will be performed, without any requirement on the pT and including
particle identification. A large number of exclusive and several universal event selections
based on the decay topology will be applied.

In LHCb, track reconstruction is split into a pattern recognition and a Kalman filtering
[9, 10] stage. During pattern recognition, sets in each subdetector are constructed from
signals that potentially result from the passage of a single charged particle. Simple
parametrizations are used throughout this procedure as it is only concerned with finding
the right sets of signals and not to provide the best estimate of the track parameters.
During the filtering stage, an estimate for the track parameters is calculated, and fake
tracks are rejected. Given that the output of the filtering stage is used for physics selections
the best possible precision needs to be achieved, hence an (extended) Kalman filter is used
for track fitting. Ideally, Kalman filtering of the track candidates is already performed
during the first trigger stage. However, the Kalman filter which was used during Run 1
and 2 in LHCb, in the following called default Kalman, is significantly too slow. It relies
on lookup tables for the magnetic field and the material distribution of the detector [11],
so-called maps. In addition it uses Runge-Kutta methods to solve the differential equations
necessary to propagate the particle through the regions with an inhomogeneous magnetic
field. Accessing the values in the lookup table and solving the differential equations are
time consuming and prohibit the usage of the current Kalman filter in the first stage of
the upgraded trigger system. This conclusion is independent of the choice of computing
architecture (CPU or GPU) which is used for the first trigger stage.

In this paper, a fully parametrized version of the Kalman filter in LHCb, called

1The nominal bunch-crossing frequency of the LHC is 40 MHz, however empty and non-colliding
bunches reduce this to a collision frequency of 30 MHz at LHCb.
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parametrized Kalman, is presented. It obtains precise values of track parameters and track
quality variables, while relying on neither computationally costly extrapolation methods
nor material or magnetic field maps.

2 Detector and simulation

The LHCb detector [1] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5. Its Run 3 configuration includes a high-precision tracking system
consisting of a silicon-pixel vertex detector surrounding the pp interaction region [5]
(VELO), a large-area silicon-strip detector (Upstream Tracker (UT)) [7] located upstream
of a dipole magnet with a bending power of about 4 Tm [12], and three stations of
scintillating-fibre detectors (SciFi) [7] placed downstream of the magnet. Different types
of charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors [6,13]. Photons, electrons and hadrons are identified by a calorimeter system
consisting of an electromagnetic and a hadronic calorimeter [6,14]. Muons are identified by
a system composed of alternating layers of iron and multiwire proportional chambers [6,15].

Given the lack of collision data at this point for Run 3, simulation is required to
model the effects of the detector response, the detector acceptance and the imposed
selection requirements. In the simulation, pp collisions are generated using Pythia [16]
with a specific LHCb configuration [17]. Decays of unstable particles are described
by EvtGen [18], in which final-state radiation is generated using Photos [19]. The
interaction of the generated particles with the detector, and its response, are implemented
using the Geant4 toolkit [20] as described in Ref. [21].

3 Principles

In the following, the Kalman filter formalism and its application in the LHCb track
reconstruction is outlined. During Kalman filtering, the information from measurements
at detector planes is successively combined to obtain optimal estimates of the track
parameters. The track is represented as a set of states at fixed z-positions2, which are
typically detector layers. Each of these states is given by x = (x, y, tx, ty,

q
p
) and the

corresponding covariance matrix P , where tx and ty are the slopes with respect to the
z axis, q the charge of the particle in units of the electron charge and p its absolute
momentum.

The Kalman filter procedure needs an estimate of a state as a starting point. Filtering
is then a repeated application of two steps. Firstly, the current state is extrapolated
to the next detector layer, and secondly, the extrapolated state is updated using the
measurement in this layer. If the track has no associated measurement in this layer, the
update step is omitted. These steps can be formalized as follows: given the state (xk−1|k−1,
P k−1|k−1) at position zk−1, the extrapolated state (xk|k−1, P k|k−1) at position zk is given
by

xk|k−1 = fk(xk−1|k−1), (1)

P k|k−1 = F kP k−1|k−1F
T
k + Qk, (2)

2The detector coordinate system is chosen such that the z-axis is parallel to the beam line and charged
particles are deflected in the direction of the x-axis.
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where the extrapolation function fk(x) is given by five individual mappings fk =

(fx
k , f

y
k , f

tx
k , f

ty
k , f

q
p

k ). This leads to the transport matrix F k as

F ij
k =

∂f i
k

∂xj
. (3)

The noise matrix Qk accounts for uncertainties of the extrapolation, e.g. due to scattering
at the material of the detector layers or the material in between.

The extrapolated state is then combined with the measurement mk in the respective
detector layer to obtain the new state estimate at the position zk, xk|k and P k|k, using
the following steps:

rk = mk −Hkxk|k−1, (4)

Sk = HkP k|k−1H
T
k + Rk, (5)

Kk = P k|k−1H
T
kS
−1
k , (6)

xk|k = xk|k−1 + Kkrk, (7)

P k|k = (1−KkHk)P k|k−1. (8)

Here Hk projects the estimated state vector to the measurement space in order to allow
a calculation of the residual rk. The covariance matrix of this residual is given by Sk and
is combined with the covariance matrix of the state to obtain the Kalman gain Kk. The
latter defines then how the estimated state is modified by the residual. The variance of
the residual is given by Rk.

Starting at the most upstream measurement, the measurements are successively added
and the track parameters updated until the last detector layer is reached. The same
procedure is repeated starting at the most downstream measurement and successively in-
cluding more upstream measurements. This yields two sets of states at every measurement
position, which can be combined to obtain the respective optimal state.

The quality of a track can be estimated by its χ2
track value. The value at each

measurement is given by:

χ2
k = χ2

k−1 + rT
kP

−1
k|krk, (9)

and χ2
track is then simply χ2

k after all measurements have been added using the combined,
optimal states.

The optimal state estimates and the measurement information can also be used to
remove measurements that show a large separation from the fitted trajectory by having a
large contribution to the χ2

track value. They are therefore likely to be wrongly associated
to the respective track, and are so-called outliers. Once an outlier is removed, all Kalman
filter steps are performed again. This procedure can be repeated until the maximum
allowed number of outliers are removed, or no more outliers are present.

The above formalism is also the basis of the Kalman filter that is currently used for
track fitting in the LHCb experiment. The extrapolation functions fk are based on maps
of the magnetic field along the trajectory and numerical models for the extrapolations.
Their complexities range up to a fifth-order Runge-Kutta method. The noise matrices Qk

are obtained by a dedicated model for the multiple scattering and a map of the material
traversed by the particle.
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In the parametrized Kalman filter presented in this paper, these two costly steps are
replaced by simple parametrizations. The extrapolation functions fk are given by analytic
expressions that allow a fast evaluation and calculation of the derivatives in Equation 3.
The noise matrices Qk depend on the momentum of the particle and are parametrized by
a few parameters per extrapolation step.

An important difference with respect to the default Kalman filter is the treatment of
energy loss due to the interaction with the detector material. While the multiple scattering
is taken directly into account, the energy loss is not part of the extrapolation functions

fk, i.e. f
q
p

k is the unity transformation. This shortcoming is compensated by choosing the
momentum of the state vectors to represent the momentum at the moment of production
of the particle. Thereby, the extrapolation functions also take this initial momentum as
input and thus indirectly take into account all energy loss that happened on average up
to the respective detector layer. The only caveat being that q

p
after the filtering is only

the best representation of the true value at the production point of the particle.

4 Parametrizations

Depending on the strength of the magnetic field and the typical distance between detector
layers, different empirical analytical functions for the extrapolation are used.

Inside the VELO, where the magnetic field is very weak, these functions and the noise
matrix are given by:

f(x) =


fx(x)

f y(x)

f tx(x)

f ty(x)

f
q
p (x)

 =


x+ 0.5[tx + f tx(x)]∆z

y + ty∆z

tx + pV0
q
p
(z0 + pV1 )∆z

ty
q
p

 (10)

and

Q =



(
p̃V1 ∆z

)2
Qtxtx 0 p̃V2

√
QxxQtxtx 0 0

0
(
p̃V1 ∆z

)2
Qtyty 0 p̃V3

√
QyyQtyty 0

p̃V2
√
QxxQtxtx 0

(
p̃V0

∣∣∣ qp ∣∣∣)2 0 0

0 p̃V3
√
QyyQtyty 0

(
p̃V0

∣∣∣ qp ∣∣∣)2 0

0 0 0 0 0


, (11)

where ∆z is the extrapolation distance along the z-direction and z0 the initial or final z
coordinate for a downstream or upstream extrapolation, respectively. The parameters pV0 ,
pV1 and p̃V0 to p̃V3 are the same for all upstream and downstream extrapolations inside the
VELO. They are determined using simulated B0

s→ φφ decays within the LHCb software
framework, where φ→ K+K−. This simulated sample allows to create a dataset D,
containing pairs of states representing two consecutive measurements of one track inside
the VELO. In addition to the true state parameters obtained from the simulation, also
an extrapolation of each state to the z position of the respective other state is included
in the dataset. Such extrapolation is based on the default extrapolation algorithm in
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LHCb [11]. This dataset allows tuning the parameters employing a minimization of the
following likelihood-inspired function:∏

D

[
G
(
f s(x1)− x2

s,
√
Qss
)

+ c
]
. (12)

Here, G(x, σx) is a normalized Gaussian distribution centered around 0 with width σx.
The two states of each dataset entry are represented by x1 and x2, and the variable s is
one of the state variables, s ∈ {x, tx, y, ty}. The positive empirical constant c is chosen to
be small with respect to the amplitude of the Gaussian function and softens the impact
of outliers.

In a first step, the extrapolation functions fx to f tx are tuned individually, taking into
account that fx depends on the previously determined parameters for f tx . These tuning
minimizations employ the state vector x2 that is obtained by the extrapolation of the
state vector x1. This choice improves the precision of the parametrized extrapolation, by
removing the effect of multiple scattering that would be present if instead the true state
was chosen for x2.

In a second step, the parameters of the extrapolation functions are fixed, and a
minimization of the following function is performed:∏

D

[
G2
(
fd(x1)− x2

d, f td(x1)− x2
td ,
√
Qdd,

√
Qtdtd , Qdtd/

√
QddQtdtd

)
+ c
]
. (13)

Here, G2(x, y, σy, σy, ρ) is a normalized two-dimensional Gaussian distribution centered
around 0 with widths σx and σy and a correlation factor ρ. The variable d is either x or y.
In this minimization, the true state vector x2 is used in order to get the correct estimate
of the parameters for the respective elements of the noise matrix Q.

Inside the UT and the SciFi detector stations, the magnetic field is significantly
stronger than inside the VELO and higher order terms are needed for the extrapolation
functions:

f(x) =



x+
[
pT3 tx + (1− pT3 )f tx(x)

]
∆z

y +
[
pT5 ty + (1− pT5 )f ty(x)

]
∆z

tx +
[
pT0

q
p

+ pT1 ( q
p
)3 + pT2 y

2 q
p

]
∆z

ty + pT4
q
p
tx

y
|y|

q
p


. (14)

The noise matrix is given in full analogy to Equation 11 with the parameters p̃T0 to
p̃T3 , where T either stands for the UT or the SciFi detector. These parameters and the
parameters pT0 to pT4 are individually determined on simulation for every step from one
detector layer to the next and for the upstream and downstream extrapolation separately.
The same strategy as for the tuning of the parameters related to the extrapolation inside
the VELO is followed.

For the long extrapolations between the different tracking subdetectors, more sophisti-
cated parametrizations are necessary. In the case of the step between the VELO and the
UT, where the magnetic field is still weak, the extrapolation is based on two equations.
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The first describes the change in momentum along the x-direction of the particle:

∆px = p

 tx,UT√
1 + t2x,UT + t2y,UT

− tx,V√
1 + t2x,V + t2y,V

 = q

∫
(dl×B)x , (15)

where tx/y,UT and tx/y,V are the state variables at the first UT detector layer and the last
measurement inside the VELO, respectively. The right hand side of the equation consists
of an integral of the magnetic field along the trajectory of the particle. Note that the
integral expression is simply a parameter which was fitted for on the dataset. The second
ingredient for the extrapolation is to model the effect of the magnetic field as a single
kink of the trajectory at a certain z-position zmag between the VELO and the UT:

xUT = xV + (zmag − zV)tx,V + (zUT − zmag)tx,UT, (16)

where zV and zUT are the positions of the states inside the VELO and the UT, respectively.
Equation 15 can be solved for tx,UT and Equation 16 is then employed to get an

expression for xUT. The unknowns in these expressions are parametrized as a function of
the state variables inside the VELO:

ty,UT = ty,V + pS0
q

p
tx,V

yV
|yV|

(17)∫
(dl×B)x = pS1 + pS2zV + pS3t

2
y,V (18)

zmag = pS4 + pS5zV + pS6z
2
V + pS7t

2
y,V. (19)

In addition, the y-position of the extrapolated state is given by:

yUT = yV +
[
pS8ty,V + (1− pS8)ty,UT

]
∆z, (20)

where ∆z is defined as the difference between zUT and zV. The noise matrix is defined in
analogy to Equation 11 with the parameters p̃S0 to p̃S3 . These parameters and the parameters
pS0 to pS8 are individually determined for the upstream and downstream extrapolation. The
same strategy as for the tuning of the parameters related to the extrapolation inside the
VELO is followed.

The extrapolation from the UT to the SciFi detector is more delicate because it is
done over a distance of more than 5 meters through a strong magnetic field. Moreover,
this field is far from uniform - in particular, it varies rapidly in the upper and lower
regions, close to the magnet yoke. To ensure a good quality of the global track fit, the
error on the extrapolation should be well below the other sources of error, mainly multiple
scattering. The chosen solution is an expansion of the magnetic deviation in powers of q/p.
The parametrization aims at giving good precision for charged particles used in physics
analyses, that is for trajectories which roughly come from the origin.

To do so, the ideal direction (t0x, t
0
y) as the one of a particle of charge q, momentum

p, starting from the origin and hitting the UT detector layer in a given point (x, y) is
defined. As a good approximation, we can take t0x = x/z + Bq/p, t0y = y/z, where B is
proportional to the integrated field between the origin and the UT. The deviations from
the ideal direction, δtx = tx − t0x, δty = ty − t0y, are small, so only a first order expansion
in δtx, δty is considered. Corrections of higher order would be negligible compared to
multiple scattering errors.
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Finally, a polynomial expansion in q/p for the ideal direction is built, and a correction
in δtx, δty with coefficients which are themselves polynomials of q/p is added:

fx(x) = x+ tx∆z +

K1∑
k=1

Ax
k(x, y)

(
q

p

)k

+

K2∑
k=1

(Bx
k (x, y) δtx + Cx

k (x, y) δty)

(
q

p

)k

, (21)

where the first two terms are the straight line extrapolation, and the next ones the
curvature correction. Similar expressions are used for the other state parameters f y(x),
f tx(x), f ty(x). The degrees of expansion K1 and K2 are tuned for each parameter to
obtain the required precision. In practice K1 = 9, K2 = 7 for fx and f tx and K1 = 7,
K2 = 5 for f y and f ty are used.

The dependence on x, y of the coefficients Au
k , Bu

k , Cu
k , with u = x, y, tx, ty, is described

through a tabulation on a grid of 50×50 points regularly spaced on the rectangle defined
by |x/z| ≤ 0.25, |y/z| ≤ 0.25, by steps ∆X, ∆Y . In order to avoid a systematic convexity
bias of a bilinear interpolation, the values at x, y are computed by a quadratic interpolation
between the tabulated values at the six closest points on the grid: if (X, Y ) is the closest
one, these values are: F00 = (X, Y ), F+0 = F (X + ∆X, Y ), F−0 = F (X − ∆X, Y ),
F0+ = F (X, Y + ∆Y ), F0− = F (X, Y − ∆Y ), and Fεxεy = F (X + εx∆X, Y + εy∆Y ),
where εx and εy are the signs of ξ = (x − X)/∆X and ψ = (y − Y )/∆Y , respectively.
With these notations the interpolation formula for a quantity F is given by :

F (x, y) = F00 + Fd ξψ +
(
(F+0 − F−0) ξ + (F0+ − F0−)ψ

+ (F+0 + F−0 − 2F00) ξ
2 + (F0+ + F0− − 2F00)ψ

2
)
/2 (22)

with Fd =εxεy(F00 + Fεxεy − Fεx0 − F0εy). (23)

The tabulated values are obtained using the standard Runge-Kutta method of order 4, with
20 values of q/p in the range (−1/pmin, 1/pmin), with pmin = 3000 MeV/c and a polynomial
fit in q/p. As a consequence, they do not give a reliable result for momenta below pmin.
Another limitation is the larger errors on the edges of the acceptance, especially for
|ty| ' 0.25, where the field has strong spatial variations.

5 Performance

A sample of simulated proton-proton collisions that include a B0
s → φφ, φ→ K+K− decay

is used to compare the reconstruction quality of the parametrized and the default Kalman
filter. The extrapolation of the most upstream state estimate to the beam line is the same
in both filters and is based on a simplified material map of the detector [11]. Therefore, not
the state near the beam line, but the state at the most upstream measurement is employed
for the comparison of the two Kalman filters. Although only tracks with measurements in
each of the subdetectors are considered for this study, this is in principle not a requirement
for operating the parameterized Kalman filter

Figure 1 compares the resolution of the momentum, the x-position and the slope
tx as a function of the true momentum of a particle. Since the position and slope are
nearly exclusively determined by the measurements in the VELO, where only a very weak
magnetic field is present, the parametrizations of the parametrized Kalman filter are
sufficient to obtain results comparable to the default Kalman filter in these variables. In
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Figure 1: Comparison of the resolution in simulation in (top left) momentum, (top right)
x-position and (bottom) slope tx between the default and parametrized Kalman filter. The
resolution is represented by the root mean square of the residual distribution when comparing
to the true value.

contrast, the momentum estimate strongly depends on the extrapolations in regions with
strong magnetic field. There, especially at momenta below 10 GeV/c, an up to 20% worse
resolution is observed for the parametrized Kalman filter.

The Kalman filter does not only provide an estimate of the state parameters, but also
a corresponding covariance matrix. In Figure 2 the pull distributions of the estimated
momentum, x-position and slope tx for the parametrized Kalman filter are shown. In all
three cases, good uncertainty estimates are visible. However, in analogy to the observations
made for the resolution, the pull distribution of the momentum features slightly more
pronounced tails.

Besides the estimate of the state near the beam line, which is used for the reconstruction
of charged particles, an important output of the Kalman filter is the fit quality described
by the χ2

track per degrees of freedom Ndof. In Figure 3, this quantity is shown for the
parametrized Kalman filter for real tracks coming from a particle and fake tracks consisting
of random combinations of clusters. In addition, the real track efficiencies and fake track
rejection rates are shown for both Kalman filter versions when applying upper bounds
on this quantity. The parametrized Kalman filter shows a slightly worse but overall
comparable performance in separating the two track classes.

The fitted tracks are combined to reconstruct B0
s → φφ candidates. Figure 4 shows the

invariant mass distribution of candidates based on the two Kalman filter versions. A single
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Figure 2: Pull distributions of the momentum, x-position and slope tx estimates of the
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track/Ndof, in simulation for the parametrized filter (left).
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rejection for the parametrized and default Kalman filter (right).
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Figure 4: Reconstructed B0
s mass in simulated B0

s → φφ decays for the parametrized and the
default Kalman filter. Fit projections are overlaid.

Gaussian distribution and a first order polynomial are employed to model the signal peak
and the combinatorial background, respectively. This yields nearly identical estimated
mass resolutions of 12.8 MeV/c2 and 12.9 MeV/c2 for the default and the parametrized
Kalman filter, respectively.

In order to compare the timing performance of the parametrized Kalman filter and
the default Kalman filter, throughput studies on a machine with two Intel(R) Xeon(R)
Silver 4214 processors were performed. Simulated proton-proton collisions were used in
order to mimic the situation of real data taking. Depending on the configuration of the
outlier removal strategy, an overall speedup factor between 4 and 5.5 with respect to the
default Kalman filter was achieved. The largest speedup is achieved when no iterations
for the outlier removal are performed. Singling out the calculation steps of the Kalman
filter, i.e. neglecting the part of the algorithms where the measurement information is
constructed, the speedup factor is even larger and ranges from 5.7 to 10.

In the case of the parametrized Kalman filter, and singling out again the calculation
step of the Kalman filter, 50% of the time is spent extrapolating the states between the
detector layers. Here, the extrapolation between the UT and the SciFi constitutes the
biggest component with a relative fraction of 40%. The remaining Kalman filter steps,
consisting of updating the states with the cluster information and the combination of
upstream and downstream filtered states, are responsible for 16% and 14% of the time
spent, respectively. The extrapolation to the beam line, which is based on the default
LHCb extrapolation algorithm, is responsible for the remaining 20% of the time budget.

6 Conclusion

We presented an alternative implementation of a Kalman filter for the LHCb experiment.
Based on simple parametrizations of material effects and the extrapolation through the
magnetic field of the detector, this algorithm achieves a significant speedup with respect
to the current implementation, while retaining comparable quality of the track parameters.
In the future, further improvements of the parametrizations might allow an even better
estimate of the track parameters and a subsequent speedup. Ideas currently under
discussion include for example an analytic parametrization of the x and y dependence
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of the parameters employed in the extrapolation from the UT to the SciFi detector and
a better account for the limited acceptance of low momentum particles. The version
presented in this document or a future implementation might therefore be well suited for
the usage in the LHCb software trigger system for Run 3 of the LHC.
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